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Abstract 

We study the analysis and refinement of a predictive engineering model for enabling 
rapid prediction of Hall thruster system performance across a range of operating 
and environmental conditions and epistemic and aleatoric uncertainties. In particular, 
we describe an approach by which experimentally-observed facility effects are assimi-
lated into the model, with a specific focus on facility background pressure. We propose 
a multifidelity, multidisciplinary approach for Bayesian calibration of an integrated sys-
tem comprised of a set of component models. Furthermore, we perform uncertainty 
quantification over the calibrated model to assess the effects of epistemic and alea-
toric uncertainty. This approach is realized on a coupled system of cathode, thruster, 
and plume models that predicts global quantities of interest (QoIs) such as thrust, effi-
ciency, and discharge current as a function of operating conditions such as discharge 
voltage, mass flow rate, and background chamber pressure. As part of the calibration 
and prediction, we propose a number of metrics for assessing predictive model quality. 
Based on these metrics, we found that our proposed framework produces a calibrated 
model that is more accurate, sometimes by an order of magnitude, than engineer-
ing models using nominal parameters found in the literature. We also found for many 
QoIs that the remaining uncertainty was not sufficient to account for discrepancy 
with experimental data, and that existing models for facility effects do not sufficiently 
capture experimental trends. Finally, we confirmed through a global sensitivity analysis 
the prior intuition that anomalous transport dominates model uncertainty, and we 
conclude by suggesting several paths for future model improvement. We envision 
that the proposed metrics and procedures can guide the refinement of future model 
development activities.

Keywords: Uncertainty quantification, Hall thrusters, Facility effects, Anomalous 
electron transport, Multidisciplinary surrogate

Introduction
A primary goal within the Hall thruster modeling community is the development of pre-
dictive models that are practical for simulation-guided design, online control, test, and 
optimization  [1]. Possession of a predictive Hall thruster model would accelerate Hall 
thruster development and qualification and improve safety margins for mission plan-
ning. It would also allow one to calibrate system parameters from ground-based test-
ing and to disentangle the errors associated with facility effects for in-space prediction. 
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We contrast predictive models with the existing utility of models in the community. 
State-of-the-art modeling uses a fluid or fluid/particle hybrid simulation of the discharge 
channel and near-field to predict key quantities of interest (QoIs) such as thrust or effi-
ciency. Some of these models, for example those based on fluid approximations, may 
approach computational accessibility for rapid prediction (i.e. O(hrs to days) for a single 
simulation), but are not “predictive” to date in the sense that they cannot make stan-
dalone, reliable predictions without significant experimental validation. Instead, they are 
often tuned to reproduce results for a specific operating condition and used as a “soft 
sensor” to inform unobserved quantities of the plasma and thruster performance at that 
condition.

Alternatively, we define a “predictive” Hall thruster model as one that reliably pre-
dicts key QoIs over a broad range of operating conditions. Such a model would have 
a single set of globally-relevant parameters over the full range of operating conditions 
and would necessarily be able to make accurate predictions even for conditions where 
no experimental data is available. In this work, we are primarily interested in predict-
ing time-averaged performance metrics, including thrust, efficiency, discharge current, 
and ion velocity, over practical ranges of three specific operating conditions, namely 
the discharge voltage, anode mass flow rate, and background chamber pressure. We 
attempt global calibration of a set of model parameters and test the model’s extension to 
unseen operating conditions to determine its predictive quality by comparison to a prior 
baseline.

Within this predictive modeling framework, two primary issues inhibit the predictive 
quality of fluid Hall thruster models: anomalous electron transport and facility effects. 
The former results from simplifying kinetic plasma phenomena into a fluid framework. 
In real thrusters, these kinetic effects lead to turbulence-enhanced transport of electrons 
from the cathode to the anode [2, 3]. While expensive kinetic plasma simulations may be 
able to resolve these dynamics (analogously to direct numerical simulations in the tur-
bulence community [4]), their closure in a fluid framework introduces significant uncer-
tainty to model predictions [5] and has so far seen limited success [6]. The latter issue 
of facility effects deals with the well-known but poorly-understood feedback between 
thruster and environment during ground testing in a vacuum chamber [7, 8]. Unavoida-
ble consequences of ground testing like elevated background pressure and thruster-facil-
ity electrical coupling are not representative of the space environment and inhibit model 
validation against ground test data. It is an ongoing task to develop models for facility 
effects that can be calibrated on and compared to ground test data, and ultimately that 
can be extrapolated to space-like conditions [9].

Prior work on closure modeling is extensive and empirical attempts at facility effects 
modeling are ongoing; we do not propose a new Hall thruster model nor any new insight 
into anomalous transport or facility effects here. Instead, due to the large uncertainties 
introduced by closure models and the coupled, multidisciplinary nature of thruster-
facility interactions, we posit that our proposed approach can aid in the refinement and 
improvement of Hall thruster models by providing rapid feedback on the major sources 
of error and uncertainty. Uncertainty quantification (UQ) is of central importance 
to understand confidence in model predictions and the risks involved in using these 
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predictions for Hall thruster design, test, and optimization. UQ methods such as sensi-
tivity analysis, model calibration, and experimental design also provide several ways to 
improve the model itself. However, these analyses are expensive, multi-query operations. 
As a result, we use a multifidelity (MF) and multidisciplinary (MD) surrogate-based 
approach to accelerate analysis.

Overall, we propose a bottom-up approach for Hall thruster model improvement, 
where we start with a simple baseline coupling between cathode, thruster, and plume 
and perform UQ to improve the most critical parts of the model iteratively. Similar cou-
plings have been proposed in the literature [10–14], but we stress our focus on iterative 
model improvement guided by UQ and the incorporation of facility effects. To the best 
of our knowledge, this is the first attempt at global calibration of a fluid Hall thruster 
model on system-level data with uncertainty quantification of both anomalous transport 
and facility effects.

While this work analyzes a particular set of models for the Hall thruster system, we 
also propose a number of metrics to benchmark model development progress. These 
metrics include the mean and standard deviation of relative model errors to experi-
mental data for each QoI, as well as comparisons of model error to experimental noise. 
Ideally, model error is on the same order as experimental noise and the variance in 
error is small, indicating a good fit of the model to the data and small remaining uncer-
tainty, respectively. By these metrics, the models developed in this work demonstrated 
improved performance compared to nominal settings found in the literature, sometimes 
by an order of magnitude.

We first outline our MD Hall thruster modeling approach, then we describe our UQ 
framework and the specific algorithms we use, and finally we apply the framework for 
model improvement. This includes model calibration for tuning parameters, forward 
propagation for studying effects of uncertainty on model outputs, and sensitivity anal-
ysis for finding important parameters. These techniques require many evaluations of 
expensive computational models, and so we improve upon an existing MD surrogate 
method [15] to make these tasks feasible. Our contributions are 1) a baseline integrated 
MD Hall thruster model implementation, 2) an expanded MD surrogate framework 
that includes dimension reduction of field quantities, and 3) model improvement sug-
gestions from performing UQ. Ultimately, we found that the proposed framework pro-
vided an order of magnitude improvement in model predictions on a validation set for 
some QoIs, while remaining discrepancies with experimental data highlighted that fur-
ther refinement of the underlying physical models may be required. A key benefit of our 
modular approach is that remaining shortcomings in the model can be addressed itera-
tively by targeting the most critical components first, such as adding new parameters or 
updating the relevant physics. We hope this framework will guide future iterations of 
predictive Hall thruster model development.

Methods
In this section, we describe the Hall thruster system model, the uncertainty quantifica-
tion problem, and the algorithmic approach.
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Hall thruster system model

A Hall thruster is an axisymmetric, cylindrical device that ionizes and accelerates a noble 
gas (typically Xenon) through an applied potential between an anode and an external 
cathode. The propellant is released through the anode and gets ionized and accelerated 
in the cylindrical discharge channel. The ion beam expands in the plume of the thruster 
and is neutralized by electrons released from the cathode. We model the Hall thruster 
system as a set of interacting component models: a cathode model, the thruster dis-
charge channel model, and the far-field plume model, as shown in Fig. 1. These mod-
els are combined into a system model that provides desired quantities of interest such 
as cathode coupling voltage, thrust, efficiency, ion velocity, etc. The system model is a 
mapping

from D system inputs x ∈ Ŵ ⊆ R
D to Q system outputs y ∈ Y ⊆ R

Q . The inputs consist 
of three categories of variables x = (d, θ ,φ) , where d corresponds to experimental con-
ditions under which the thruster is operating, θ are tunable model calibration param-
eters (e.g. anomalous transport coefficients), and φ are other required inputs not in d or 
θ . Tables 1 and 2 list the inputs and outputs, respectively.

The system model f is formed through the integration of component models:

where xk ∈ Ŵk ⊆ R
Dk and yk ∈ Yk ⊆ R

Qk . The coupling variables ξ k ∈ �k ⊆ R
Sk serve 

to map outputs from some components into inputs of others. The Hall thruster system 
we study here consists of a feed-forward integration of three components — a cathode, 
thruster, and plume model as shown in Fig. 1. These component models are described in 
the following subsections.

Cathode

The cathode is modeled by the semi-empirical approach of Ref. [16]. This model predicts 
the cathode coupling voltage Vcc as a function of background pressure PB:

where Te is the temperature of the electrons at the cathode and (Vvac,P∗,PT ) are 
other tunable model parameters given in Table  1. This model accounts for Vcc-driven 
performance loss, which is observed to depend on the chamber background pressure 

(1)y = f (x) : Ŵ → Y ,

(2)yk = fk(xk , ξ k) : Ŵk ×�k → Yk , k = 1 . . .K ,

(3)Vcc = Vvac + Te log 1+ PB

PT
− Te

PT + P∗ PB,

Fig. 1 Hall thruster system model as a three-component feed-forward system



Page 5 of 40Eckels et al. Journal of Electric Propulsion            (2024) 3:19  

(assuming PB is measured at or near the thruster exit plane). The predicted cathode cou-
pling voltage Vcc is then passed downstream to the thruster model.

