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Anomalous cross-field transport in a Hall thruster inferred from direct measurement
of instability growth rates
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The contribution of the electron drift instability to anomalous electron transport is experimentally assessed in a
Hall effect discharge. The transport is represented by an anomalous collision frequency, which is related through
quasilinear theory to the energy and growth rate of the instability. The wave energy is measured directly with ion
saturation probes, while estimates of the growth rate are employed based on both linearized theory and direct
measurement. The latter measurement is performed with a bispectral analysis method. The wave-driven collision
frequency is compared to measurements of the actual collision frequency inferred from a method based on laser-
induced fluorescence. It is found that estimates for transport using linearized theory for the growth differ by over
an order of magnitude from the actual anomalous collision frequency in the plasma. The wave-driven anomalous
collision frequency with measured growth, however, is shown to agree with the electron collision frequency
in magnitude and capture aspects of the trends in spatial variation. This result demonstrates experimentally that
wave-driven effects ultimately can explain the observed cross-field transport in these devices. The implications of
this finding are discussed in the context of the key lengthscales that drive the transport as well as the implications
identifying reduced fidelity models that could be used to predict anomalous collision frequency.
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I. INTRODUCTION

Cross-field electron transport in Hall effect thrusters
(HETs) is a poorly understood phenomenon. These axisym-
metric devices are characterized by a radial magnetic field
crossed with an applied axial electric field. The magnitude of
the field strength is tailored such that the electrons are magne-
tized while the ions are not. As a result, ions are accelerated
by the electric field out of the thruster, and most electrons
are trapped in an azimuthal Hall effect drift. While classi-
cally some electron current parallel to the electric field, i.e.,
in the cross-field direction, can result from particle-particle
collisions, experiments have shown that the actual cross-field
current is orders of magnitude higher [1–3]. This so-called
“anomalous” transport has yet to be adequately explained.
Practically, this lack of understanding has impeded the devel-
opment of fully predictive Hall thruster models [2,4].

In light of this limitation, several different theories have
been proposed to date to explain the transport. These include
processes related to Bohm diffusion as well as near-wall ef-
fects [3,5–9]. There is a growing consensus, however, that the
transport may largely be attributed to the formation of small-
scale instabilities [10]. Recent kinetic simulations [11–17] and
analytical models [18–20] have suggested that the high E × B
velocity of the electrons results in the growth of the so-called
electron drift instability (EDI). This EDI grows at the expense
of electron momentum, resulting in an effective drag on this
species. This force on the electrons, when combined with
the radial magnetic field, promotes a cross-field drift. Indeed,
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numerical simulations have indicated that this effect may be
sufficient to explain the anomalous transport. In parallel, ex-
perimental studies have confirmed that the EDI exists in the
thruster plasma [21–24]. However, despite this experimental
evidence of the EDI, it has yet to be demonstrated if the
instability as measured in experiment is sufficient to explain
the transport. The role of the EDI in real systems thus remains
an open question.

In an effort to address this question, we employed in a
previous study experimental measurements of the EDI wave
amplitude combined with a linear prediction for the wave
growth in an attempt to relate the EDI to an effective transport
coefficient. We ultimately found, however, that we were not
able to recreate the experimentally measured transport [25].
We subsequently hypothesized that this discrepancy might
be attributed to an oversimplification in our approximation
of the growth rate, i.e., the rate at which the EDI extracts
energy from the Hall drift. Indeed, while we had employed the
theoretical form of the growth rate based on a linear expansion
of the dielectric response in a Maxwellian plasma, recent
simulations have shown that the growth and saturation of the
EDI is highly nonlinear in nature [12,13,26]. These nonlinear
features in turn can lead to distortion of the electron velocity
distribution function (EVDF) and cross-lengthscale coupling,
both of which can lower the magnitude of the growth rate
and subsequent transport [11,18,20]. In light of these previ-
ous modeling results and our direct experimental observation
[24] that the EDI growth exhibits nonlinear features, we thus
suspected that we would need to amend our estimates for the
growth rate in our calculations for EDI-induced transport.

To this end, in our previous work [27] we demonstrated
a technique to measure directly the linear growth rates and
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nonlinear energy exchange in the Hall thruster acceleration
zone, the region of maximum axial electric field, and ion
acceleration. The observed nonlinear features indicated the
presence of an inverse energy cascade commensurate with
results reported in recent simulations of the EDI [12,13],
and significantly, the measured linear growth rates were an
order lower than values from the idealized linear theory. This
result suggests that to make an experimental assessment of
EDI-induced transport, it is necessary to employ the directly
measured linear growth rates in place of theoretical, linearized
values.

The goal of this investigation is to determine the wave-
induced transport using direct measurement of the growth
rate along the channel centerline of a HET, and to compare
the results to the actual cross-field transport. This paper is
organized as follows. In Sec. II, we outline the theoretical
framework we employ to relate measurements of the EDI to
an anomalous transport coefficient. In Sec. III, we detail the
experimental setup and methodology for performing measure-
ments of the EDI. In Sec. IV, we present the results of the
experiment. In Sec. V, we discuss the results in the context of
their implications for our understanding of the role of the EDI
in Hall thrusters.

II. THEORY

In this section, we motivate a theoretical and experimental
framework for inferring the anomalous transport from mea-
surements of the EDI in a Hall thruster. To this end, we first
outline a model for relating plasma instability amplitudes to
enhanced transport, and we represent the magnitude of this
transport with an anomalous collision frequency. We then
review the methodology we use to directly measure the in-
stability’s linear growth rates. Finally, we discuss methods
for evaluating the expression for anomalous transport in the
context of the EDI in Hall thrusters.

A. Relating anomalous collision frequency to EDI properties

Figure 1 shows a representative geometry of a HET. This
cylindrical cross-field device features a radial magnetic field,
�B = Brẑ, perpendicular to an applied axial electric field,
�E = Ex(0)x̂. This field configuration induces an E × B Hall
drift of the electrons in the azimuthal direction, ŷ. Due
to particle-particle collisions, electrons should exhibit some
small mobility across magnetic field lines in the direction
of the electric field. However, as discussed in the preceding
section, the observed electron transport levels are orders of
magnitude larger than can be explained by collisions.

The cross-field transport of electrons can be understood
by employing the drift-diffusion approximation for electron
momentum. This is obtained by neglecting the inertial terms
in the electron fluid momentum equation,

0 = − q2

me
ne( �E + �ve × �B) − q

me
∇(pe) + �jeνc. (1)

Here me is the electron mass, ne is the electron density, �je
is the electron current density, �E and �B are local electric
and magnetic fields, pe = qneTe is electron pressure, where
Te is expressed in units of energy, νc is the classical electron

FIG. 1. H9 Hall thruster operating at 300 V and 15 A with an
axial electric field (Ē ) and a radial magnetic field (B̄). The coordinate
convention and notional orientation of probes in the E × B direction
are also shown.

momentum transfer collision frequency, and q is the funda-
mental charge. The first term represents the Lorentz force,
the second the pressure force, and the third the effective drag
due to particle collisions. We represent the electrostatic EDI
waves as rapid perturbations in density, ne = δne + ne(0), and
electric field, �E = δ �E + �E0, where δx + x0 denotes a quantity
x decomposed into an oscillating component δx against a
background value x0. We then phase-average Eq. (1) over the
timescale of the oscillation to yield

0 = q2

me
[〈δneδ �E〉 + ne(0) �E0 + ne(0)�ve × �B]

− q

me
∇(pe) − �jeνc. (2)

In this equation, phase averaging has eliminated the oscillat-
ing components of ne and �E except for the term containing
their product, 〈δneδ �E〉. If the density and electric field oscilla-
tions are in phase, this term will be nonzero.

