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Magnetic field guided plasma expansions show up in
the laboratory and in nature.

A Plasma thrusters (electrode
less, magnetic nozzle)

A Solar phenomena

CubeSaAmbipolarThruster

A Astrophysical plasma jets

A Aurora Borealis

Aurora borealis



lons can be accelerated during the expansion.

How are ions accelerated in these magnetic fiel
expansions?




lons can be accelerated by the electric field created
by fast expanding electrons.

Quastneutral
plasma

Vacuum




The magnetic dipole force can accelerate ions along
magnetic field lines.

A Particles accelerated by magnetic dipole force. (magnetic
moment)
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A Quantity Ht || acts like a magnetic potential




The Quasi -1D PIC code incorporates 2D effects to a
1D electrostatic PIC code without 2D costs.

A lon and electron particles
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The plasma is heated by an oscillating electric field.

Heated electrons collide with neutral background.
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The cross -sectional area variation is found by
assuming particles follow field lines.
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Simulation parameters are chosen to compare with

previous simulations.

Parameter Value
Length 10 em
Grid Cells 250
Time Step 5x 1071 g
Total Time 25 us
Heating Current 100 A /m?
Heating Frequency 10 MHz

Macroparticle Weight
Neutral Pressure
Neutral Temperature
Gas
Magnetic Field (Bg)

2 % 10® Particles/Macroparticle

1.23 mTorr
203 K
Argon

300 G

Similar to parameters used eige (2005) andBaalrud(2013)



Incorporation of two  -dimensional effects leads to
capturing ion acceleration.
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Incorporation of two  -dimensional effects leads to
capturing ion acceleration.
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Incorporation of two  -dimensional effects leads to
capturing ion acceleration.
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lons develop into a beam with some lower energy
particles.
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Magnetic field effects on electrons leads to the
acceleration of the ions.

The light electrons are heated in the heating region

4 b VIR




Magnetic field effects on electrons leads to the
acceleration of the ions.

The light electrons are heated in the heating region

4 b VIR

High perpendicular velocities leads to rapid
acceleration of electrons
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Magnetic field effects on electrons leads to the
acceleration of the ions.

The light electrons are heated in the heating region

4 g VIR

High perpendicular velocities leads to rapid
acceleration of electrons
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Charge imbalance leads to the formation of an electric
fleld which accelerates the ions out with the electrons

O i N
T o |




Magnetic field effects on electrons leads to the
acceleration of the ions.

The light electrons are heated in the heating region

4 g VIR

High perpendicular velocities leads to rapid
acceleration of electrons
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Charge imbalance leads to the formation of an electric
fleld which accelerates the ions out with the electrons
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Conclusions and future work.

A Electrons driven bynagneticfield forces create
potential drops which resuih ionacceleration

A Future simulations will investigate HDLT, CAT, and
VASIMR ion acceleration mechanisms.

A Perform further parametric study with this test
oroblem. (Additional magnetic field topologies,
neating currentsetc)
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Rapid expansion leads to rapid potential drop and
more ion acceleration.
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Kinetic simulations are necessary to capture
Important ion acceleration physics.

A Evolutionof the ion and electron energy distributidanctions
A Instabilities in the plasma

A Potentialstructures which form in the plasn@ume

A Capture most fundamental physics for ion acceleration




Electron temperatures are around 4 -5eV
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Electron distribution only varies slightly spatially.
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Electron temperatures vary greatly through domain
when including two  -dimensional effects
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Electron distribution shows significant variation
through the domain.
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Cross -sectional area variation changes density, but
Nno major ion acceleration is seen.
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