Thruster

The thruster discharge chamber and near-field plume is modeled as a one-dimen-
sional fluid and simulated with the Hallthruster.jl code  [17]. This thruster model 
couples to the cathode model by using Vcc as the potential boundary condition at 
the cathode end of the 1d domain. The thruster couples to the far-field plume model 
by predicting the total ion beam current Ib in the plasma discharge. All species are 
treated as fluids in the plasma flow axial direction with appropriate continuity and 

Table 1 Summary of multidisciplinary system model inputs

The system index denotes the variable’s index into the aggregate set of system inputs x . The elements in component inputs 
indicate the variable’s classification as a 1) d - environment operating condition, 2) θ - model calibration parameter, or 
3) φ - other variable input; the subscripts indicate component model inputs 1, 2, 3 for the cathode, thruster, plume models, 
respectively. Variables with the ( 10x ) notation indicate a log-uniform distribution. The arguments of the normal distribution 
N (µ, σ) are the mean µ and standard deviation σ

System index Variable description Symbol Units Component inputs Distribution Domain

1 Background pressure PB Torr d1, d2, d3 U(±20%) [10−8, 10−4]
2 Anode voltage Va V d1, d2 - [200, 400]

3 Anode mass flow rate ṁa mg/s d2 U(±3%) [2, 7]

4 Cathode electron 
temperature

Te eV θ1, θ2 U(1, 5) [1, 5]

5 Vacuum coupling 
voltage

Vvac V θ1 U(0, 60) [0, 60]

6 Turning point pressure P∗ µTorr θ1 U(10, 100) [10, 100]

7 Thruster to facility 
plasma density ratio

PT µTorr θ1 U(10, 100) [10, 100]

8 Anode injection neu-
tral velocity

un m/s θ2 U(100, 500) [100, 500]

9 Inner to outer transi-
tion length

lt mm θ2 U(1, 20) [1, 20]

10 Anomalous transport 
coefficient

a1 ( 10x) - θ2 U(−2.5,−1) [−2.5,−1]

11 Anomalous transport 
coefficient

a2 - θ2 U(10, 100) [10, 100]

12 Shift displacement �z - θ2 N (0.2, 0.07) [0, 0.4]

13 Upstream shift axial 
limit

z0 - θ2 N (−0.12, 0.04) [−0.25, 0]

14 Upstream shift pres-
sure limit

p0 µTorr θ2 N (45, 7) [25, 65]

15 Scatter/main beam 
ratio

c0 - θ3 U(0, 1) [0, 1]

16 Divergence angle ratio c1 - θ3 U(0.1, 0.9) [0.1, 0.9]

17 Divergence angle 
slope

c2 rad/Pa θ3 U(−15, 15) [−15, 15]

18 Divergence angle 
offset

c3 rad θ3 U(0,π/2) [0,π/2]

19 Neutral density slope c4 ( 10x) m−3/Pa θ3 U(18, 22) [18, 22]

20 Neutral density offset c5 ( 10x) m−3 θ3 U(14, 18) [14, 18]

21 Charge exchange cross 
sectional area

σcex Å
2 φ3 U(51, 58) [51, 58]

22 Plume radius rp m φ3 - [0.5, 1.5]
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energy/momentum conservation. The background pressure is treated as an additional 
“ingested” flux of neutrals Ŵingest , equivalent to the thermal flux of background neu-
trals across the exit plane of the thruster:

for neutral mass m, background temperature TB , and background neutral den-
sity nn,B = PB/(kBTB) with the Boltzmann constant kB . Effectively, the code adds an 
“ingested propellant” to the actual propellant Ŵprop , resulting in a total flux of neutrals at 
the anode of Ŵanode, tot = Ŵprop + Ŵingest.

We study two performance metrics predicted by the thruster model, namely the 
thrust T and the current utilization efficiency ηc . The thrust is computed as the net 
momentum flux of all ion charge states and the current utilization efficiency is com-
puted as the ratio of ion beam current to total discharge current Id , i.e. ηc = Ib/Id 
from Ref. [18].

To model the anomalous electron transport, we employ a simple two-zone Bohm-
like closure model of the anomalous collision frequency, νAN [19]. In this model, the 
anomalous collision frequency has a stepped profile, with a comparatively low value 
at axial locations upstream of a pressure-dependent threshold location, z∗ , and a 
higher value downstream of z∗ . Formally, the anomalous collision frequency is given 
as a function of axial location z by

where ωce is the electron cyclotron frequency and (a1, a2) are tunable model parameters 
corresponding to the anomalous collision frequency inside and outside of the channel. 
Piecewise Bohm-like models like this are common in fluid simulations of Hall thrust-
ers [19]; however, they are typically specific to a given thruster and operating condition 
and do not readily generalize across devices and operating regimes [20]. We believe the 
proposed model will be suitable for the single thruster under study and the relatively 
narrow range of operating conditions considered.

(4)Ŵingest =
nn,B

4

√

8kBTB

πm
,

(5)νAN(z) =
{

a1ωce, z < z∗,
a2a1ωce, z > z∗,

Table 2 Summary of multidisciplinary system model outputs

The system index denotes the variable’s index into the aggregate set of system outputs y . The component outputs column 
indicates the variable’s associated component model: 1, 2, 3 for the cathode, thruster, plume models, respectively. Coupling 
variable connections are indicated in that column when applicable

System 
index

Variable description Symbol Units Component 
outputs

Coupling 
variables

1 Cathode coupling voltage Vcc V y1 ξ2

2 Total ion beam current Ib A y2 ξ3

3 Discharge current Id A y2 -

4 Thrust T mN y2 -

5 Current utilization efficiency ηc - y2 -

6 Average axial ion velocity uion(z) m/s y2 -

7 Plume ion current density jion(γ ) A/m2 y3 -
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We account for the upstream shift in acceleration region due to facility pressure [21] 
by allowing the transition location between low and high anomalous collision frequency 
zones ( z∗ ) to vary with pressure. Based on the ansatz that this location should not shift 
arbitrarily far upstream or downstream, we adopt a simple logistic model of z∗ , given by

where Lch is the length of the thruster channel and we have introduced four new 
parameters: 

�z  — the total displacement from PB → 0 to PB → ∞ , expressed as a fraction of Lch,
z0  — the upstream axial limit of the velocity profile shift as PB → ∞ , expressed as a 

fraction of Lch,
p0  — the background pressure at which the upstream shift plateaus, and
b  — the slope of the pressure response curve (which is treated as a constant b = 14 

due to relative insensitivity during initial tests).

We note the model in Eq. (6) is phenomenological rather than physical, and is included 
to better capture the experimentally-observed upstream shift in acceleration region at 
higher background pressures. We consider the ion velocity profile uion(z) predicted by 
the thruster model along channel centerline in the axial direction z, which allows us to 
study the impact of Eq. (6) on ion acceleration in the channel.

Lastly, we note that the discharge current Id = Ie + Ib is composed of the electron cur-
rent streaming backward from cathode to anode ( Ie ) and the ion beam current Ib . For 
constant Id , an increase in backstreaming electron current decreases the current effi-
ciency since a smaller fraction of the total current through the device is usable as thrust 
in the beam. We are particularly interested in this efficiency mode as it is the primary 
efficiency loss mechanism in Hall thrusters ( ηc < 80% , typically  [18]). Additionally, it 
directly captures the effects of anomalous electron transport on thruster performance. 
As the electron current across the thruster’s magnetic field is directly related to the 
effective anomalous collision frequency [2], high values of collision frequency will tend 
to decrease the current utilization efficiency.

Plume

The far-field plume is modeled via another semi-empirical form  [22] to predict the 
expansion of ion current density jion in the Hall thruster far-field plume resulting from 
the total beam current Ib at the thruster exit plane. The plume model treats the ion cur-
rent density in the plume as the superposition of the main beam plasma jbeam , inelastic 
ion-neutral scattering jscatter , and charge-exchange collisions jcex:

The model assumes empirically-guided shapes for each ion population and encodes 
a facility pressure PB dependence of characteristic divergence angles within the plume. 
The model is detailed in Ref. [22], but we provide a condensed and modified form of the 
model in Appendix A.

(6)z∗(PB) = Lch

(

1+ z0 +
�z

1+ b2PB/p0−1

)

,

(7)jion = jbeam + jscatter + jcex.
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Model summary

As stated previously, our main goal is to capture the impact of anomalous transport and 
facility effects on Hall thruster performance. We account for anomalous transport in the 
thruster model via Eqs. (5) and (6). We account for facility effects by coupling cathode, 
thruster, and plume models in a multidisciplinary framework (Fig.  1). Facility effects 
specifically enter the framework as the background chamber pressure PB in four distinct 
locations: 

1. Equation (3) as an impact on the cathode coupling voltage,
2. Equation (4) as an additional “ingested” flux of neutrals from the vacuum chamber,
3. Equation (6) as a shift to the two-zone Bohm anomalous transport closure model, 

and
4. Equation (7) as an impact on characteristic divergence angles within the plume (see 

Appendix A).

Uncertainty quantification

Many engineering models have inherent uncertainty due to concerns like manufactur-
ing tolerances, incomplete or missing knowledge, and natural variability. Accounting for 
this uncertainty is critical to establish confidence in model predictions. In this section, 
we describe the uncertainty quantification problem for the Hall thruster system model 
provided in the previous section.

The uncertainties in our problem are captured in the model inputs, which are endowed 
with a probability density function (PDF) ρ(x) . The goal is to characterize the uncer-
tainty in the model predictions — which can be fully characterized by a density ρ(y) 
induced by the system model — due to uncertainty in the inputs. To this end, we treat 
ρ(d,φ) as aleatoric sources of uncertainty, i.e. they are irreducible for a given set of pro-
cesses (measurement uncertainty of pressure, for example, can’t be reduced except by 
improving the measurement process). We treat ρ(θ) as epistemic sources of uncertainty, 
i.e. the uncertainty is due to lack of knowledge and can be improved by gathering data/
information.

The uncertainties for the inputs are provided in Table 1. For each input xi, i = 1 . . .D , 
we specify the system index i, the uncertainty ρ(xi) as a probability distribution, and 
the domain Ŵ(xi) as a set of bounds [li,ui] . This approach treats each input as an inde-
pendent random variable (i.e. ρ(x) =

∏D
i=1 ρ(xi) ) since we have no prior knowledge on 

any existing correlations, (provided enough data, the posterior distribution after model 
calibration is insensitive to the choice of prior). For operating conditions d , the uncer-
tainty is specified relative to some nominal value, e.g. U(±20%) is a uniform distribution 
between values 20% above and below the current set point. Variables with no specified 
distribution are deterministic (i.e. negligible uncertainty). All uncertainties represent 
our prior knowledge on the expected range and distribution for each variable, based on 
available experimental or numerical evidence. We conservatively assign large bounds to 
parameters where prior knowledge is limited. Details on the formulation of each variable 
can be found in the appropriate references for each component model.
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The ultimate goal of this UQ framework is to provide feedback for model improvement 
activities. We accomplish this by 1) reducing epistemic uncertainty ρ(θ) with model 
calibration,2) quantifying output uncertainty ρ(y) with forward propagation, 3) narrow-
ing the input space and identifying important parameters with sensitivity analysis, and 
4) making other suggestions from model validation results (such as increasing model 
fidelity, updating model assumptions, adding extra parameters, etc.). For all of these UQ 
tasks, the computation of output statistics is performed using sample-based estimators, 
such as the Monte Carlo estimate of the mean:

which requires N evaluations of the system model f (x(i)) . Often, N can approach O(106) 
for sufficient accuracy. In our case, the cost of a single evaluation of the thruster model is 
O(1 min) , so N evaluations could require weeks of runtime even on a high-performance 
computing system. We thus require a cheap-to-evaluate surrogate model that approxi-
mates the input-output behavior of the full model.

Algorithms

We now summarize the specific methods used in this study to perform uncertainty 
quantification on the Hall thruster model in a computationally feasible way. We first 
describe a surrogate method that enables UQ, and then we describe the UQ algorithms 
for model calibration, forward uncertainty propagation, and sensitivity analysis. The 
results of these analyses are presented in the Results section.