We next assume that the steady-state electric field is only
in the axial direction ( �E0 = Ex(0)x̂), while the oscillating elec-
tric field induced by the EDI is in the azimuthal direction
(δ �E = δEyŷ). This is in agreement with previous measure-
ments of the EDI propagation vector, where the instability
was observed [22,24,28]. Additionally, we take the limit for
the radial magnetic field strength to be large enough that the
electron cyclotron frequency (ωce = qBr/me) is much larger
than the classical particle collision frequency to arrive at an
equation for axial electron current density,

je(x) =q2ne(0)

meω2
ce

(
E0(x) + ∇x(ne(0)Te)

ne(0)

)
νe, (3)

where we have defined a total electron collision frequency,
νe = νc + νAN . The latter parameter represents an effective
anomalous collision frequency that arises from the action of
the waves:

νAN = −ωce
〈δneδEy〉

ne(0)Ex(0) + ∇x(ne(0)Te)
. (4)
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This definition underscores the fact that from a fluid, phase-
averaged perspective, the propagation of the EDI can be
represented as an enhanced transport coefficient for the elec-
trons. Similarly, per the definition, we see that as the relative
fluctuations in electric field and density from the waves in-
crease, the wave-induced cross-field transport on the electrons
will be higher. Physically, this scaling stems from the fact that
the growth of the EDI can be interpreted as an effective drag
on the azimuthal drift in the plasma, which in turn promotes
cross-field current.

In practice, it is prohibitively difficult in our plasma to
measure the fluctuating density and the electric field simulta-
neously for the purpose of evaluating Eq. (4) directly. Instead,
we follow a linearized theory for wave propagation where we
assume the EDI oscillations can be represented as a summa-
tion over a spectrum:

δ �E = −i
∑

�k

�kφ(�k, ω), (5)

where φ(�k, ω) denotes the propagating oscillations in plasma
potential associated with the wave number (k) and frequency
(ω) of the electrostatic wave. We invoke in turn the eikonal
approximation to write

φ(�k, ω) = φ̂(�k, ω) exp[i(�k · �r − ωt )], (6)

where φ̂(�k, ω) denotes the complex amplitude of the potential
oscillation.

Following the technique of Davidson and Krall [29], we
can then show from a linearization of the dielectric function
of the plasma that averaging over the wave phase yields

〈δneδEk〉 =
∑

k

γe(k)kyk2 ∂ε (1)
r (�k, ω)

∂ω
|φ̂(�k, ω)|2. (7)

Here ky denotes the component of the wave vector of the
kth mode in the Hall direction, ε (1)

r (�k, ω) is the real com-
ponent of the dielectric response of the wave to the first
order, ω is the real component of the frequency, and we have
performed the summation over a spectrum of oscillations as-
sociated with the EDI. We have also introduced the parameter

γe(k) = −ε
(1)
i(e)(�k, ω)/( ∂ε (1)

r (�k,ω)
∂ω

), which is the linear growth rate
of the wave due to the electron contribution to the imaginary
component, ε

(1)
i(e)(�k, ω), of the dielectric function to the first

order. Physically, this latter parameter represents the rate at
which electrons extract energy from the Hall drift.

As an additional simplification, we make the substitution
φ(�k, ω)/Te = δni(k)/ni(0), where Te is the electron temperature
in electron volts, and δni(k) is the variation in ion density asso-
ciated with the kth element of this spectrum of the EDI. This
relationship is appropriate for the EDI dispersion [19,27] for
cold ions, Ti � Te, where Ti is the ion temperature. Invoking
this simplification, we can express Eq. (4) as

νAN = ωce

Ex(0) + ∇x (ne(0)Te )
ne(0)

Teλ
2
De

×
∑

k

γe(k)kyk2 ∂ε (1)
r (�k, ω)

∂ω

∣∣∣∣δni(k)

ni(0)

∣∣∣∣
2

, (8)

where λDe denotes the Debye length. This result shows that
as the relative fluctuation in ion density increases (an indi-
cation of stronger waves), the effective drag on the electrons
increases. Similarly, with a higher electron growth rate, i.e.,
the rate at which the waves extract momentum from the Hall
drift, the transport coefficient also increases.

As a final simplification, we note that while Eq. (8) is
formulated in terms of a summation over the wave number,
in practice our experimental measurements are time-based
Fourier transforms of density fluctuations. To translate this
result into a form that is experimentally tractable, we assume
that the relationship between frequency and wave number
is approximately one-to-one such that the kth wave number
maps to a unique real frequency, f = ω/2π . We therefore can
make the substitutions k → k f , δni(k) → δni( f ), and γe(k) →
γe( f ) to find

νAN = ωce

Ex(0) + ∇x (ne(0)Te )
ne(0)

Teλ
2
De

×
∑

f

γe( f )ky( f )k
2
f

∂ε (1)
r (�k, ω)

∂ω

∣∣∣∣δni( f )

ni(0)

∣∣∣∣
2

. (9)

This result ultimately is the expression we experimentally
evaluate in order to relate the EDI properties to cross-field
transport in the Hall thruster.

B. Theoretical dispersion and growth of the EDI

To estimate the transport coefficient experimentally from
Eq. (9), we require measurements of both the dispersion and
growth of the EDI. As a first-order approach to determine
these properties, we consider the theoretical form of the EDI
dispersion that stems from a linearization of the Vlasov equa-
tion subject to the assumption of cold ions and Maxwellian
electrons [18,19]:

ε (1)(�k, ω) = 1 + k2λ2
De + g

(
ω − kyVE×B

ωce
,
(
k2

x +k2
y

)
ρ2, k2

z ρ
2

)

− k2λ2
Deω

2
pi

(ω − kxvi(o) )
= 0 (10)

where g(�, X,Y ) is the Gordeev function, defined as

g(�, X,Y ) = i�
∫ +∞

0
e−X [1−cos(ϕ)]− 1

2 ϕ2+i�ϕdϕ. (11)

Here ωpi is the ion plasma frequency, k =
√

k2
x + k2

y + k2
z is

the oscillation wave number, vi(0) is the ion beam velocity
in the axial direction, VE×B is the azimuthal Hall drift of the
electrons, and ρ = Vthe/ωce is the electron Larmor radius at
thermal velocity, Vthe = √

qTe/me. We show in Fig. 2 example
solutions to this dispersion relation, adapted from Ref. [19],
for different assumed radial wave numbers.

In Fig. 2(a), we see that the growth rate exhibits peri-
odic peaks when the radial wave number is small. The first
and weakest of these peaks corresponds to the so-called
modified two-stream instability (MTSI) [12,13] while the
subsequent peaks are harmonics of the electron cyclotron res-
onance frequency, ky = nωce/VE×B, where n is the harmonic
mode number. Figure 2(b) shows that the real frequency is
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FIG. 2. Solutions of the EDI dispersion relation, adapted from
Cavalier et al. [19] with different radial wave components (kz). Fre-
quency (a) and growth rate (b) are normalized by the ion plasma
frequency (ωpi), and wave number is normalized by the Debye
length (λDe).

approximately linear, but with periodic peaks in between the
cyclotron harmonics. As the radial wave number decreases,
the peaks in both the real frequency and the growth rate reduce
in amplitude and ultimately disappear. In this limit, the EDI
exhibits an ion-acoustic-like dispersion [19].

