

An Inner Channel Simulation of the X2 Nested Channel Hall Effect Thruster

Horatiu C. Dragnea¹ and lain D. Boyd¹

Introduction

Effect Thrusters (HETs) are electromagnetic in-space Hall propulsion devices with low thrust but high specific impulse. They have a rich history of over 60 years [1].

Current use: stationkeeping and attitude control

Future use: main propulsion Nested channel HETs were first developed at the University of Michigan in the Plasmadynamics and Electric Propulsion Laboratory (PEPL) to enable device scaling to higher power:

2 channel, 10kW class X2 by Liang [1]

> 3 channel, 100kW class X3 by Florenz [2]

Figure 1: The evolution of Hall thrusters. From left to right: the H6 (6kW), X2 and X3 HETs.

Motivation

Performance gains were observed in multiple channel operation [1].

Simulation incentives:

- Investigation channel interaction
- Full characterization of the thruster channels
- Difficulties quantities measuring inside channel
- Future input for a plume simulation
- Design feedback

Objectives

- 1. Validate the inner channel simulation
- 2. Investigate the effects of facility backpressure

1. Department of Aerospace Engineering, University of Michigan.

Simulation Setup

Of in

Results

Figure 3: 2D axisymmetric computational domain.

Figure 4: Magnetic field lines.

The 2D axisymmetric hybrid-PIC code HPHall [3] is used in the current study. Parameters:

• simulation time: 4 ms

- Xe propellant: 7 *mg/s*
- number of neutrals: 133,000
- number of ions: 600,000
- discharge voltage: 200 V • computation time: 20 hrs

Table 1: Thrust comparison Thrust Values (mN) Simulation at 1.5 $*10^{-5}$ Torr Simulation in vacuum Measured 92.0 ± 3.00 92.5 ± 0.365 92.4 ± 0.289 Neutral Density [m⁻³ 5E+19 4E+19 3E+19 2E+19 CL, Vacuum CL, Backpressure Case 1E+19 9E+18 8E+18 7E+18 6E+18 5E+18 4E+18 3E+18 2E+18 2E+18 1E+18 1E+18 1E+18 1E+17 1E+17 1E+17 _____ Background Neutrals Figure 5: Xe number density. Figure 6: Centerline densities. Single Ion Density [m⁻² 1.4E+18 1.3E+18 1.2E+18 112+18 9E+17 8E+17 7E+17 6E+17 5E+17 5E+17 4E+17 3E+17 2E+17 1E+17

Figure 7: Xe+ number density.

Conclusions and Future Work

- Facility backpressure does not influence the inner channel
- Thrust values are in good agreement with measurement > Electron temperature values confirm ionization assumption (no
- triples)
- > Future work:
 - X2 outer channel simulation
 - Code updates: mesh reading and electron model
 - X2 dual channel simulation
 - X3 single, dual and triple channel simulations

Acknowledgements

This work was supported by a NASA Space Technology Research Fellowship, grant number: NNX13AL51H.

References

- Liang, R., "The Combination of Two Concentric Discharge Channels into a Nested Hall-Effect Thruster," Ph.D. Dissertation, Aerospace Engineering Dept., University of Michigan., Ann Arbor, MI, 2013.
- Florenz, R.E., "The X3 100-kW Class Nested-Channel Hall Thruster: Motivation, Implementation and Initial Performance," Ph.D. Dissertation, Aerospace Engineering Dept., University of Michigan., Ann Arbor, MI, 2014.
- 3. Fife, J.M., "Hybrid-PIC Modeling and Electrostatic Probe Survey of Hall Thrusters," Ph.D. Dissertation, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 1998.

Symposium Gold Sponsors

COLLEGE OF ENGINEERING CENTER FOR ENTREPRENEURSHIP UNIVERSITY OF MICHIGAN