Multidisciplinary surrogate

We seek to build a surrogate of the MD system in Fig. 1 to reduce computational bur-
den as efficiently as possible, and so we take advantage of multifidelity (MF) techniques 
that combine model evaluations from a hierarchy of modeling fidelities (for example, 
increasing cell resolution for PDE discretization). We choose the multi-index stochastic 
collocation (MISC) framework as it provides an effective way to build adaptive MF sur-
rogates [23–25]. MISC approximates each component model fk as:

where α = [α1, . . . ,αRk ] is a set of Rk indices (i.e. a multi-index) that specifies model 
fidelity and β = [β1, . . . ,βNk

] is a similar set of Nk indices that specifies surrogate fidel-
ity. For a given set Ik of concatenated multi-indices [α,β] , the MISC approximation is 
a linear combination of surrogates of varying fidelity fk ,[α,β] , whose coefficients ck ,[α,β] 
have a closed-form expression given some assumptions on the structure of Ik [15]. The 
individual surrogates fk ,[α,β] can take on any form (i.e. Gaussian processes, neural net-
works, polynomials, etc.) so long as they have some way to tune the underlying physical 
model fidelity via α and some way to tune the parametric surrogate fidelity via β . We 
follow prior work (and leave implementation details) in Ref. [15] to adaptively build the 
index sets Ik in an MD/MF setting using multivariate Lagrange polynomial interpolants 

(8)E[f (x)] ≈ 1

N

N
∑

i=1

f (x(i)), x(i) ∼ ρ(x),

(9)fk(xk , ξ k) ≈ fk ,Ik (xk , ξ k) =
∑

[α,β]∈Ik
ck ,[α,β]fk ,[α,β](xk , ξ k),
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for the individual fk ,[α,β] . The Lagrange interpolants are a natural choice for the adap-
tive MISC approach assuming sufficient smoothness of the underlying function given 
their tensor-product grid structure and a nested sampling/collocation strategy [26]. We 
denote the full MD system surrogate as fJ (x) ≈ f (x), J = [I1, . . . , IK ].

In our current setting, we use Rk = 2 model fidelities for the thruster model. The first 
index α1 controls the number of grid cells in the simulation via Ncells = 50(α1 + 2) for 
α1 = 0, 1, 2 . The second index α2 controls the number of ion charge states included in 
the simulation via Ncharge = α2 + 1 for α2 = 0, 1, 2 , with increasing model fidelity in 
both cases for increasing α . Figure  2 illustrates the difference between the lowest and 
highest fidelity versions of the thruster model.

The number of surrogate training points along each input dimension i is controlled by 
Npoints,i = 2βi + 1 for i = 1 . . .Nk (with Nk = 12 inputs for the thruster model). The sur-
rogate approximation in Eq. (9) increases in accuracy as more sets of [α,β] are added to 
the index set Ik using the adaptive procedure described in Ref. [15].

We apply the MISC methodology in the context of high-dimensional inputs, coupling 
variables, and outputs, which quickly encounters the curse of dimensionality. To deal 
with this challenge, we perform linear dimension reduction (i.e. principal orthogonal 
decomposition  [27–29]) on high-dimensional spatial field quantities in the model. For 
example, we find a low-dimensional subspace (or “latent” space) of the numerical ion 
velocity profile, and the surrogate is constructed for the latent coefficients of the ion 
velocity in the reduced space; details are included in Appendix B.

Model calibration

One of the primary goals in our UQ framework is to calibrate the model coefficients θ 
in Table 1 to fit a set of experimental data ye . We use data from the 1.35 kW SPT-100 
operating on Xenon for calibration due to the thruster’s widespread use and the avail-
ability of data in the literature (see datasets 1-4 described in Appendix C). Within the 
context of our UQ framework, we perform the calibration through Bayesian inference 
by sampling from the posterior distribution on θ given the experimental data ye , that 
is ρ(θ | ye) ∝ ρ(ye | θ)ρ(θ) . The prior ρ(θ) represents our state of knowledge on the 

Fig. 2 1d axial simulation domain of the thruster model from the lowest fidelity α = (0, 0) to the highest 
fidelity α = (2, 2)
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parameters before seeing the data and the likelihood ρ(ye | θ) indicates how likely the 
data was generated by a given set of parameters. The posterior ρ(θ | ye) is ideally much 
narrower than the prior, indicating that we have reduced epistemic uncertainty by learn-
ing from the observed data. To formulate the likelihood, we model the experimental data 
as normally-distributed about the forward model predictions:

where ξ is additive Gaussian noise with characteristic variance σ 2 . We have chosen 
here to neglect the aleatoric uncertainties ρ(d,φ) to simplify the analysis and since we 
expect their impact to be small. As a result, we are able to express the system model 
f (x) from Eq. (1) as simply f (θ) , with (d,φ) fixed to nominal conditions. The likelihood 
ρ(ye | θ) results from the Gaussian form of Eq. (10) and, assuming independent data 
ye = {y(i)e }Ne

i=1 , is given by:

where we have expressed the experimental noise σ 2
i  on a case-by-case basis for each y(i)e  . 

It is understood that we extract from f (θ) only the QoIs that correspond to the current 
data point y(i)e  , e.g. if y(i)e  is a cathode coupling voltage measurement, then we extract Vcc 
from index 1 of f (θ) , as detailed in Table 2. We also substitute in place the surrogate 
fJ (θ) for f (θ) during the actual computations, as using the full model for even a modest 
number of samples is simply infeasible.

Having defined the prior ρ(θ) in Table  1 and the likelihood ρ(ye | θ) in Eq. (11), 
the unnormalized posterior ρ(θ | ye) can be computed through Bayes’ rule. We use a 
delayed-rejection adaptive Metropolis Markov chain Monte Carlo (MCMC) routine to 
sample from the 17d posterior [30].

Forward propagation and sensitivity analysis

After calibrating the model, we study the impacts of remaining uncertainty on model 
predictions by propagating input uncertainties ρ(x) through the surrogate fJ (x) to 
obtain the output distribution ρ(y) . We do this by propagating N Monte Carlo samples 
of the uncertain inputs {x(i)}Ni=1 ∼ ρ(x) through the surrogate to obtain N predictions 
of the uncertain outputs y(i) = fJ (x(i)) . We then use the 5th and 95th percentiles of the 
outputs as credible intervals for the model predictions.

Lastly, we take a preliminary step in improving future versions of the model by way of 
sensitivity analysis. By studying the impacts of model input uncertainty on resulting out-
put variance, we can find the parameters that have the greatest impact on model predic-
tions and consequently remove unimportant parameters from future consideration. Since 
we are primarily interested in studying the impact of facility effects on the model, we per-
form the sensitivity analysis over varying background pressures. We choose the Sobol’ 
method of global variance analysis to study all uncertain inputs in Table 1 over their full 
prior domains [31, 32]. In the Sobol’ analysis, we compute the first-order ( S1i ) and total-
order ( STi ) sensitivity indices for all inputs i = 1 . . .Dk for each component model k. The 
first-order indices measure the independent contributions of each input on total output 

(10)ye = f (θ)+ ξ , ξ ∼ N (0, σ 2),

(11)ρ(ye | θ) =
Ne
∏

i=1

1√
2πσi

exp

(

− (y
(i)
e − f (θ))2

2σ 2
i

)

,
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variance and have the property 
∑

i S1i < 1 , where the remaining fraction 1−
∑

i S1i is due 
to “higher-order” interactions between coupled inputs. The total-order indices additionally 
include the higher-order interactions in which input i is involved, with STi > S1i indicating 
the presence of higher-order interactions. The property 

∑

i STi ≥ 1 is due to double count-
ing of interactions between inputs i and j in STi and STj , i  = j . We leave full descriptions of 
the Sobol’ indices in Ref. [32], but note that we must use sample-based estimators to obtain 
their values. As such, we include Monte Carlo 95% confidence intervals on all estimates of 
Sobol’ indices with N = 5000 samples.

Results
In this section, we present the results of the UQ methods applied to the Hall thruster model 
and assess goodness of fit with experimental data. We first quantify surrogate training accu-
racy, then we summarize overall reduction in uncertainty from model calibration, next 
we compare model trends to experiment, and finally we present results from sensitivity 
analysis.

Hall thruster model surrogate

We first report on the construction of a surrogate for the MD Hall thruster system 
described in Fig.  1. Since the cathode and plume components are analytical, only the 
thruster model requires a surrogate. We evaluate the accuracy of the surrogate by compar-
ing to an independent test set with the relative L2 error metric. We define the relative L2 
percent error between two vector quantities v and w as

and report the error E(ym, ys) between the full model ym = f (x) and surrogate 
ys = fJ (x) on N = 500 test set samples x = {x(i)}Ni=1 . Figure 3 shows the L2 test set error 
during training as a function of the total incurred computational cost (measured in units 
of total number of equivalent high-fidelity model evaluations). The L2 error is compared 
when using the multi-fidelity strategy vs. a single high-fidelity strategy (i.e. α = (2, 2) ). 
Only three QoIs are shown, namely the discharge current ( Id ), the thrust (T), and the 
first ion velocity latent coefficient ( ̃uion,0).

(12)Relative L2 error = E(v,w) = �v − w�2
�v�2

Fig. 3 Comparison of multi-fidelity vs. single-fidelity ( α = (2, 2) ) relative L2 test set error during surrogate 
training against computational cost (in units of number of equivalent high-fidelity model evaluations). The 
multi-fidelity strategy exhibits better accuracy for a given cost, and surrogate error reaches 10% during 
training for most QoIs
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In most cases, employing the multi-fidelity strategy results in a more accurate surro-
gate than using the single highest fidelity alone for a given computational budget. This 
result highlights the importance of the MISC approach we adopted in this study. We 
expect the relative improvement to be even greater as higher-fidelity (and more costly) 
models are incorporated. We also found that the surrogate prediction of many QoIs 
reaches 10% accuracy or better for the equivalent cost of around 200 full high-fidelity 
model evaluations over a 12d input space. Further details on surrogate performance are 
provided in Appendix B.

Model calibration

Next, we use the surrogate to calibrate all system model coefficients θ simultaneously 
to fit experimental data using the Bayesian inference procedure described in the Model 
calibration section. MCMC is performed for 100,000 iterations with a burn-in fraction 
of 10% and a resulting acceptance ratio of 22%. The posterior marginals are summarized 
in Table 3 for each calibrated variable. We note that one variable was essentially reduced 
to a constant with standard deviation less than 0.1%, and so we only indicate a point 
value. We also include the original priors for each variable from Table 1 for comparison. 
Appendix D additionally provides plots of the 1d and 2d marginals for each component 
model.

We make four remarks regarding the posterior distribution:

Remark 1 The cathode model parameters θ1 = (Te,Vvac ,P∗,PT ) agree with previously 
reported values in Ref. [16].