Previous experimental work has shown that at high fre-
quency (above 2 MHz) and in regions downstream of the
acceleration zone, the real components of the wave dispersion
in a Hall thruster match the EDI in the acoustic limit [21].
We also demonstrated in recent experimental work that this
real part of this dispersion relation is consistent with mea-
surements of the wave propagation in the thruster acceleration
zone, but with visible cyclotron harmonics in the power spec-
trum [24]. The real frequency of the EDI at the cyclotron
harmonics remains the same as the wave radial changes and
transitions to the ion acoustic solution. In turn, we employ in
this work the theoretical form of the real component of the
dielectric response in the acoustic limit to evaluate Eq. (9).
Given that this dispersion has a one-to-one relationship

between frequency and wave number, we similarly can justify
the conversion we made in the preceding section, although
later in Sec. IV B we estimate the theoretical collision fre-
quency using the imaginary component of full EDI dispersion
relation, Eq. (10).

With respect to the growth rate, previous numerical studies
and our experimental work have shown that the linearized
theory does not accurately reflect the evolution of the EDI
[30]. This disparity likely stems from nonlinear effects im-
pacting the wave growth and the kinetic velocity distribution
of electrons. With this in mind, while we still use the linear
theory as a point of comparison for estimating the transport in
this work, we discuss in the following section a methodology
we developed to directly measure this growth rate.

C. Technique for directly inferring growth of the EDI

To experimentally estimate the electron growth rate con-
tribution to Eq. (9), we adapted in Ref. [27] the bispectral
analysis and experimental method of Ritz [31] and Kim [32].
Following this approach, we consider a governing equation for
the temporal-spatial evolution of plasma potential oscillations,
φ(�k, ω), in frequency and wave-number space:

∂φ(�k, ω)

∂t
+ �vg · ∂φ(�k, ω)

∂�r = γkφ(�k, ω)

+ i(�k · �vg − ω)φ(�k, ω) +
∑

ω=ω1+ω2
�k=�k1+�k2

V Q
1,2φ(�k1, ω1)φ(�k2, ω2).

(12)

The first term on the left-hand side represents the change
of the mode in time, while the second term describes
the convection in space at the group velocity �vg =
−∂�kε

(1)
r (�k, ω)/∂ωε (1)

r (�k, ω). On the right-hand side, the first
term denotes the total linear growth of the wave γk =
−ε

(1)
i (�k, ω)/∂ωε (1)

r (�k, ω). This growth rate is a result of con-
tributions from both electrons and ions, γk = γe(k) + γi(k). It
impacts primarily the amplitude of the mode as it evolves in
the plasma. The second term in Eq. (12) represents the evolu-
tion of the rapidly varying phase of the mode. It can be related
in turn to the real component of the dispersion. The third term
models the change in the mode due to three-wave coupling
interactions that satisfy �k = �k1 ± �k2 and ω = ω1 ± ω2. The
coefficient V Q

1,2 is a weighting function for the strength of each
three-wave interaction, and it is related to the second-order
dielectric response [33].

Following the procedure discussed in Ref. [28], we Fourier
transform Eq. (12) with respect to time and then discretize it
with respect to spatial location:

Yf = L f Xf +
∑

f = f1+ f2

Q1,2
f Xf1 Xf2 , (13)

where Xf = φ̂ f (y) and Yf = φ̂ f (y + �y) denote time-based
Fourier transforms of measured plasma potential oscillations
at two locations spaced by �y in the azimuthal direction
(Fig. 1). Following the same assumptions discussed in the
preceding sections, we have made the approximation that each
set of wave vectors, �k1, �k2, map to unique frequencies, f1, f2,
such that the summation over the second-order term is only
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over the frequency domain. We have defined in this expression
the linear, L f , and nonlinear, Q f , transfer functions that dictate
how the amplitude and phase of oscillations change as the
wave propagates between the two measurement points. These
functions are related to the EDI properties by

L f = [(γ f (y)/vg(y) + iky)�y + 1 − i�� f ]ei�� f , (14)

Q1,2
f = ei�� f V Q

1,2�y/vg(y). (15)

Here �� f is the phase difference between the two mea-
surement points for oscillations at frequency, f , and it
is determined from the measured cross-power spectrum,
exp (i�� f ) = Yf X ∗

f /|Yf X ∗
f |. The term γ f (y), which we denote

as the “azimuthal” growth rate, represents the projection of
the total growth in the azimuthal direction:

γ f (y) = γ f − 1

2|Xf |2 (vg(x)∂x|Xf |2 + vg(z)∂z|Xf |2). (16)

The “azimuthal” nomenclature stems from the fact that we
are only measuring wave properties as they propagate in this
direction. The other two terms in Eq. (16) represent the change
in amplitude of the mode in the two directions orthogonal to
the measurement.

The azimuthal growth can be determined from the defini-
tion of Eq. (14) provided �y, �� f , vg(y), and L f are known.
With �y defined by the experimental setup, �� f determined
by calculation of the cross-spectrum (Y ∗

f Xf ), and vg(y) es-
timated by the theoretical dispersion, the only unknown is
the linear transfer function. The procedure for calculating L f

from our measured values of Xf and Yf , which was originally
developed by Ritz [34], involves taking additional moments
of Eq. (13) with either Xf , Yf , or their complex conjugates to
form a system of equations:

〈Yf X ∗
f 〉 = L f 〈Xf X ∗

f 〉 +
∑

f = f1+ f2

Q1,2
f 〈Xf1 Xf2 X ∗

f 〉, (17)

〈Yf X ∗
f 1X ∗

f 2〉 = L f 〈Xf X ∗
f 1X ∗

f 2〉
+

∑
f = f1+ f2

Q1,2
f 〈Xf1 Xf2 X ∗

f 1X ∗
f 2〉. (18)

Here 〈〉 denotes ensemble averaging over multiple measure-
ments or realizations. Ritz showed that over 1000 realizations
are needed to accurately determine the higher-order bispectral
terms, e.g., 〈Yf X ∗

f 1X ∗
f 2〉 [34]. This system can be inverted after

measuring the bispectral terms to solve for L f and Q1,2
f .

As discussed in Ref. [32], this technique is susceptible
to several inaccuracies when applied to noisy experimental
data. The Kim method improves on the Ritz technique by
separating the measured spectral content into a summation of
ideal terms driven solely by Eq. (13) and nonideal terms that
come from both systematic errors and plasma processes that
do not follow Eq. (13):

Xf = β f + X ni
f , Yf = α f + Y ni

f . (19)

Here β and α are the ideal terms, and X ni and Y ni are the
nonideal terms. With the introduction of the nonideal terms,
an additional equation is needed for closure of the system
of equations. Kim solved this closure problem by invoking
a hypothesis of local stationarity: 〈α f α

∗
f 〉 = 〈β f β

∗
f 〉. This is

justified in our experiment by the azimuthal symmetry of the
Hall thruster plasma. It was this technique that we ultimately
use to determined L f and then γ f (y).

