Ion Acceleration Modes in a Miniature Helicon Thruster

Timothy A. Collard, Frans H. Ebersohn, J. P. Sheehan, and Alec D. Gallimore
CubeSat – Affordable Platform, Limited Capabilities

- Modularized, based on 10 cm cubes
- Limited available propulsion options
- High performance propulsion is mission enabling
CubeSat Ambipolar Thruster (CAT)

- Electrodeless, permanent magnet, helicon
- Volume without propellant tank < 1U
- $\Delta V > 1000$ m/s
Experimental Setup

- 1200 L/s pumping speed on argon
Diagnostics

- RPA measured ion energy distribution
- Emissive probe measured plasma potential
Three Operational Modes – Two with Energetic Ions

Diffuse mode
- High plume divergence
- Diffuse, bright plume

High flow rate, low power mode
- Some neutral throughput
- Collimated beam

Low flow rate, high power mode
- Ultra-bright ionization region
- Saber-like beam

- > 10 sccm, > 20 W
- 3 - 15 sccm, < 15 W
- < 0.3 sccm, > 50 W
Operational Mode – High Flow Rate, Low Power Mode

Diffuse mode
- High plume divergence
- Diffuse, bright plume

High flow rate, low power mode
- Some neutral throughput
- Collimated beam

Low flow rate, high power mode
- Ultra-bright ionization region
- Saber-like beam

> 10 sccm, > 20 W

3 - 15 sccm, < 15 W

< 0.3 sccm, > 50 W
High Flow Rate, Low Power Mode – Vary Input Power, $P \approx 1 \times 10^{-4}$ Torr, Ar
High Flow Rate, Low Power Mode – Vary RPA Position, $P \approx 1 \times 10^{-4}$ Torr, Ar
Operational Mode – Low Flow Rate, High Power Mode

Diffuse mode
- High plume divergence
- Diffuse, bright plume

High flow rate, low power mode
- Some neutral throughput
- Collimated beam

Low flow rate, high power mode
- Ultra-bright ionization region
- Saber-like beam

- > 10 sccm, > 20 W
- $3 - 15$ sccm, < 15 W
- < 0.3 sccm, > 50 W
Low Flow Rate, High Power Mode – Vary Input Power, $P \approx 1 \times 10^{-6}$ Torr, Xe

Ion Beam

Energy Distribution, $-\frac{dI}{dV}$ (arb.)

Voltage (V)

$P < 78.9$ W
$P < 86.0$ W
Low Flow Rate, High Power Mode – Vary RPA Position, $P \approx 1 \times 10^{-6}$ Torr, Xe
Conclusions

• Multiple significantly different modes observed
 – Different operational parameters
 – Different plume structures
 – Different ion energies

• Two of three modes show promising characteristics
 – Possible high specific impulse modes
Future Work

• 2D plume mapping
 – Plasma potential
 – Density
 – Electron temperature

• Determination of plume composition

• Direct thrust and specific impulse measurement

• Measurement of efficiency
Acknowledgements

Thank you for your time!

Questions?

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 1256260 and NASA under Grant No. NNX14AD71G. Thank you to the members of PEPL for their insightful discussion concerning this research.