Table 3 Statistics of the 1d marginal posteriors of the Hall thruster model fit coefficients θ

Variables with the ( 10x ) notation indicate a log-uniform distribution. The arguments of the normal distribution N (µ, σ) are 
the mean µ and standard deviation σ

Posterior

Variable Prior Min 5th pctile 50th pctile 95th pctile Max Std dev

Te U(1, 5) 1.00 1.03 1.33 1.81 2.41 0.25

Vvac U(0, 60) 31.2 31.4 31.6 31.8 31.9 0.1

P∗ U(10, 100) 25.8 30.2 34.6 41.5 50.3 3.5

PT U(10, 100) 10.0 10.0 10.2 10.9 12.5 0.3

un U(100, 500) 133.0 137.1 141.2 145.3 149.7 2.5

lt U(1, 20) 1.57 1.73 1.88 2.03 2.27 0.09

a1 ( 10x) U(−2.5,−1) -2.183 -2.174 -2.167 -2.161 -2.153 0.004

a2 U(10, 100) 14.0 14.3 14.6 14.9 15.3 0.2

�z N (0.2, 0.07) - - 0.4 - - < 0.1%

z0 N (−0.12, 0.04) -0.035 -0.033 -0.031 -0.029 -0.027 0.001

p0 N (45, 7) 40.5 49.9 56.9 63.1 65.0 4.0

c0 U(0, 1) 0.01 0.46 0.92 0.99 1.00 0.18

c1 U(0.1, 0.9) 0.53 0.70 0.81 0.89 0.90 0.06

c2 U(−15, 15) 7.9 11.4 14.0 14.9 15.0 1.1

c3 U(0,π/2) 0.28 0.38 0.45 0.50 0.54 0.04

c4 ( 10x) U(18, 22) 18.0 18.1 18.8 19.3 19.6 0.4

c5 ( 10x) U(14, 18) 14.0 14.1 15.1 16.3 16.9 0.7
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Remark 2 Most of the model parameters have significantly reduced uncertainty under 
the posterior as compared to the prior, indicating that the data was very informative in 
learning the parameters.

Remark 3 The uncertainty was reduced so significantly for the �z parameter that it 
can practically be treated as a point value. This likely indicates the model is over-param-
eterized and can be simplified by removing extraneous parameters. It also implies that 
further data collection will likely not reduce the epistemic uncertainty further.

Remark 4 Lastly, many parameters ( PT ,�z, c0, c2 ) were pushed to the boundaries of 
the prior, indicating a better fit may lie outside the original expected bounds. In the case 
of c0 , where values greater than one are nonphysical, this may indicate shortcomings 
intrinsic in the model itself.

Quantifying uncertainty

In the last section, we obtained global, best-fit values for the model parameters and 
their uncertainties through Bayesian inference; this was enabled by the use of a sur-
rogate approximation to the true model. Ideally, the best-fit parameters learned by the 
surrogate would improve the quality and reduce the uncertainty of predictions made 
by the true model. The overarching idea with this approach is that the purely data-
driven surrogate is only valid within the narrow bounds of training data, while the 
true model is grounded in physics or empirical evidence and should have predictive 
power outside of the training regime. Therefore, the primary goal is to improve the 
true model’s fit to experimental data by proxy of improving the surrogate.

In this section, we measure how well this goal has been met by showing several 
plots of model predictions with uncertainty against the training data for each compo-
nent model, both before and after parameter calibration. “Prior predictive” plots give 
uncertainty bounds obtained with N = 1000 Monte Carlo samples of the uncertain 
inputs under the prior distribution {x(i)}Ni=1 ∼ ρ(d,φ, θ) described in Table 1, and they 
represent the 5th and 95th percentiles of resulting surrogate predictions y(i) = fJ (x(i)) 
via shaded regions. “Posterior predictive” plots give uncertainty bounds in the same 
way, except the model parameters are instead sampled from the posterior distribution 
{θ (i)}Ni=1 ∼ ρ(θ | ye) . The posterior predictive contains the same aleatoric uncertainty 
as the prior predictive from ρ(d,φ) and any remaining epistemic uncertainty from 
ρ(θ | ye) . Except where otherwise indicated, we plot the median surrogate prediction 
with a dashed line and the true system model prediction with a solid line for compari-
son. The true model predictions use the median parameter values in Table 3.

We also note that when the uncertainty from model predictions is on the same order 
as the experimental noise (as was typical under the posterior predictive), it is some-
times useful to further corrupt model predictions by additive Gaussian noise accord-
ing to Eq. (10) to more fully represent the posterior predictive (this is equivalent to 
emulating new experimental data y∗ from the posterior via y∗, θ ∼ ρ(y∗, θ | ye) ). The 
additional “measurement” uncertainty emulated by this process is indicated by the 
shaded blue regions where applicable.
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Cathode model uncertainty

The system-level output of the cathode model is the cathode coupling voltage. Experi-
ments show that this performance-loss mechanism is influenced by elevated vacuum 
chamber pressures. Higher coupling voltages decrease the total potential drop seen by 
the accelerating ions, so it is important that our models capture changes in coupling 
voltage due to changing background pressure to accurately predict thruster perfor-
mance. Figure  4 compares the model predictions to experimental data from Ref.  [16]. 
We observe a significant reduction in uncertainty under the posterior, mostly attrib-
utable to the tight posterior bounds on the Vvac parameter (see Appendix D). We also 
observe higher uncertainty for predictions at higher pressures due to the relative uncer-
tainty in the pressure itself. As the background pressure approaches 0, the model asymp-
totes at Vvac = 31.6 from Eq. (3) while the data appears to continue decreasing. We hope 
that such a physics-based extrapolation to zero pressure is well-founded, but ultimately 
further data collection at lower pressures may be required to validate this result.

Thruster model uncertainty

We next evaluate the thruster model predictions on the system-level outputs of thrust, 
discharge current, and axial ion velocity. Figures 5 and 6 respectively show thrust and 
discharge current against background pressure for the facility effect characterization 
test data from Ref. [33]. The model uses all operating conditions from the experiment, 
including a decreasing anode mass flow rate for increasing back-pressure that was 
effected in the experiment to maintain a constant discharge current of 4.5 A. We assume 
a 10% relative uncertainty on the discharge current in the absence of any reported values.

We make four observations regarding the thrust and discharge current predictions in 
Figs. 5 and 6:

Observation 1: The model predicts a decreasing trend of thrust with pressure, which 
disagrees with the experimental trend. — The experimental data was collected over 
various pressure such that the discharge power remained approximately constant [33], 
and so the observed “artificial” increase in thrust at elevated pressures is likely due to 
ingestion and ionization of background neutrals in the acceleration region. However, 

Fig. 4 Comparison of model predictions to experimental cathode coupling voltage from Ref. [16] over 
varying background pressures. The uncertainty is significantly reduced under the posterior predictive and the 
model fits the experimental trend well
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the thermal ingestion of neutrals predicted by the model from Eq. (4) is not sufficient 
to make up for the decreasing anode flow rates used in the experiment, resulting in a 
decreasing trend of thrust with pressure. We also observed a decrease in current effi-
ciency ηc from 66% at the lowest pressure case to 51% at the highest pressure case, pri-
marily driven by an increase in discharge current Id as shown in Fig. 6. This result can 
be understood in context of the shifted-Bohm anomalous transport in Eq. (5), where 
larger regions of the discharge exhibit higher electron conductivity at higher pressures, 
and so a larger discharge current is required to maintain the same beam current. Worse 
electron confinement at higher pressures also corresponds to lower ionization rates and 
lower thrust.

Observation 2: Uncertainty under the posterior is significantly reduced from the prior 
for both thrust and discharge current, and the remaining uncertainty is mostly due to ale-
atoric sources. — This result agrees with the tight bounds on the posterior and implies 
that uncertainty cannot be reduced further by collecting more data; any remaining 

Fig. 5 Comparison of model predictions to experimental thrust from Ref. [33] over varying background 
pressures. The uncertainty is significantly reduced under the posterior predictive. The surrogate fits the data 
well while the true model over-predicts the data and exhibits the wrong trend compared with experiment

Fig. 6 Comparison of model predictions to experimental discharge current from Ref. [33] over varying 
background pressures. The uncertainty is significantly reduced under the posterior predictive. The surrogate 
and true model predictions fit the experiment better under the posterior predictive but still exhibit a large 
discrepancy
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discrepancy between the model and data must be due to error in the model form itself. 
This result also illustrates that surrogate predictions are overconfident since the uncer-
tainty bounds do not account for model form error nor the error in the surrogate itself. 
It would be critical to account for these other sources of uncertainty outside of our cur-
rent validation context.

Observation 3: We have learned the best possible fit for the surrogate, but not neces-
sarily for the true model, i.e. we sacrifice accuracy in the optimization of the parameters 
for computational feasibility. — This limitation is evident in Fig. 5, where the surrogate 
matches the data well while the true model predictions have actually moved in the oppo-
site direction. We show some tests in Appendix B where surrogate predictions have 
high O(25%) error and can even move in opposite directions as the true model for some 
parameter regimes. Specifically, we found that anomalous coefficients of a1 < −2 cause 
a discontinuous, unstable prediction of thrust. Since the posterior lies in this regime, the 
best-fit parameters learned by the surrogate do not necessarily correspond to improve-
ments in the quality of the true model. For discharge current however, the surrogate 
error is lower and so both surrogate and model predictions improve under the posterior.

Observation 4: The posterior discharge current predictions appear to be as close to 
the data as was possible under the prior, yet they are still >50% higher than the experi-
ment. — This result may indicate that our prior was over-constrained such that no set 
of parameters was capable of reproducing the experimental 4.5 A. However, since the 
prior predictive of thrust does allow capturing the experimental data, it seems possible 
that over-prediction of discharge current is a limitation intrinsic to the model itself. We 
suspect that a three-zone anomalous transport model would allow slower electron trans-
port in the peak magnetic field region and thereby reduce discharge current to more 
realistic values.

Next, we show a comparison to ion velocity data for the thruster model. Figure 7 com-
pares surrogate and full model predictions to laser-induced fluorescence (LIF) measure-
ments of the axial ion velocity profile from Ref. [21]. Much work in closure modeling tries 
to match such ion velocity profiles to validate anomalous transport models [20]. We also 

Fig. 7 Comparison of model predictions to experimental ion velocity profiles from Ref. [21] over varying 
background pressures. The uncertainty is significantly reduced under the posterior predictive. The surrogate 
and true model predictions fit the experiment better under the posterior predictive but do not fully capture 
the upstream shift in acceleration region with increasing pressure
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hope to determine here if our shifted-Bohm transport model is sufficient for capturing 
trends with pressure.

One of the main goals of Ref. [21] was to characterize the upstream shift in the accelera-
tion region due to increasing background pressure, as apparent in the shift of the steepest 
section of the LIF data in Fig. 7. Our shifted-Bohm transport model in Eq. (5) sought to 
replicate this behavior by applying a logistic upstream shift in the anomalous transport that 
increased up to a limit with increasing pressure. While this shift in the model is apparent in 
Fig. 7, it is not sufficient to match the experimentally-observed shift. In addition, the pre-
dicted velocity profiles are not steep enough to match the experimental acceleration region. 
Uncertainty is significantly reduced under the posterior similar to thrust and discharge cur-
rent shown previously. However, the remaining mismatch between the model and data can-
not be accounted for by input uncertainty and so must be due to the model form itself.