Once we have measured the azimuthal growth rate, we
can relate it in turn to the total growth rate through Eq. (16)
provided we characterize the evolution of the magnitude of the
wave amplitude as it evolves in the radial and axial directions.
We neglect in this work the radial convective term due to
symmetry, but we do measure the change in power spectrum
amplitude with axial location such that we approximate

γ f = γ f (y) + 1

2|Xf |2 (vi(0)∂x|Xf |2), (20)

where we have made the assumption that for the EDI the
axial group velocity is the axial ion beam velocity [19]. Equa-
tion (20) is the form we employ to measure the total EDI
growth rate as a function of frequency in the thruster plasma.

D. Relating total measured EDI growth to electron
contribution to growth

As a final step in our methodology, we remark that the pro-
cedure outlined in the preceding yields the total growth rate of
the waves. However, in order to determine the impact on the
electron transport from Eq. (9), we must isolate the electron
contribution: γe( f ) = γ f − γi( f ). This requires that we have
an estimate for the ion growth. We consider two possibilities
for this ion contribution. The first is based on the linearized
dispersion shown in Eq. (10), which is derived under the
assumption that the ions are cold. In this case, we can infer
from the derivation of this dispersion that γi( f ) = 0, i.e., that
our measured growth is the same as the electron growth. As
a second possibility, it has been shown that in the near plume
of the Hall thruster, ion temperatures can become sufficiently
high that ion Landau damping may become significant [35].
In this case, it is necessary to include a kinetic correction to
the EDI dispersion for the ions [36], which in turns yields the
approximation

γi( f ) = −
√

π

8

k f cs(
1 + k2

f λ
2
De

)2

(
Te

Ti

)3/2

e

[
−Te

2Ti (1+k2
f λ2

D )

]
. (21)

We add the ion Landau damping rate to the measured total
growth rate to determine the electron growth rate:

γe( f ) = γ f (y) + γi( f ) + 1

2|Xf |2 (vi(0)∂x|Xf |2). (22)

We consider in the following both cases for the ion growth
rate, referring to them as “with ion Landau damping” and
“without ion Landau damping.”

In summary, we have established in the preceding sec-
tion the theoretical framework for relating measurements of
the EDI to effective cross-field transport. This technique re-
quires experimental characterization of the complex spectra of
oscillations at multiple locations in the plasma as well as es-
timates of the background plasma properties. We discuss our
techniques for measuring these properties in the following.
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FIG. 3. Schematic of the experimental setup showing the H9 Hall
thruster with respect to the LIF optics and wave probes mounted on
a fast motion stage.

III. EXPERIMENTAL SETUP

In this section, we describe the thruster and test facility
that we employed for our experiment. We then summarize our
diagnostic techniques for measuring the plasma oscillations as
well as background plasma parameters.

A. Test article

We performed this experimental campaign with the H9
(Fig. 1), a 9-kW class HET developed jointly by NASA’s
Jet Propulsion Laboratory, the University of Michigan, and
the Air Force Research Laboratory [37,38]. The H9 employs
a magnetically shielded topography [39] and uses a center-
mounted LaB6 hollow cathode that is electrically connected
to the thruster’s main body. We characterized this thruster in
the Large Vacuum Test Facility (LVTF) at the University of
Michigan. This is a 6 m × 9 m cryogenically pumped steel
vacuum test chamber. The H9 was operated at 300 V discharge
voltage and 15 A discharge current with a xenon flow rate of
165 sccm through the anode and a 7% cathode flow fraction.
The facility pressure was 3 ×10−6 Torr-xenon during testing
as measured in the plane of the thruster.

B. Diagnostics

We employed two key diagnostics in our experiment: ion
saturation probes to characterize the plasma density fluc-
tuations, and laser-induced fluorescence (LIF) to measure
the local ion velocity distribution function. Figure 3 shows
the experimental layout for these diagnostics with respect to
the H9. We describe in the following the key properties of
these measurement techniques as well as our analysis methods
for extracting plasma properties from the measurements.

1. Ion saturation probes

We employed two ion saturation probes for measuring the
fluctuations in ion density locally in the thruster plasma. The
probes consisted of 0.38 mm radius tungsten rods with an
exposed length of 3.8 mm. These cylindrical probes were
separated azimuthally by 1 cm and mounted on fast motion
stages to quickly inject the probes in the plume and mini-
mize perturbative effects. The probes collected data at fixed
locations along the channel centerline from x/Lch = 0.125 to

0.75 downstream of the thruster exit plane, where Lch denotes
the axial length of the thruster, and x = 0 corresponds to
the anode face. The ion saturation probes were biased to
−45 V with respect to the ground in order to collect only
ion current. The current was converted into a voltage reading
across a low-inductance and low-capacitance 100� resistor
and then read by an ATS9462 16-bit digitizer. The signal was
sampled at 100 MHz for two megasamples, and the resulting
waveform was then subdivided into 2000 realizations for av-
eraging. The fluctuations in ion saturation, δi, were related to
fluctuations in ion density with the relation δi/i0 ≈ δni/ni(0),
where i0 denotes the time-averaged ion saturation current.
This relationship is based on the assumption that the electron
temperature remains approximately constant on the timescale
of the EDI fluctuations [24].

As we discuss in Sec. III B 3, the ion saturation probes also
provided an estimate of the downstream plasma density for
use as a boundary condition in calculating the axial ion density
profile. We determined the time-averaged ion density from the
measured ion saturation current in this case from [40]

ni(0) = isat

qApcs exp(1/2)
, (23)

where Ap is the probe area and cs = √
qTe/mi is the ion

sound speed. The electron temperature in this expression was
inferred using the LIF technique outlined in Sec. III B 3.

2. Laser-induced fluorescence

Laser-induced fluorescence is a noninvasive optical
technique for measuring projections of the ion velocity
distribution functions (IVDFs). For this experiment, we
used the experimental configuration described in detail in
Ref. [41]. In brief, our system employed the 5d[4]7/2 −
6p[3]5/2(834.72 nm) transition for singly charged xenon (Xe
II). The laser was injected parallel to the thruster centerline
and focused to a 1 mm3 point (Fig. 3). The fluorescence from
this spot induced by the laser was collected by optics offset
60◦ from the laser axis. By tuning the wavelength of the laser
and monitoring the amplitude of the fluoresced signal, we
were able in turn to infer the ion velocity distribution function
along the direction of the beam, i.e., in the axial direction.
We show in Fig. 4 an example measurement of the IVDF
in the downstream Hall thruster plume where ions have been
accelerated to a mean velocity of 16 km/s. We generated spa-
tially resolved measurements of this IVDF by translating the
thruster with respect to the intersection point of the injection
and collection optics. Our measurement domain ranged from
x/L = 1.0 to 1.75 with a spatial resolution of �x/L = 0.025.
As discussed in Ref. [41], nonideal effects like Zeeman split-
ting contribute <10% when computing moments on the IVDF.
We neglect this relatively minor degree of uncertainty in our
analysis.

3. IBIS method

While LIF directly yields measurements of the IVDF, we
were able to use this technique to infer noninvasively a num-
ber of other key properties in the plasma discharge. This is
a critical capability as it has been shown that conventional
swept probes, when inserted into a Hall thruster discharge,
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FIG. 4. Example ion velocity distribution function measured by
LIF.

can perturb the local plasma state [42,43]. Our method for
employing LIF for this purpose, which is based on the works
of Perez-Luna et al. and Dale and Jorns, yielded estimates
for plasma density, electric field, electron temperature, ion
beam velocity, and anomalous collision frequency [41,44].
We briefly review in the following the key elements of this
approach.

This analysis method, which was termed the ion Boltz-
mann implicit solution method (IBIS) by Dale and Jorns [41],
starts with the 1D ion Boltzmann equation for the IVDF in the
axial direction:

∂ f

∂t
+ ui

∂ f

∂x
+ q

mi
Ex(0)

∂ f

∂vi
=

(
∂ f

∂t

)
iz

. (24)

In this equation, ui is the independent axial ion velocity,
vi(0) = ∫

ui f dui/ni(0), and the rightmost term is the time rate
of change in the IVDF due to ionization. Assuming the IVDF
is at steady state on the timescale of the background plasma
properties, the zeroth-, first-, and second-order moments of
the Boltzmann equation yield the following fluid equations:

∂uini(0)

∂x
= ni fiz, (25)

∂u2
i ni(0)

∂x
− q

m
ni(0)Ex = 0, (26)

∂u3
i ni(0)

∂x
− 2

q

m
ni(0)Ex(0)vi = 3

q

mi
Tini(0) fiz. (27)

Here uy
i = ∫

uy
i f dui/ni(0), fiz is the ionization frequency, and

Ti is the temperature of newly born ions, which we assume is
equal to the neutral gas temperature. With the spatial resolved
LIF measurements, this system can be solved for Ex(0), fiz, and
d ln (ni(0) )/dx. This last variable can then be integrated across
the axial domain to determine the ion density if the density is

known at one of the boundary points xb:

ni(0)(x) = − exp

[∫ x

xb

d ln ni(0)

dx

]
+ ni(0)(xb). (28)

This downstream density [ni(0)(xb)] is estimated with the wave
probes that also function as ion saturation probes for mea-
suring ion density. With this information, in addition to the
value of the applied magnetic field, we can calculate the effec-
tive total electron collision frequency (νe = νc + νAN ) using
Ohm’s law,

νe = � ± √
�2 − [2vex(0)Br]2

2 me
e vex(0)

, (29)

where vex(0) is the axial electron velocity, and we define � =
Ex(0) + ∇ne(0)Te

ne(0)
− ηi ji, where ηi = miνc/q2ni(0) is the classical

ion resistivity due to collisions and ji is the ion current density.
All parameters in Eq. (29) are determined from the solution of
Eqs. (25)–(27) except for the classical collision frequency, the
axial electron velocity, and the electron temperature.

We determine the electron temperature from the calculated
ionization frequency fiz using tabled values of the ioniza-
tion rate ξi(Te) = fiz/nn, where nn is the neutral density (cf.
Ref. [45]), although this technique requires an estimation of
the neutral density profile. We calculate the neutral density us-
ing the conservation equations for the neutral fluid combined
with our calculated ionization frequency and an estimate of
the downstream neutral density. The boundary condition for
the neutral density was guided by previous experimental mea-
surements in the literature [46].

The axial electron velocity is determined through the ion
and electron continuity equations. If the ions and electrons are
restricted to one-dimensional (axial) flow, the electron current
density is the difference between the total discharge current
density jd and the ion current density: je = jd − ji. While the
ion current density is known from the measured beam velocity
and plasma density, the discharge current density is assumed
to be the total discharge current (Id ) uniformly distributed over
the channel area, Ach, of the thruster: jd = Id/Ach. Subject to
these assumptions, the electron velocity is given by

vex(0) = Id

ni(0)Ach
− vi(0), (30)

where we have assumed ne(0) ≈ ni(0) by quasineutrality.
Finally, the classical collision frequency is calculated using

the Spitzer collision frequency equations for electron-neutral
and electron-ion collisions (cf. Ref. [45]). Therefore, the
IBIS method provides an estimate of anomalous collision
frequency by subtracting the classical collision frequency
from the calculated total collision frequency in Eq. (29). This
serves as a baseline value against which we shall compare
our wave-driven collision frequencies. Additionally, the back-
ground plasma parameters determined by the IBIS method
can be used to solve the dispersion relation of the EDI for
estimating a theory-driven anomalous collision frequency and
a group velocity for use in the Ritz and Kim technique when
determining γ f (y).
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FIG. 5. Plasma properties inferred from LIF measurements.
(a) Ion beam velocity, (b) axial electric field, (c) electron tempera-
ture, and (d) ion density as a function of axial position normalized by
the channel length, where x/L = 1 is the exit plane of the thruster.
The dashed vertical line at x/L = 1.375 denotes the location of the
peak radial magnetic field strength.

IV. RESULTS

In this section, we present the experimental results of our
study. We first show the background plasma parameters we
determined from the IBIS technique. We then present the
properties of the EDI, including the measured power spectra
and growth. We conclude with a comparison of the measured
collision frequency to the EDI-induced collision frequency.

A. Background plasma properties

We show in Fig. 5 four key plasma parameters inferred
from the IBIS method—ion velocity, electron temperature,
electric field strength, and plasma density—as a function of
axial distance from the anode normalized by the channel
length, L. For reference, we also show in these figures as a ver-
tical line the location of peak magnetic field. As can be seen
from Fig. 5(a), the ion velocity increases monotonically with
position, with the majority of acceleration occurring between
x/L ≈ 1 and x/L ≈ 1.4. This is the “acceleration zone” we
defined in the previous section. The rapid acceleration of ions
in turn is colocated with a peak in the electric field [Fig. 5(b)].
This maximum electric field drives a high degree of localized
Ohmic heating, which is manifest by a peak in the electron
temperature in Fig. 5(c). The magnitude of this maximum
value of electron temperature, Te = 40 eV, is consistent with
previous studies of magnetically shielded Hall thrusters at this
discharge voltage [47]. As Fig. 5(d) shows, the plasma density
decays monotonically over the measurement domain. This
stems primarily from the acceleration of the ions, increasing
velocity at the expense of density.

FIG. 6. Power spectra of density oscillations as measured by
wave probes as a function of normalized position along the channel
centerline.

With respect to measurement uncertainty, we have assumed
that the variances in the electric field, temperature, and ion
velocity are negligible. These plasma parameters are functions
exclusively of moments of the IVDFs, and as outlined in
the preceding section, we assume that the error in these mo-
ments is negligible based on the precision of the LIF system,
which is described in extreme detail in Refs. [41,48]. For the
plasma density, however, we include measurement uncertainty
as represented by the shaded range of values. This range is
dictated by the choice of the downstream boundary condition
for ion density in the IBIS method. The mean value we use
in this range is ni(0) ≈ 2 × 1017 m3, which is based on our
measurement from the ion saturation probe and Eq. (23).
However, we also allow for a ±50% variance (cf. [40]) to
account for uncertainty in the measurement arising from the
probe geometry, sheath expansion, and drifting species. As
discussed in Ref. [41], the collision frequency calculated from
Eq. (29) and presented in the next section can have appre-
ciable, but difficult to quantify, uncertainty stemming from
the underlying assumptions of the IBIS method. In general,
however, these uncertainties seem to be below the significant
uncertainty introduced from the density measurement.