It is interesting to note the physical correspondence of the learned shifted-Bohm param-
eters in Table 3 to the results in Fig. 7. Higher values of �z , for example, correspond to a 
greater shift in ion velocity profile by proxy of a greater shift in anomalous collision fre-
quency. Since the experimental shift is greater than the predicted shift, the calibration 
routine wanted �z as large as possible, up to the maximum prior bound of �z = 0.4 . The 
location of the acceleration zone, however, is further downstream than the prior uncer-
tainty could account for. It is possible that allowing z0 > 0 may have better captured this 
experimental result, as the calibration routine pushed z0 → 0 . The upstream shift in 
acceleration zone also seems to taper at PB = 50 µTorr , which agrees with the calibrated 
parameter p0 ∼ 57 µTorr . Under the current parameterization, it seems unlikely that the 
1d fluid model can simultaneously capture both the location and steepness of the accelera-
tion region, as well as the slower asymptote of ion velocity outside the discharge channel.

Figure  7 also shows the first test of our dimension reduction surrogate methods. The 
surrogate ion velocity profiles are reconstructed from predictions of the latent coefficients 
ũion,0 . . . ũion,3 . Formally, the predicted profiles ûion(z) labeled as “Surrogate” in Fig. 7 are 
given by:

for a given system input x and the projection matrix Ṽ  (see Appendix B for details). If 
we let uion(z) = f (x) be the true model prediction, then the total error in the surrogate 
prediction is given by:

(13)ûion(z) = Ṽ fJ (x)

(14)ǫtot(x) = ûion − uion

(15)= Ṽ fJ (x)− uion

(16)
= Ṽ (ǫint + Ṽ Tuion)− uion,

where ǫint = fJ (x)− Ṽ Tuion → interpolation error,

(17)
ǫtot(x) = Ṽ ǫint + ǫrec,

where ǫrec = Ṽ Ṽ Tuion − uion → reconstruction error.
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The result of Eq. (17) is that the total error of the reconstructed fields can be decom-
posed into 1) reconstruction error that results from truncating the SVD projection Ṽ  , 
and 2) interpolation error that results from inaccurate surrogate estimations of latent 
coefficients. In our experience, we found the reconstruction error to be high in steep 
regions of the ion velocity profile, often in the form of high frequency SVD modes that 
overshoot sharp transitions. This error is amplified when the surrogate approximation 
is poor, as was typically the case for the ion velocity latent coefficients. These errors are 
clearly evident in the nonphysical overshoots of the acceleration region in Fig. 7. Even so, 
we were able to get a cheap estimate of the full ion velocity profile using the surrogate 
in the latent space, enabling the calibration and UQ results we have shown. We leave it 
as future work to further investigate trade-offs in accuracy when employing dimension 
reduction within the surrogate framework.

Plume model uncertainty

We now turn to the last system-level output of the plume model: ion current density. We 
encode in the plume model the experimentally-observed effect at elevated facility pres-
sures of decreasing divergence angle [33]. This manifests as a more peaked current den-
sity along thruster centerline and wider “wings” of current density at larger angles due 
to scattering and charge-exchange collisions. Figure  8 shows this effect in the current 
density profiles in both the model and experiment for increasing facility pressure. We 
note that the plume model itself is analytical and does not require a surrogate; however, 
it is dependent on the total beam current Ib predicted by the thruster and so it relies on 
the thruster surrogate for UQ predictions. To prevent clutter, we do not plot error bars 
or uncertainty bounds in Fig. 8.

While we do observe agreement in the wings of the plume (angle > 50 deg), we see 
a decreasing trend in peak current density on centerline in the model instead of the 
expected increase in experiments. This is likely due to an over-allocation of current by 
the model in the middle (15-50 deg) range, which by current conservation forces the 
peak density to be lower. This actually has the effect of increasing beam divergence for 

Fig. 8 Comparison of posterior model predictions to experimental ion current density profiles from Ref. [33] 
over varying background pressures. The surrogate matches the experimental trend in the “wings” ( > 50 deg) 
of the plume, but neither the surrogate nor true model capture the increasing centerline current density with 
increasing pressure
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increasing pressure, which is opposite the expected experimental trend. We leave the 
details of the plume model in Appendix A, but we note the surprising calibration results 
of c0 > 0.5 and c2 > 0 , which respectively indicate more allocation of ion current to scat-
tering effects and increasing divergence angle for increasing pressure. These unfavorable 
results are likely due to numerical artifacts in the calibration procedure, either due to 
high surrogate errors or too much weight placed on matching the wings of the plume 
rather than the centerline. It is also possible that this empirical plume model cannot 
faithfully account for the experimental trends under its current parameterization, since 
the best-fit parameters are opposite those expected from experiment.

To gain a better understanding of how uncertainty affects the plume model predic-
tions, we show a closer comparison between the model and experiment at PB = 1.69E-6 
Torr in Fig. 9.

We first observe, similar to the thruster model results, that uncertainty is significantly 
reduced under the posterior and that the best-fit parameters learned by the surrogate 
do not necessarily mean a best-fit for the true model. Although the true model does 
improve from prior to posterior, it does not converge as well as the surrogate to the 
experimental data, especially at large angles and near thruster centerline. We suspect 
that these regions, similar to the acceleration region in the ion velocity profiles, exhibit 
high reconstruction error due to sharp changes in ion current density (note the log scale 
of Fig. 9). As surrogate error is higher in these regions, the best-fit parameters learned by 
the surrogate correspond less to improvement in the true model.

It is also interesting to note the apparent presence of an “inflection” angle in Fig.  8 in 
both the experiment (around 50 deg) and in the model (around 40 deg) where the ion cur-
rent density is roughly constant for varying pressures (i.e. djion/dPB ≈ 0 ). To the left of 
the inflection point, greater facility pressure compresses the ion current along centerline 
(in experiments), while it spreads ion current in the wings of the plume to the right of the 
inflection point. Other than the current conservation that must occur as ion current is 
shifted between regions of the plume, it is not immediately clear from experiments why 
such an inflection point develops at a single angular location in the plume. It is also not 

Fig. 9 Comparison of model predictions to experimental ion current density from Ref. [33] for a background 
pressure of PB = 1.69E-6 Torr. The uncertainty is significantly reduced under the posterior predictive. The 
surrogate matches the experiment well under the posterior but the true model exhibits large discrepancy 
near thruster centerline and at large angles ( > 50 deg)
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intuitive from the plume model equations why this same phenomenon occurs, albeit at a 
different location than experiment. This effect is further emphasized by the narrow uncer-
tainty band at the inflection point even due to all other model parameters, as shown in the 
prior predictive in Fig. 9. Despite the complex coupling of pressure with all the other model 
uncertainties, the model predicts a roughly constant current density at the inflection point. 
Along with the discrepancies previously mentioned, this may motivate a better parameteri-
zation or model form for the plume component.

Training performance summary

We conclude this section by summarizing the model/surrogate performance before and 
after calibration on the training data (Figs. 4, 5, 6, 7, 8 and 9). Table 4 summarizes the distri-
bution of surrogate relative L2 error for each QoI with the mean µ and standard deviation σ 
over N = 1000 samples of the uncertain inputs 

{

x(i)
}N

i=1 , given by:

where E(·, ·) is computed from Eq. (12) between the experimental data ye and the surrogate 
predictions fJ (·) , respectively. We compare the average L2 error to the characteristic exper-
imental noise ξ to assess goodness of fit, with values µ/ξ ∼ O(1) indicating good agree-
ment (i.e. model error is on the same order as measurement error). In general, a reduction 
in µ indicates improved accuracy and a reduction in σ indicates reduced uncertainty. We 
also include the point error estimate µ50 = E(ye , fJ (x50)) for the surrogate at median 

(18)µ = 1

N

N
∑

i=1

E(ye , fJ (x(i))),

(19)σ =

√

∑N
i=1(E(ye , fJ (x(i)))− µ)2

N
,

Table 4 Relative L2 error of the model and surrogate with experimental SPT-100 training data under 
the prior and posterior distributions for several quantities of interest (QoIs)

Surrogate L2 errors are summarized by the mean µ and standard deviation σ over N = 1000 samples. The point estimate 
µ50 is computed at median parameter values only, and ǫ50 gives the corresponding approximation error between surrogate 
and model. The ratio of mean L2 error ( µ ) to relative experimental noise ( ξ ) indicates the degree of fit with experiment, with 
µ/ξ ∼ O(1) indicating good agreement and µ/ξ > 1 indicating larger mismatch

Surrogate L2 (%) Model L2 (%)

QoI Distribution ξ (%) ǫ50 µ50 µ σ µ/ξ µ50 µ50/ξ

Vcc (V) Prior 1 - 6 54 6 54 - -

Posterior 1 - 2 1.3 0.1 1.3 - - 

T (mN) Prior 1 1 21 19 2 19 22 22

Posterior 1 23 2.5 2.6 0.2 2.6 29 29 

Id (A) Prior 10 10 207 290 40 29 230 23

Posterior 10 11 45 45 0.3 4.5 63 6.3 

uion (ms−1) Prior 5 7 44 35 5 7 50 10

Posterior 5 13 21 21 0.2 4.2 17 3.4 

jion (Am−2) Prior 20 17 77 79 6 4 80 4

Posterior 20 29 33 33 0.3 1.7 49 2.5



Page 22 of 40Eckels et al. Journal of Electric Propulsion            (2024) 3:19 

parameter values x50 (see Table 1 for the prior and Table 3 for the posterior), with the cor-
responding approximation error ǫ50 = E(f (x50), fJ (x50)) between model and surrogate at 
the median predictions. Note that the prediction of cathode coupling voltage ( Vcc ) is exact 
and so ǫ50 is not included for this QoI. Also note that we only compute the true model at the 
median parameter values and provide the point error estimate µ50 = E(ye , f (x50)).

We make three observations regarding the training performance summary in Table 4:
Observation 1: Uncertainty under the posterior is significantly reduced from the prior 

for all QoIs. — This fact was already observed in Figs. 4, 5, 6, 7, 8 and 9 and is confirmed 
by the posterior standard deviation in error of σ < 0.3 % for all QoIs in Table 4. The low 
remaining uncertainty along with µ/ξ > 1 for most QoIs again indicates that model 
form error is responsible for the remaining discrepancy with experiment.

Observation 2: Surrogate predictions under the posterior are significantly improved from 
the prior baseline. — For example, the average surrogate L2 error improves for discharge 
current by an order of magnitude, from µ = 290 % to 45%. Recall that the prior baseline for 
this model is based on best available numerical or experimental evidence; this is a signifi-
cant improvement in accuracy despite the relatively high remaining error. The accuracy in 
cathode coupling voltage ( Vcc ) even improves enough that the model error is on the order 
of experimental error (i.e. µ/ξ ∼ O(1) ), indicating that further calibration for this QoI will 
likely not improve accuracy further. Except for thrust, improvement in surrogate predic-
tions was accompanied by similar improvement in true model predictions.