B. Wave properties

In this section, we consider the two measured wave prop-
erties in Eq. (4): the oscillation power spectrum |δni( f )/ni(0)|2
and electron growth rate γe( f ). To this end, we first show
in Fig. 6 the power spectra inferred by the wave probes as
a function of axial location along the channel centerline. In
each plot, we see several distinct harmonics visible starting at
4 MHz and every ∼7 MHz thereafter. Based on the theoretical
dispersion relation, for electric field strengths typical of the
acceleration zone, these harmonics correspond to the reso-
nances of the EDI. The frequency content in the range from
1 to 3 MHz is associated with the MTSI. The measured power
spectrum in this range decays exponentially with increasing
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FIG. 7. Absolute value of measured and theoretical growth rates
in the (a) acceleration region x/L = 1.25, and (b) downstream plume
(b) x/L = 1.75 (b). Two curves are shown for the measured growth
rate for the cases in which the ion growth is zero or driven by
ion Landau damping. The growth rate labeled “linear theory” is a
theoretical value determined from the solution of the linearized dis-
persion relation, Eq. (10). The red values denote frequencies where
the growth rate becomes negative.

frequency, but there is a minor weak peak at 2.5 MHz. Along
the channel centerline, the oscillations are at their strongest
in the acceleration zone and decay downstream. These trends
in frequency and position are consistent with our previous ex-
perimental characterization of the EDI [24]. Physically, these
results are consistent with the fact that the dominant source of
energy for the EDI is the E × B drift, which is maximized in
this thruster at the location of peak electric field [Fig. 5(b)].
We therefore expect the EDI oscillations to be strongest in the
upstream region.

Figure 7 shows examples of the measured and theoretical
electron growth rates, γe( f ), at two representative locations in
the discharge: at x/L = 1.25 in the acceleration region, and
at x/L = 1.75 downstream of the acceleration zone. In these
plots, the theoretical value is based on the linear dispersion
relation [Eq. (10)], which we evaluate with the background
properties from Fig. 5. We have also assumed an axial propa-
gation angle of 15◦ [kx = ky sin(15◦)] consistent with previous
EDI measurements in Hall thrusters [21,24], and we have
prescribed a constant radial wave number equal to the channel
width—as observed in recent simulations [13,20,49,50]. We
determined the measured values for growth rate from the
technique outlined in Secs. II C and II D. We include results
where we assume the ion growth is zero (γi( f ) = 0) and where
it is the result of ion Landau damping [Eq. (22)]. For the
latter case, we show the results for assuming an ion temper-
ature of 1 eV. When we calculate the anomalous collision
frequency in the next section, we consider multiple possible
ion temperatures ranging from 0.2 to 3.5 eV based on previous
measurements and simulations [30,35,51]. Generally, the vari-
ation in the ion temperature shifts the magnitude of the growth
rate, but the shape remains the same, as shown in Fig. 7.

In the acceleration region [Fig. 7(a)], the cyclotron har-
monics are visible in both the theoretical and the measured
growth rate, where we assume ion Landau damping is present.
We note, however, that when we assume negligible contri-
butions to the total growth from ion damping, the calculated
electron growth is negative at several frequencies. This would
physically suggest that at these frequencies the wave is not
excited, which is not consistent with our observations of the
power spectra. This suggests, therefore, at least in this region,
that the neglect of ion damping contributions to the total
growth is unphysical.

With that said, in comparing the measured electron contri-
bution to growth with ion Landau damping to the theoretical
growth, we see that both trends exhibit peaks consistent with
the cyclotron resonances. Physically, this is consistent with
the interpretation that the dominant source of energy ex-
change with the background electron drift occurs at these
cyclotron resonances. Notably, we see that our measured elec-
tron growth exceeds the theoretical estimate from linearized
theory. This is an interesting departure that suggests that the
waves are actually able to extract momentum from the Hall
drift at a higher rate than the linear prediction. Moreover, in
discussing this result in the context of our previous experi-
mental findings [27], we found that the measured azimuthal
growth rate, γe(y), was an order of magnitude lower than the
theoretical value in this region. The fact that we see a higher
level of total electron growth, γe( f ) � γ f (y), thus suggests that
the electron growth is largely driven not by the theoretical
dispersion but rather by a balance with the rate at which
wave energy is lost through convection and damping: γe( f ) ≈
γi( f ) + 1

2|Xf |2 (vi(0)∂x|Xf |2). This type of marginally stable state
[52] has previously been assumed in numerical and theoretical
treatments of the EDI [11].

In the downstream region, we see that the theoretical and
measured growth rates no longer exhibit peaks with frequency.
Due to the weak electric field, and therefore low E × B
velocity, the cyclotron harmonics do not grow. Instead, the
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FIG. 8. Anomalous collision frequency determined from LIF and
wave measurements as a function of normalized position in the
Hall thruster plume. Two wave-driven results are shown based on
calculating the electron growth rate with and without including ion
Landau damping: (γe( f ) = γ f − γi( f ) and γe( f ) = γ f ). The theoretical
result using the growth rate calculated from Eq. (10) and the classical
particle collision frequency are also shown for reference.

dispersion takes on an ion-acoustic-like solution, but impor-
tantly this is not the same acoustic limit of the EDI in the case
of a large radial wave number. As discussed in the previous
section, we assume a radial wave number corresponding to
the channel width. For the downstream conditions, this yields
a normalized wave number of kzλDe ∼ 0.005–0.01, which is
too low to result in the ion acoustic limit of the EDI (see
Fig. 2). The observed dispersion is actually the MTSI. For low
electric field, the lobe of unstable wave numbers associated
with the MTSI broadens substantially such that it is nearly
indistinguishable from the ion acoustic solution. We discuss
this point further in Sec. V.

We also remark that, as was the case with the upstream
dynamics, the growth rate is still largely dominated by a
balance with convection and ion Landau damping rather than
the linearized growth. In a departure from the upstream mea-
surement, however, we see that the measured growth rate with
ion Landau damping exceeds the theoretical growth by an
order of magnitude. The disparity between the growth with ion
Landau damping in particular shows a marked increase from
the upstream case. As we discuss in the following section,
this level of disparity is critical for capturing the orders of
magnitude change in the anomalous collision frequency.

C. Anomalous collision frequency

We show in Fig. 8 the spatial variation in the classical colli-
sion frequency, the measured anomalous collision frequency,
and estimates for the wave-contribution to the anomalous
collision frequency. We determined the classical collision fre-
quency, νclassical, based on the electron-ion Coulomb rate (cf.
[45]) where we used experimental measurements of electron
temperature and density (Fig. 5). We inferred the total electron

collision frequency through the IBIS method as described
in Sec. III B 3. The variation in both the classical and IBIS-
measured anomalous collision frequencies stems from the
uncertainty in the plasma density. We evaluated the wave-
driven contributions to the collision frequency with Eq. (9),
where we employed the background plasma parameters mea-
sured from the IBIS technique presented in Sec. IV A, the
measured power spectra and growth rates shown in Sec. IV B,
and terms inferred from the real part of the theoretical EDI
dispersion relation given in Eq. (10), where we have assumed
that it exists in the acoustic limit. For the case in which we
assume that the growth rate does not have a component from
ion Landau damping, we omit any contributions from negative
growth rates. For the wave-driven collision frequencies, the
uncertainty propagates due to the dependence on density in the
real part of the dispersion relation and the different assumed
ion temperatures in the ion Landau damping term.

As can be seen from Fig. 8, the actual anomalous collision
frequency (inferred from the IBIS method) has a minimum
value approaching the order of the classical collision fre-
quency at the location of peak electric field (x/L = 1.125) and
then increases monotonically by over an order of magnitude
downstream. This type of spatial variation is consistent with
previous measurements [41] and numerical treatments of the
anomalous collision frequency [35]. The minimum in colli-
sion frequency acts as an effective impedance to cross-field
transport, thereby driving the strong electric field in this lo-
cation. The wave-driven collision frequency in which we use
the theoretical growth rate is slightly within the uncertainly
of the measured collision frequency in the acceleration zone,
but then rapidly decays downstream where it significantly un-
derestimates the actual collision frequency and does not show
the correct trends over the axial domain. This result, which
is consistent with our previous findings [25], suggests that
the theoretical growth rate is not an accurate representation
of the interaction of the EDI with the electron drift. Similarly,
without considering ion Landau damping, the measured wave-
driven anomalous collision frequency underpredicts the actual
collision frequency by an order of magnitude, except at the
most upstream point. After including ion Landau damping,
however, the wave-driven result matches the IBIS values to
within the uncertainty at the ends of the axial domain and with
only minor disagreement around x/L = 1.4. At this location,
the wave-driven result underpredicts the collision frequency
and is at its minimum value. This occurs due to the wave
amplitudes, |δni/ni(0), having their lowest value at this point
(cf. Fig. 6), but the reason for this dip in wave amplitude is
unknown at present. The major implication from these results
is that experimentally, the wave-driven transport appears to
be able to explain the measured magnitude and spatial trends
in anomalous collision frequency in a HET. This is a direct
experimental indication that this effect is a dominant driver
for the electron dynamics in these systems. We discuss the im-
plications and limitations of this conclusion in the following
section.

V. DISCUSSION

In the following, we discuss notable aspects of our find-
ings. We first comment on the reasons why the transport
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FIG. 9. Linear growth predicted for the EDI by solving the linear
dispersion relation for the plasma parameters at the farthest down-
stream point (x/L = 1.75) for different multiples of the radial wave
number corresponding to channel width kz(0).

calculated with the theoretical growth rate does not match
the measured collision frequency in the plasma. As outlined
in Ref. [27], this discrepancy stems from the fact that the
measured growth in the plasma deviates by an order of mag-
nitude from the theoretical growth. This discrepancy could
be attributed to several factors. For instance, as discussed
in Refs. [11,20], the growth rate could be modified due to
the flattening of the electron velocity distribution function
resulting from nonlinear interactions with the waves. Another
possibility we consider is that we might have been overly
prescriptive in our assumption that the radial wave number re-
mains constant with position. The magnitude and shape of the
theoretical growth rate are strongly influenced by this radial
wave number, and if the wave number is an order of magnitude
smaller, the growth rate would increase proportionally. We
illustrate this effect in Fig. 9 by plotting the growth rate for the
theoretical dispersion at x/L = 1.75 for different values of kz

compared to our assumed wave number, kz(0). Beyond increas-
ing in peak amplitude, the peak growth rate shifts towards
lower frequencies as the radial wave number decreases. Con-
sequently, since most of the wave energy in the downstream
region originates from the lower frequencies (cf. Fig. 6),
these combined effects have a multiplicative influence on the
anomalous collision frequency. It is possible that the radial
wave number changes as the wave propagates downstream.
If this happens, and a large radial wave number persists in
the acceleration zone while transitioning to a smaller wave
number downstream, there will be closer agreement between
the theoretical and measured growth rate. Directly measuring
the variation in radial wave number, however, was beyond the
scope of this study.

In the context of recent simulations of the EDI, our results
validate the importance of the EDI on anomalous transport in
Hall thrusters, but we highlight some key differences. While

FIG. 10. Relative contribution to anomalous collision frequency
for low-frequency oscillations ( f < 2.5 MHz) and high-frequency
oscillations ( f > 2.5 MHz) at various points in the plume.

many simulations have demonstrated that the EDI can be
sufficient to explain the anomalous transport seen in Hall
thrusters, most of these simulations resolve the EDI with an
ion-acoustic-like dispersion [11]. Only a subset of simulations
have resolved the EDI with distinct harmonics [12,13], and
these works also predicted the nonlinear cross-lengthscale en-
ergy exchange we observed in Ref. [27]. However, while those
simulations did predict EDI-enhanced transport, most of the
cross-field electron transport occurred at the low-frequency
and long-wavelength features of the EDI—the MTSI com-
ponent discussed in Sec. II B. In this work, we observe that
most of the anomalous transport in the acceleration region
occurs due to the oscillations at the high-frequency cyclotron
harmonics. To highlight this, we show in Fig. 10 the relative
contribution to anomalous transport due to spectral content
at frequencies below 2.5 MHz (corresponding to the MTSI)
and above 2.5 MHz that represent the EDI cyclotron harmon-
ics. The relative contribution is calculated by performing the
summation in Eq. (9) over the frequency range of interest
and normalizing by the total summation. In the acceleration
zone, there is virtually no influence of the lower frequencies
on the cross-field transport. Downstream, the low-frequency
oscillations begin to play an increasingly important role, but
the high-frequency oscillations remain dominant. However,
as we discussed in Sec. IV B, downstream the theoretical
dispersion relation predicts that the entire frequency domain
is part of the MTSI. Therefore, the distinction between the
resonance and MTSI frequencies of the wave requires addi-
tional nuance. The cyclotron harmonics of the EDI should
predominantly grow and saturate in the acceleration zone. In
turn, these oscillations convect downstream where the har-
monics remain visible in the wave power spectrum (Fig. 6).
Due to either linear growth (Fig. 9) or nonlinear interactions
[13,27], the low-frequency oscillations gain energy. Rather
than originating from a separate instability, these oscilla-
tions are the low-frequency part of the MTSI for the EDI in
the downstream plasma conditions. Similarly, the frequencies
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associated with the cyclotrons harmonics in the acceleration
region become the high-frequency part of the MTSI in the
downstream plume. These high-frequency oscillations remain
the dominant contribution to anomalous transport. We provide
a caveat for these results by noting that our measurement
domain for this study did not extend further downstream than
x/L = 1.75. Previous measurements have shown, however,
that the wave energy continues to increase at low frequency
further downstream [24]. This implies that the low-frequency
waves could become dominant in the far-field plume.

As a final remark, we consider the implications of
our results for the development of reduced-fidelity mod-
els of anomalous transport, which is particularly relevant
for the development of fluid-based predictive models of
Hall thrusters [53]. The goal in this case is to find simpli-
fied expressions for the anomalous collision frequency that
depend on fluid properties. These expressions would approx-
imate the inherently kinetic effects of the waves, allowing
these models to be self-consistently incorporated into fluid
codes.

To this end, we note that our observations from the pre-
ceding sections seem to suggest that the EDI growth in most
regions is marginally stable such that the growth is balanced
by convection and ion Landau damping. In turn, we note that
at both the upstream location where the cyclotron harmonics
form and in the downstream plume where the dispersion is of
the MTSI, the peak growth rate should occur near the wave
number ky = 1/

√
2λDe. This is apparent in Fig. 2(a), where

we see that the strongest cyclotron harmonic mode aligns with
kyλDe = 1/

√
2, which is also the wave number of peak growth

for the ion acoustic-limit of the instability. This allows us to
prescribe an estimation for the wave number in Eq. (9).