Observation 3: Surrogate approximation error of the true model limits observed 
improvement in the true model during calibration. — This fact was previously observed 
in Fig. 5 where the true model prediction of thrust actually degrades under the poste-
rior due to high surrogate approximation error ( ǫ50 ). Since the calibration is performed 
with the surrogate, the surrogate-experiment error naturally improves for all QoIs, ide-
ally inducing the model-experiment error to improve as well. However, when surrogate-
model approximation error is high, then true model improvement may be limited as was 
observed with thrust, where approximation error increased from ǫ50 = 1 % to 23% under 
the posterior causing true model performance to degrade.

Model extrapolation

In the last section, we extensively quantified the impacts of uncertainty on model predictions 
and compared to the training data. We now test the model on a large, independent dataset 
that was not used during calibration. The dataset provides SPT-100 thrust and discharge cur-
rent measurements at many new operating conditions (such as off-nominal voltages) and is 
described in Dataset 5 of Appendix C. Figures 10 and 11 summarize the model performance 
on this test set by plotting the predicted thrust and discharge current, respectively, against 
the measured experimental values. Points closer to the y = x line indicate better agreement 
between the model and data. Horizontal error bars indicate experimental noise and verti-
cal error bars indicate the 5th and 95th percentiles of N = 1000 surrogate predictions. True 
model predictions only use the median parameter values where applicable.

The performance of both the model and surrogate on the test set is summarized in 
Table  5 using the relative L2 error metric. We again quantify the distribution of error 
with the mean µ and standard deviation σ over N = 1000 samples. As seen in Fig. 10 and 
as previously observed in  the Quantifying uncertainty section, the high error between 
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surrogate and model ( ǫ50 ) in the posterior regime causes the true model thrust pre-
dictions to have higher error under the posterior vs. the prior. However, the calibrated 
surrogate improves significantly from the prior baseline and matches the experimental 
thrust data well with an average relative L2 of µ < 10 % on the test set.

For the discharge current, we observe a significant improvement for both the model 
and surrogate predictions in Fig. 11. The model improves in-line with the surrogate as 
intended due to relatively low surrogate approximation error in both the prior and pos-
terior regime. However, as observed previously, there is still a large discrepancy between 
the model and discharge current data, which points to limitations intrinsic in the model 
itself rather than the surrogate or calibration procedure.

Overall, the results from this section show good agreement of our globally-calibrated 
model over a wide range of operating conditions for the SPT-100 that lie outside the 

Fig. 10 Validation test set comparison of model predictions to experimental thrust from Ref. [34] over a 
variety of operating conditions, with points closer to the y = x line indicating a closer agreement between 
model and experiment. The uncertainty is significantly reduced under the posterior predictive. The surrogate 
fits the experiment better under the posterior predictive but the true model still exhibits a large discrepancy

Fig. 11 Validation test set comparison of model predictions to experimental discharge current from Ref. [34] 
over a variety of operating conditions, with points closer to the y = x line indicating a closer agreement 
between model and experiment. The uncertainty is significantly reduced under the posterior predictive. 
The surrogate and model fit the experiment better under the posterior predictive but still exhibit a large 
discrepancy
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training data. The results also show substantial improvement of the calibrated surrogate 
from the prior baseline, with an order of magnitude improvement for the QoIs shown 
and a large reduction in uncertainty. However, due to high posterior surrogate approxi-
mation error ( ǫ50 ) for thrust and model inadequacy for discharge current, the true 
model still has significant error compared to experiment ( > 30 % for thrust and > 50 % 
for discharge current) and the remaining uncertainty is not sufficient to account for the 
discrepancy.

Sensitivity analysis

Having reduced model parameter uncertainty significantly and compared results to 
data, we have a better understanding of the strengths and weaknesses of the current 
model parameterization. We now take a preliminary step in improving future ver-
sions of the model using global Sobol’ sensitivity analysis. As described in the For-
ward propagation and sensitivity analysis section, the goal of this sensitivity analysis 
is to identify the relative importance of model inputs and to remove those with neg-
ligible impact on model outputs from future consideration. We consider all inputs 
over their full prior domains in Table  1. Figure  12 shows the first- and total-order 
Sobol’ indices for all uncertain inputs of the thruster model for varying background 
pressures. We show the Sobol’ indices only for thrust predictions and the ion veloc-
ity at channel exit. The nomenclature in the legend is given in Table 1. An expected 
result in Fig. 12 is the high contribution of anomalous transport coefficients a1 and 
a2 in the operation of the thruster, with ST > S1 for these inputs likely indicating 
high coupling between them. We observe that uncertainty in a1 is especially domi-
nant in predicting ion velocity, with increasing effect at higher pressures ( ST > 0.8 ). 
The fact that the shifted-Bohm parameters ( �z, z0, p0 ) have minimal impact supports 
the conclusion that the model is likely over-parameterized. The low contribution of 
uncertainty in operating conditions PB and ṁa also suggests these uncertainties can 
be safely ignored.

A surprising result is the high contribution of anode injection neutral velocity un in the 
thrust predictions, with increasing impact at higher pressures. This effect can be under-
stood in the context of how ingested neutrals enter the simulation via:

Table 5 Relative L2 error of the model and surrogate with experimental SPT-100 validation data from 
Ref. [34] under the prior and posterior distributions for thrust (T) and discharge current ( Id)

Surrogate L2 errors are summarized by the mean µ and standard deviation σ over N = 1000 samples. The point estimate 
µ50 is computed at median parameter values only, and ǫ50 gives the corresponding approximation error between surrogate 
and model. The ratio of mean L2 error ( µ ) to relative experimental noise ( ξ ) indicates the degree of fit with experiment, with 
µ/ξ ∼ O(1) indicating good agreement and µ/ξ > 1 indicating larger mismatch

Surrogate L2 (%) Model L2 (%)

QoI Distribution ξ (%) ǫ50 µ50 µ σ µ/ξ µ50 µ50/ξ

T (mN) Prior 1 1 21 20 1 20 22 22

Posterior 1 27 7 7 0.1 7 30 30 

Id (A) Prior 10 7 183 270 15 27 193 19

Posterior 10 11 40 40 0.1 4 53 5.3
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where nn,tot is the total neutral density at the anode. Equation (22) suggests an increase 
in total available propellant for higher background pressure PB and slower injection 
velocity un . At higher pressures, the model is more sensitive to changes in un , as this 
changes the total amount of available propellant and thereby the total thrust predicted 
by the model.

We additionally performed a Sobol’ analysis for the cathode and plume parameters 
and included these results in Appendix E.

Discussion
In this work, we have used a multifidelity framework to build a surrogate of a multi-
disciplinary Hall thruster model, we have used Bayesian inference to calibrate model 
parameters on experimental data, we have used forward uncertainty propagation to 
validate the model against experimental data, and we have used sensitivity analysis 
to identify the most critical components of the model. We now discuss the results of 
these analyses in the context of the overarching goal of this work: Hall thruster model 
improvement. We first summarize the core findings of this work, then we make sugges-
tions for future model improvement, and finally we discuss several ways to improve the 
framework itself.

(20)Ŵanode, tot = Ŵprop + Ŵingest

(21)nn,totun = ṁa

mAeun
un +

nn,B

4

√

8kBTB

πm

(22)nn,tot =
ṁa

mAeun
+ PB

4un

√

8

πmkBTB
,

Fig. 12 Sobol’ indices over varying background pressures for thrust and ion velocity at channel exit. Dashed 
lines indicate total-order ( ST  ) indices and solid lines indicate first-order ( S1 ) indices. Error bars give 95% Monte 
Carlo confidence intervals. The anomalous transport coefficients ( a1 , a2 ) are shown to have the largest impact 
on variance in these model outputs
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Core findings

  

1. A multifidelity, multidisciplinary (MF/MD) treatment of the Hall thruster sys-
tem model provides significant computational gains compared to a monolithic, 
black-box treatment. The UQ analyses applied in this work are infeasible for expen-
sive models and so we used surrogate methods in an MF/MD setting to maximize 
computational efficiency. We found that a more accurate surrogate can be obtained 
for the Hall thruster system model for a given computational cost by applying the 
multifidelity MISC method  [15] rather than using a single high-fidelity, black-box 
version of the model. We also expect this relative improvement to increase as more 
expensive models are included.

2. The UQ and validation framework has shown some success in improving the Hall 
thruster model over a prior baseline. A key benefit of the proposed framework is thor-
ough accounting for sources of uncertainty and clear validation against experimental 
data, which allows us to determine how, where, and, to some extent, why the model is 
underperforming. For example, even though the prediction of thrust and discharge cur-
rent on an independent validation set still exhibits large discrepancy with experiment, the 
accuracy was significantly improved and the minimal remaining uncertainty suggested 
issues with the model form itself. In addition, assuming sufficiently large training bounds, 
the surrogate can make confidence-bounded predictions at unseen operating conditions 
fairly well, such as the 7% error observed on the thrust validation set. This accuracy can 
potentially be improved further by collecting more surrogate training data.

3. The modular nature of the analysis allows iteration on the most critical components 
of the model. For example, we found that the cathode model sufficiently predicts the 
dependence of cathode coupling voltage on pressure, while the thruster model does not 
predict correct trends with pressure. The thruster model can therefore be “swapped” 
out, re-parameterized, or otherwise improved independently without requiring any 
change to the cathode model. The benefit of this approach becomes more salient as 
surrogates are constructed for more component models, i.e. changing one component 
model will not require reconstructing surrogates for any other component. The frame-
work readily generalizes to more complicated thruster-facility interactions and can iter-
atively incorporate these improvements without losing any prior progress. In addition, 
the framework itself suggests new paths for model improvement as we summarize next.

Suggestions for model improvement

  

1. Increase the physical fidelity of the thruster and plume models. Our attempt at 
an integrated, multidisciplinary model in this study uses a 1d fluid model for the 
thruster discharge and a semi-empirical model of the ion current density in the 
plume. This choice was made for simplicity to develop and test the UQ framework 
(even though some of the relevant physics in Hall thrusters is known to be 2d or even 
3d in nature [3]). However, after calibrating the model to fit experimental data, we 
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found that epistemic uncertainty in the model parameters was reduced to essentially 
zero, and the remaining uncertainty was not sufficient to explain the discrepancy 
between the model and data. Specifically, predictions of thrust and discharge current 
on an independent validation set were > 30 % off from experiment. Therefore, we 
suggest improving the model form itself to incorporate more of the relevant physics 
and to better fit the data. This likely means upgrading to a 2d thruster model [35] and 
to a more physics-based plume model (the modularity of our MD approach makes 
this task feasible). The problem of anomalous electron transport will still be present 
in a 2d fluid code, and so a thorough UQ analysis will still be required to assess con-
fidence in predictions and goodness of fit. Indeed, this is a primary motivation of the 
approach taken in this study. The incorporation of a 2d code also opens some inter-
esting opportunities for the multifidelity methods used in this study.