Finally, we note that the power spectra of oscillations ap-
pear to be nonlinearly developed, characterized by an inverse
power law. As a result, the waves are likely in a saturated state.
This suggests in turn that the amplitude of the oscillations
may be limited. We consider two limits on the wave energy
density, W = ne(0)Te|δni/ni(0)|2, consistent with the physical
mechanisms that drive the EDI: (i) that the waves are sat-
urated thermally, Wthermal = αne(0)Te, or (ii) that the waves
are saturated in the so-called Fowler limit [54], such that
Wdrift = ne(0)meV 2

E×B. Here α and β are constants of propor-
tionality. Subject to these assumptions, the amplitude of the
density oscillations should scale as |δni/ni(0)|2 = α for ther-
mal saturation and |δni/ni(0)|2 = βM2

e for the Fowler limit,
where Me = VE×B/Vthe is the azimuthal electron Mach num-
ber. We plot in Fig. 11 the summation of the measured power
spectrum

∑
f |δni( f )/ni(0)|2 and the electron Mach number to

validate these assumptions. We note that by adding together
the amplitudes of the power spectrum, we are converting
the broad spectrum into a quasimonochromatic wave. These
results shows that the thermal limit is approximately valid
for the treatment of the wave amplitude, except at the most
upstream point. Interestingly, the Fowler limit only appears
valid at the first location where the thermal limit does not
hold. This suggests that the wave may initially be saturated
by the drift energy in the acceleration region, but in the down-
stream region the limitation is thermal. Based on these results,
and subject to the previous assumptions approximating the
wave as monochromatic at kmax = 1/

√
2λDe, we arrive at the

FIG. 11. Measured wave energy density normalized by the
thermal energy density: W/ni(0)Te = ∑

f |δni/ni(0)|2 and squared az-
imuthal electron Mach number M2

e = V 2
E×B/V 2

the.

simplified collision frequency model for thermal and drift
energy saturation modes:

νAN (thermal) = ωce

Ex(0) + ∇x (ne(0)Te )
ne(0)

∂ε (1)
r (�k)

∂ω

∣∣∣∣
kmax

× αTe

2
√

2λD

(
∇x(vi(0)ne(0)Te)

ne(0)Te
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∣∣∣∣
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)
, (31)

νAN (drift) = ωce

Ex(0) + ∇x (ne(0)Te )
ne(0)

∂ε (1)
r (�k)

∂ω

∣∣∣∣
kmax

× βM2
e Te

2
√

2λD

(
∇x(vi(0)ni(0)V 2

E×B)

ne(0)V 2
E×B

+ γi

∣∣∣∣
kmax

)
. (32)

Here we assume that the growth rate is given by the com-
bination of wave energy convection, ∇x(vi(0)W )/W , and ion
Landau damping at the selected number, γi|kmax .

Based on our measured power spectrum, we estimate
α = 0.002 and β = 0.0023. The value of α was chosen to
best fit the downstream points where

∑
f |δni( f )/ni(0)|2 is

approximately constant. In contrast, β was selected based
on measurements in the acceleration zone where the Fowler
limit appears to hold. Figure 12 shows the resulting collision
frequency profiles juxtaposed with the measured IBIS results.
The thermal model aligns with the IBIS values within the
margin of uncertainty at all points, albeit with slightly worse
agreement at the most upstream point. This close alignment
underscores the potential usefulness of this experimentally
informed model as closure for the ECDI’s impact on wave
dynamics. Conversely, the drift energy model fails to accu-
rately reproduce the anomalous collision frequency amplitude
or spatial trends, with the exception of the first point. At
this location, which overlaps with the peak electric field, the
drift model corresponds more closely with the IBIS results
than does the thermal model. This observation supports the
hypothesis that the saturation mechanism varies throughout
the plume.
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FIG. 12. Anomalous collision frequency for the simplified mod-
els based on thermal or drift energy saturation [Eqs. (31) and (32)]
as a function of normalized position in the Hall thruster plume. The
measured IBIS result and the classical particle collision frequency
are also shown for reference.

With regard to the development of simplified fluid codes,
these results demonstrate a promising approach, albeit with
some important limitations. Both Eqs. (31) and (32) can
be solved using solely fluid plasma parameters to self-
consistently calculate the anomalous collision frequency.
Indeed, the values calculated as shown in Fig. 12 suggest
that this approach should yield promising simulation results.
Given the superior performance of the drift model in the ac-
celeration zone, it might be beneficial to divide the axial grid
into domains, each utilizing different wave energy saturation
models. A similar approach has been employed in the past
with moderate success [55]. However, it is crucial to note that
our model does not extend into the thruster channel and may
not adequately reproduce the inflection point in anomalous
collision frequency observed at the location of peak electric
field. The challenge of accurately and noninvasively probing
this region to measure wave properties complicates the exper-
imental validation of various reduced-order wave models.

In summary, we utilized a bispectral analysis technique
combined with the assumption that ion Landau damping is
non-negligible to infer the electron growth rate and wave
energy at several positions in the Hall thruster plume. We
employed in turn a quasilinear framework to relate these mea-
sured wave properties to an effective wave-driven collision
frequency. For much of the measurement domain, the wave-

driven collision frequency showed agreement with many of
the spatial trends of the collision frequency profile that we
inferred from LIF measurements, and the amplitudes were
within an order of magnitude. The agreement stems predomi-
nately from the inclusion of ion Landau damping in our model
of the EDI growth rate. Without ion Landau damping, the
measured growth rate resulted in a collision frequency profile
that is over an order of magnitude too low in amplitude.
Furthermore, the collision frequency profile determined using
the theoretical growth rate of the EDI did not agree in magni-
tude or shape. Overall, our result ultimately provides the long
desired experimental evidence demonstrating that the electron
drift instability is sufficient to explain the anomalous transport
seen in Hall thrusters.

VI. CONCLUSION

In this work, we have performed a direct calculation of
wave-driven anomalous collision frequency in a Hall effect
thruster. These experimental results demonstrate that the elec-
tron drift instability can adequately describe the observed
anomalous cross-field transport. However, some ambiguity
still exists between simulation and experiment. Notably, our
results indicate that anomalous transport is primarily driven by
the high-frequency EDI cyclotron harmonics, whereas some
simulations suggest that the transport is mostly driven by ei-
ther an ion-acoustic-like form of the EDI or the low-frequency
MTSI component. From a practical perspective, our findings
suggest that there may be simple, experimentally informed
assumptions available to represent the impact of wave dynam-
ics on the anomalous collision frequency effectively. These
assumptions can, in turn, be embodied in simplified models
for transport. Such models could principally be incorporated
into lower-fidelity, fluid-based Hall thruster models, allowing
for the capture of wave-driven transport without the need for
resolving the EDI in high-fidelity simulations. These approx-
imations could potentially unlock predictive capabilities with
low computational cost. Finally, from a practical perspective,
our findings suggest that there may be simple, experimentally
informed assumptions for how we can represent the impact of
the wave dynamics on the anomalous collision frequency.
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