2. Refine the dependence on facility effects. Background pressure is currently the only 
facility effect considered by the model. The background pressure enters the model in 
four empirically-guided ways: by modulating the cathode coupling voltage, by increas-
ing available propellant through thermal ingestion, by shifting the anomalous transport 
upstream, and by altering the plume divergence. We found that the dependence of cath-
ode coupling voltage on pressure is sufficiently captured by the model, but the other 
three concerns are lacking. Namely, the dependence of thrust on pressure is not cap-
tured by the thermal ingestion model, the upstream shift in the acceleration region is not 
captured by the shifted anomalous transport, and the decreasing plume divergence is 
not captured by the empirical plume model. Further experimental and numerical inves-
tigation into these effects can refine the model’s dependence on pressure. For example, 
existing studies also find the thermal ingestion model to be insufficient and instead use a 
background flow model [36]. There is also the open question of how facility effects other 
than pressure affect performance at higher powers, such as back-sputtering of carbon 
from the chamber walls or electrical coupling of the beam to the walls [9]. We leave it as 
a task for future iterations to bring these interactions into the model as well.

3. Focus parameterization on anomalous transport. It is already well-known that 
anomalous electron transport dominates the behavior of Hall thrusters. Our sensitiv-
ity analysis confirms that the choice of anomalous transport coefficients outweighs 
most other uncertainties present in the system. Future refinements should focus 
effort on this aspect of the model. For example, recent advancements in experimen-
tally measuring anomalous transport can help guide future modeling decisions [37]. 
One change that may have a large impact would be transitioning to a three-region 
transport model, which would significantly improve the ability of the model to fit the 
data [19] at the cost of introducing more calibration parameters.

Suggestions for framework improvement

  

1. Refine the dimension reduction technique. We were enabled in this work by dimen-
sion reduction to include high-dimensional field quantities in the surrogate analyses (i.e. 
the Bayesian inference, uncertainty propagation, and sensitivity analysis). We chose lin-
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ear projection for simplicity as the compression technique, but we encountered several 
limitations, including high frequency oscillatory modes and high reconstruction error 
that was amplified by surrogate approximation error. Additionally, this method required 
a relatively high offline cost to construct the original data matrix. Future iterations can 
explore nonlinear methods such as autoencoders and iterative construction of the latent-
space projection [38]. The adaptive surrogate training procedure can also be augmented 
to optimally balance reconstruction errors with interpolation errors during training.

2. Incorporate time-resolved analysis. In the present work, we are limited to studying 
the time-averaged input-output behavior of the multidisciplinary model, even though 
the dynamics of Hall thrusters are highly oscillatory and time-dependent. Efficiently 
coupling distinct component models in a time-resolved manner can be incorporated 
in future iterations of the framework presented here.

3. Account for model form uncertainty and reduce surrogate error. While we thoroughly 
assessed uncertainty from model inputs in this study, the uncertainty bounds on our 
model predictions are overly-conservative as they do not account for uncertainty in the 
form of the model itself. This is especially important as the 1d thruster model is largely 
simplified from the real physical system, which is known to exhibit 2d and 3d phenom-
ena. Quantifying this uncertainty can be considered in future iterations. For now, any 
remaining discrepancy between our models and the data is likely attributed to model 
form uncertainty and so we intend to take steps in increasing physical model fidelity in 
future work. Similarly, the discrepancy between the models and their surrogate approxi-
mations is not accounted for in the uncertainty bounds. This error can likely be mitigated 
by gathering more training data and using locally adaptive surrogate methods to fit non-
smooth regions of the model response. Surrogate methods that have built-in probabilistic 
predictions (like Gaussian processes) can also be used to account for this uncertainty.

Conclusion
In this work, we have implemented an iterative framework for improving Hall thruster mod-
els by applying uncertainty quantification methods on a multidisciplinary system. We have 
shown with a simple feedforward coupling between a cathode model, a 1d fluid thruster 
code, and a plume model the impacts of uncertainty on model predictions both before and 
after Bayesian calibration to experimental data. We have extensively compared the model to 
experimental SPT-100 data, especially in the context of anomalous electron transport and 
facility effects which limit the practical use of these models for Hall thruster design, test, and 
optimization. By exercising the proposed framework, we demonstrated significant improve-
ment over a prior baseline for some quantities of interest. Ultimately however, we found that 
remaining uncertainties in the model were not sufficient to account for discrepancy with 
experimental data. This highlights that model form error is the dominant factor limiting our 
model’s accuracy, and that future work should focus on refining the involved physics.

We were also enabled in this work by an existing multifidelity surrogate method to reduce 
the computational expense of the uncertainty analysis. We improved upon this method to 
include approximation of high-dimensional spatial quantities using data compression tech-
niques. Future work can additionally include time-resolved analysis and incorporate recon-
struction accuracy into the adaptive training procedure.
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Appendix A: Plume model details
We detail the semi-empirical plume model first described in Ref.  [22]. All model inputs 
described here correspond to those outlined in Table 1 except where otherwise noted. The 
model predicts the ion current density jion ( A/m2 ) in the thruster plume as a superposition 
of the main beam, an ion-neutral scattering beam, and a charge-exchange beam (Eq. (7) 
copied here for convenience):

The main and scattered beams are assumed to be normally-distributed about the thruster 
centerline from angle γ = −90 to 90 deg and expand radially with an inverse square 
dependence on distance rp from the thruster exit plane:

where A1,A2 and γ1, γ2 are characteristic magnitudes and divergence angles of each 
beam respectively. The charge-exchange beam is assumed to expand spherically with no 
angular dependence:

where IB and Icex are the total currents carried by the main/scattered and charge-
exchange beams respectively, given by:

Ib is the total ion beam current exiting the thruster, as provided by Hallthruster.jl. The 
neutral density (in m−3 ) is given a simple linear dependence on background cham-
ber pressure: nn = c4PB + c5 , with model fit coefficients c4 ≈ 1

kBT
∼ O(1020) and 

c5 ∼ O(1018) . The charge-exchange collision cross-sectional area for Xenon is estimated 
from Ref.  [39] as σcex ∼ O(55 Å

2
) . We also assign a linear pressure dependence of the 

characteristic divergence angles and introduce the appropriate fit coefficients:

(23)jion = jbeam + jscatter + jcex.
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(
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,
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(
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(26)jcex = Icex

2πr2p
,

(27)IB = Ib exp(−rpnnσcex),

(28)Icex = Ib
(
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.

(29)γ1 = c2PB + c3,

(30)γ2 =
1

c1
γ1,
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where c1 ∼ U(0.1, 0.9) reflects the intuition that the divergence of the scattered beam 
should be larger than the main beam. We expect the divergence of the main beam should 
decrease as background pressure increases [40], i.e. that c2 < 0 , but we allow c2 > 0 gen-
erally. Finally, we include from Ref. [22] the definitions for the main and scattered beam 
magnitudes:

where the model fit coefficient c0 ∼ U(0, 1) determines the ratio between the main and 
scattered beam magnitudes.

Appendix B: Surrogate analysis
We provide additional details in this section for the surrogate methodology used in this 
study.

Dimension reduction

We expanded upon the original framework in Ref.  [15] to consider approximation 
of high-dimensional spatial field quantities. The ion velocity uion(z) and ion current 
density jion(γ ) outputs from Table  2 are 1d spatially-varying QoIs, where z is the 
axial location in the thruster channel (measured from the anode) and γ is the angu-
lar location in the plume (measured from thruster centerline). Numerical simula-
tions of these field quantities return the solution “u” on a set of M discretized points 
of the form u ∈ R

M . Typically, M is large to ensure PDE convergence on the mesh 
(especially in > 1 spatial dimensions), so u is high-dimensional. Training surrogates 
in high-dimensional space is infeasible due to ballooning computational require-
ments (i.e. the curse of dimensionality) and so we require a low-dimensional mapping 
ũ = g(u), ũ ∈ R

r , r ≪ M and train the surrogate in the low-dimensional (or “latent”) 
space ũ instead. We apply ideas from similar studies [27–29] to the current task and 
obtain the map g(u) using the singular value decomposition (SVD). First, we form the 
data matrix A ∈ R

N×M by running N simulations {y(i)}Ni=1 = {f (x(i))}Ni=1, x
(i) ∼ ρ(x) 

and filling the rows of A with the field quantity extracted from each simulation 
output:
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 The data matrix forms a basis for all the variation we expect to see in u over the input 
space. We then decompose the matrix according to A = UN×NSN×MV

T
M×M and truncate to 

the first r singular values �i of the diagonal matrix S such that the remaining fraction of 
total variance is above a target threshold ǫ ∈ [0, 1]:

The data matrix is approximated by A ≈ ŨN×r S̃r×r Ṽ
T
r×M , where we have kept only the 

first r columns of U and V. The matrix Ṽ T  is a linear projection RM → R
r that we use 

as our low-dimensional mapping g(u), that is ũ = Ṽ Tu . We refer to ũi, i = 1 . . . r as 
the latent coefficients of u and use the inverse mapping Ṽ  to reconstruct the full field 
û = Ṽ Ṽ Tu (the result û �= u is due to reconstruction error from the truncation). For 
example, the quantity ũion,0 is the first latent coefficient obtained by compressing the 
ion velocity profile via Ṽ Tuion(z) . The surrogate is trained on the latent coefficients 
and the full field is reconstructed when making predictions.

In practice, the SVD is better conditioned when the data matrix is first standardized 
via (A− Ā)/σ (A) , where the mean Ā and standard deviation σ(A) are applied over the 
samples i = 1 . . .N  . The principal orthogonal decomposition (or principal component 
analysis) is a congruent method for obtaining the linear projection Ṽ T  to the latent 
space.

In the current study, we reduced the ion velocity profile uion(z) from M = 200 to 
r = 4 with a target threshold of ǫ = 95 % in Eq. (34). With the same threshold, we 
reduced the current density profile jion(γ ) from M = 100 to r = 2 . This required an 
offline cost of N = 500 simulations to form the data matrix A in Eq. (33).

Additional surrogate performance

In  the Hall thruster model surrogate  section, we reported an average 10% surrogate 
accuracy over a test set. To gain some practical/visual intuition for this result, we plot 
the surrogate prediction against both the lowest-fidelity (0,  0) and highest-fidelity 
(2, 2) thruster models for several 1d sweeps across the 12d input space in Fig. 13. For 
practical reasons, we only show the four outputs (Id ,T , ũion,0, ũion,1) against four select 
inputs (a1, a2, z0, p0) arranged in a 4 × 4 grid (see Tables 1 and 2 for details on these 
variables). The 1d sweeps were performed by fixing the end points of the input vari-
able in each column, randomly selecting values for all other “non-column” inputs, and 
smoothly stepping from left to right. This implies that four independent 1d sweeps 
were performed in Fig. 13, one for each column.

(33)

(34)
∑r

i=1 �
2
i

∑rank(S)
i=1 �

2
i

> ǫ.
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Fig. 13 4× 4 grid showing surrogate predictions against low- and high-fidelity model predictions for four select 
outputs (rows) over four select inputs (columns)

The key takeaway from Fig. 13, while only showing a small portion of the full 12d 
space, is that the surrogate can be used as a reliable substitute for the high-fidelity 
model. The surrogate fits the high-fidelity model reasonably well given the sparse 
training data and high-dimensionality. While the surrogate may have high error at 
specific locations (such as a1 < −2 ), on average it provides good accuracy at negligi-
ble cost as a cheap replacement for the full model.

We note that many engineering simulation QoIs exhibit a smooth response to 
changing inputs, such as shown in Fig. 13. In these cases, interpolating polynomials 
or similar methods provide a very efficient approximation to the response surface. 
However, noisy, mode-hopping, or otherwise discontinuous responses can signifi-
cantly erode polynomial accuracy; we have seen some of this behavior in our own 
experiments and leave it as future work to investigate alternative surrogate methods 
(i.e. neural networks, Gaussian processes, etc.) to handle these cases.



Page 33 of 40Eckels et al. Journal of Electric Propulsion            (2024) 3:19  

Appendix C: SPT‑100 thruster data
This section is provided for convenience to organize all SPT-100 data used in this study.

Thruster details

In the notation of  the Hall thruster system model  section, the operating conditions d 
can be divided into test article details like geometry or material properties ( dT ) and 
test environment details like voltage settings, flow rates, etc. ( dE ). We work only with 
the SPT-100 Hall thruster in this study, that is dT = constant . Here, we group dT into 
parameters describing the thruster geometry, wall material, propellant, cathode, and 
magnetic field design, as summarized in Table 6.

Table 6 SPT‑100 thruster details

Group Parameter Symbol Units Value Reference

Geometry Channel length Lch m 0.025 [41]

Geometry Inner radius ri m 0.035 [41]

Geometry Outer radius ro m 0.05 [41]

Wall Wall material - - Borosil ( BNSiO2) [42]

Propellant Propellant material - - Xenon

Cathode Mount location - - External

Magnetic field Peak strength Bmax T 0.016 [43]

Magnetic field Centerline profile Br(z) T Eq. (24) in Ref [44]

For a given thruster, all parameters in dT are assumed known and constant. The geom-
etry of most axisymmetric, cylindrical Hall thrusters can be simplified to three param-
eters: the channel length Lch and inner and outer radii ( ri and ro ). Alternatively, the 
channel width b = ro − ri and mean channel diameter dch = ro + ri are frequently used. 
The wall material and propellant can be parameterized by key material properties such 
as molar mass, specific heats, or properties related to secondary electron emission. The 
cathode can be parameterized by its mount location (external or center), geometry, or 
properties related to thermionic emission. The magnetic field can be parameterized as a 
smooth function of axial/radial location B = f (z, r) or by pointwise data. We give all the 
dT parameter values used in this study for the SPT-100 in Table 6. We assume a boron 
nitride—silica mixture for the wall material with material properties included in Hall-
thruster.jl [17]. The magnetic field profile is given as the radial field strength Br as a func-
tion of axial location z, obtained from curve fits to prior electromagnetic simulations of 
the SPT-100 circuit (see references therein).

We note that Table  6 may be an oversimplification of true thruster designs; mod-
ern designs that use central-mounted cathodes and magnetic shielding might require 
a more detailed parameterization, especially when used in a 2d finite-element simu-
lation. Such mesh-based simulations would ideally handle arbitrary geometry files, 
materials, magnetic fields, etc. as do modern FEA codes. We provide Table 6 simply 
to indicate the design parameters used in this study. Critically, this implies that all 
of our results are likely limited to this specific set of dT  for the SPT-100. All calibra-
tion results were performed assuming dT = constant and exclusively with SPT-100 
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experimental data; model fit coefficients very likely don’t extrapolate to other thrust-
ers. We leave it as future work to extend the analysis to other thrusters and operating 
regimes.

Experimental data

Table 7 summarizes the experimental data used in this study that was extracted from the 
SPT-100 literature (most of this data was collected as part of facility effect characteriza-
tion tests). The measurement quantities for each dataset are expressed in the nomencla-
ture of Table 2.

Table 7 Summary of experimental datasets used in this study

Number Description Measurement quantity Reference

1 Cathode coupling voltage measurements over vary-
ing background pressures.

Vcc  [16]

2 Thrust and discharge current measurements at two 
facilities over varying background pressures.

T , Id  [33]

3 Ion current density measurements over varying 
background pressures.

jion  [33]

4 Laser-induced fluorescence measurements of average 
ion velocity along channel centerline.

uion  [21]

5 Thrust and discharge current measurements for vari-
ous operating conditions.

T , Id  [34]

We additionally provide tabulated forms of Datasets 1 and 2 in Tables  8 and 9. The 
tables provide the background pressure, anode voltage, and anode mass flow rate for 
each data point after some processing from the original sources. Except where otherwise 
noted, the experimental uncertainty in the data is expressed as error (±) bars reported or 
inferred from the original sources. In this study, we treat these errors as additive Gauss-
ian noise centered at the reported value with a characteristic standard deviation equal to 
1/4 the error range. The discharge current for Datasets 1-3 were reported as a constant 
Id = 4.5 A for all operating conditions, for which we assume a ±10 % uncertainty.

Table 8 Cathode coupling voltage data from Ref. [16]

Pressure (Torr) Anode voltage (V) Anode flow rate 
(mg/s)

Cathode coupling 
voltage (V)

Error ( ± V)

1.67E-6 300 5.194 31.20 0.3

3.45E-6 300 5.222 31.12 0.3

4.11E-6 300 5.252 31.95 0.3

4.27E-6 300 5.215 31.29 0.3

6.97E-6 300 5.209 32.02 0.3

8.04E-6 300 5.195 31.89 0.3

1.23E-5 300 5.229 32.84 0.3

1.44E-5 300 5.151 32.30 0.3

1.58E-5 300 5.199 32.83 0.3

2.49E-5 300 5.077 33.11 0.3

2.51E-5 300 5.055 33.09 0.3
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Pressure (Torr) Anode voltage (V) Anode flow rate 
(mg/s)

Cathode coupling 
voltage (V)

Error ( ± V)

3.82E-5 300 4.951 32.58 0.3

4.91E-5 300 4.926 32.46 0.3

5.51E-5 300 4.839 32.10 0.3

7.37E-5 300 4.726 32.13 0.3

Table 9 Thrust data from Ref. [33]

Pressure (Torr) Anode voltage (V) Anode flow rate 
(mg/s)

Thrust (mN) Error (± %)

1.63E-6 300 5.194 80.29 0.9%

2.47E-6 300 5.161 80.06 0.9%

4.00E-6 300 5.222 80.05 0.7%

4.03E-6 300 5.252 80.46 0.9%

5.20E-6 300 5.215 80.13 0.7%

5.29E-6 300 5.142 80.81 0.9%

6.96E-6 300 5.209 81.15 0.9%

8.04E-6 300 5.195 81.51 0.7%

9.88E-6 300 5.229 81.44 0.9%

1.44E-5 300 5.151 82.55 0.7%

1.52E-5 300 5.199 81.76 0.9%

2.22E-5 300 5.077 82.64 0.7%

2.50E-5 300 5.055 82.31 0.9%

3.81E-5 300 4.951 83.11 0.9%

4.22E-5 300 4.926 83.11 0.7%

5.44E-5 300 4.839 82.39 0.9%

6.17E-5 300 4.797 83.04 0.7%

7.02E-5 300 4.764 82.35 0.9%

Appendix D: MCMC marginals
In this section, we provide plots of the 1d and 2d marginal posteriors to supplement 
the data in Table 3. These plots give a better understanding of the actual shape of the 
posterior distribution. Since there are 17 parameters total, we break the posterior into 
groups of parameters corresponding to each component model. Figure 14 shows the 
marginals of the cathode model parameters. Likewise, Figs. 15 and 16 show the mar-
ginals for the thruster and plume model parameters, respectively.
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Fig. 14 1d and 2d marginal posteriors for the cathode model parameters

Fig. 15 1d and 2d marginal posteriors for the thruster model parameters
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Fig. 16 1d and 2d marginal posteriors for the plume model parameters

All the 1d marginal plots use a Gaussian kernel density estimate to smooth out the 
distributions. The 2d marginals show histograms of the 2d distribution, with lighter 
colors indicating higher probability density. It is evident from these plots that most 
parameters have a Gaussian shape with very tight bounds. A strong positive correla-
tion exists between c1 and c3 which can be understood by combining Eqs. (29) and 
(30) for the scattered beam characteristic divergence angle:

This suggests that a better parameterization may exist for γ2 that is independent of 
the c1 proportionality to γ1 . Another interesting result in Fig. 16 is the wide posterior of 
( c4, c5 ) that suggests the data was not informative for learning these parameters. Since 
these parameters are tied to the plume radius rp in the exponential of Eqs. (27) and (28) 
and since data was only collected at a single location rp = 1 m , it may be that data col-
lection at different rp is necessary to reduce the uncertainty in these parameters further.

(35)γ2 =
c2

c1
PB + c3

c1
.
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Appendix E: Additional Sobol’ analysis
We provide the results of the Sobol’ sensitivity analysis for both the cathode and plume 
model parameters here. Figure 17 shows the first- and total-order Sobol’ indices for the 
cathode and plume parameters over varying background pressures.

Fig. 17 Sobol’ indices over varying background pressures for cathode coupling voltage and peak ion current 
density. Dashed lines indicate total-order ( ST  ) indices and solid lines indicate first-order ( S1 ) indices. Error bars give 
95% Monte Carlo confidence intervals. The vacuum coupling voltage Vvac is shown to have the dominant impact 
in the variance of cathode coupling voltage. The plume parameters ( c3, c4 ) are shown to have the largest impact 
on variance of peak ion current density

The result in Fig. 17a trivially demonstrates that the cathode coupling voltage is nearly 
fully determined by the Vvac parameter as is evident in Eq. (3), where Vvac sets the asymp-
totic value for Vcc as PB → 0 . The other parameters only serve to slightly modulate Vvac 
at higher pressures. If the prior on Vvac is known to a smaller domain than [0, 60] V, then 
the other parameters might be shown to have more relative importance.

Figure  17b shows the Sobol’ indices for the plume parameters over varying back-
ground pressures. The two dominating parameters in predicting peak ion current den-
sity in the plume are the divergence angle offset ( c3 ) and the neutral density slope ( c4 ), 
with c4 naturally only becoming important at higher pressures. Recall from Eq. (29) that 
c3 is critical in determining the characteristic divergence angle of the plume; a higher 
divergence spreads the current away from centerline and vice versa. This impact is less at 
higher pressures due to the c2PB term in Eq. (29). Uncertainty in parameters like σcex and 
the pressure PB can safely be ignored based on this analysis.
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