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ABSTRACT

Plasma Oscillations and Operational Modes in
Hall Effect Thrusters

by
Michael J. Sekerak

Co-Chairs: Alec D. Gallimore, Benjamin W. Longmier

Mode transitions have been commonly observed in Hall effect thruster (HET) operation where a
small change in a thruster operating parameter such as discharge voltage, magnetic field or mass
flow rate causes the thruster discharge current mean value and oscillation amplitude to increase
significantly. In this study, mode transitions in HETs are induced by varying the magnetic field
intensity while holding all other operating parameters constant and measurements are acquired
with high-speed probes and ultra-fast imaging. Two primary oscillatory modes were identified and
extensively characterized called global oscillation mode and local oscillation mode. In the global
mode, the entire discharge channel oscillates in unison and azimuthal perturbations (spokes) are
either absent or negligible. Downstream azimuthally spaced probes show no signal delay between
each other and are very well correlated to the discharge current signal. In the local mode, signals
from the azimuthally spaced probes exhibit a clear delay indicating the passage of spokes. These
spokes are localized oscillations in discharge current density propagating hxiBedirection

that are typically 10-20% of the mean value. In contrast, the oscillations in the global mode can be
100% of the mean discharge current density value. The spoke velocity is determined from high-
speed image analysis using three methods yielding values between 1500 and 2200 m/s across a
range of magnetic field settings. The transition between global and local modes occurs at higher
relative magnetic field strengths for higher mass flow rates or higher discharge voltages. It is pro-
posed that mode transitions represent de-stabilization of the ionization front similar to excitation of
the well-studied Hall thruster breathing mode, which is supported by time-resolved simulations of
the discharge channel plasma. The thrust is approximately constant in both modes, but the thrust-
to-power and anode efficiency decrease in global mode due to increasing discharge current. New
system characterization techniques are suggested that include discharge current, discharge volt-
age and magnetic field maps at different flow rates to identify modes of operation within a three
variable parameter space.
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CHAPTER 1

| ntroduction

“No amount of experimentation can ever prove me right; a single experiment can prove
me wrong.”’
— Albert Einstein

1.1 Problem Statement

Hall Effect Thruster (HET)s have been under development since the 1960's, first flew in the
1970’s, [1] and are increasingly used for and considered for a variety of space missions, rang-
ing from satellite station-keeping to interplanetary exploration. Despite the extensive heritage of
HETSs, the physics of their operation is not fully understood as illustrated by inconsistencies in
anomalous electron transport experiment and theory, whereby an unexplained excess of electrons
cross magnetic fields lines above that predicted by classical diffusion [2] or Bohm diffusion [3].
Understanding the underlying physics of HET operation is important for many reasons including
the ability to create first-principles predictive models. These models would enable rapid design
iterations not possible currently and would reduce developmental costs because all existing simu-
lations to calculate thruster performance are non-predictive, requiring empirical factors to match
results from real thrusters. Additionally, labor and capital intensive life testing and flight qualifi-
cation programs could be reduced in cost and augmented with accurate, predictive physics-based
simulations. Fully understanding HET physics would ensure that ground testing adequately pre-
dicts thruster operation in space where the ambient pressures and local gas density are orders of
magnitude lower than in vacuum chambers. Finally, improved models would facilitate the scaling
of HETSs to very high power and ensure that new designs for the recently developed magnetically
shielded [4] or low/zero-erosion concepts are stable across a broad operating range.

Although electron transport is not well understood in HETS, it has been observed to change
significantly between different operating modes with only a small change in thruster operating



conditions. Plasma oscillations have been proposed as a potential mechanism for anomalous elec-
tron transport and have been noted to change based on operating modes, so a detailed investigation
of how oscillations change during mode transitions will provide insight into electron transport.
Little work has been done to define and characterize these operating modes in modern HETs and
to quantitatively determine their influence on plasma oscillations. This investigation induces mode
transitions by varying magnetic field strength in a well characterized 6-kW class HET called the
H6 and studies plasma oscillations with time-resolved probes and high-speed imaging.

1.2 Research Objectives and Contributions

The primary objective of the research presented here is to study mode transitions and plasma
oscillation in HETs using time-resolved diagnostics in order to:

1. Develop new HET propulsion system characterization techniques to compare operation in
ground-test facilities with on-orbit operation.

2. Improve our understanding of the underlying causes for the transition by investigating
plasma oscillations in different modes of operation and the transition points.

The secondary objective is to improve time-resolved diagnostics and analysis techniques to facil-
itate the study of plasma oscillations. These diagnostics include the High-speed Dual Langmuir
Probe (HDLP) developed by Lobbia [5] and the High-speed Image Analysis (HIA) developed by
McDonald. [6]

This investigation has accomplished the listed objectives and made the following contributions
to HET research and plasma physics measurement techniques by:

1. Developed new techniques to identify mode transition using discharge current monitoring,
high-speed imaging of the discharge channel, and time-resolved probes in the plume. Two
primary oscillatory modes were identified in thruster operation called global oscillation mode
and local oscillation mode. Quantitative metrics were derived from the empirical results to
identify thruster operational mode. These techniques have been successfully applied to the
recently developed magnetically shielded thrusters to identify modes of operation.

2. Developed system characterization techniques that include discharge current, discharge volt-
age and magnetic fieldf — Vp — B) maps at different flow ratesn, to define operational
mode within a three variable parameter spagg (n,B). These results are used to calculate
a transition surface for use by operators to maintain thruster operation in an optimal mode.
These techniques are naturally extendable to comparing ground-test operation with on-orbit
operation.



3. Extensively characterized plasma oscillations in the channel and plume in each mode with
time-resolved diagnostics. For the azimuthal spokes observed in local mode, spoke veloc-
ities are calculated and an empirical dispersion relation is found. For the breathing mode
oscillations in global mode, the frequency is characterized as a function of the operating pa-
rameters. A postulate is put forward and supported by simulations that mode transitions from
local to global mode represent de-stabilization of the ionization front similar to excitation of
the breathing mode.

4. Improved upon the ground breaking time-resolved techniques developed by Lobbia and Mc-
Donald. For the HDLP, an lon Saturation Reference (ISR) probe was added for ion density
measurements and to monitor plasma oscillations. Additionally, a new technique was devel-
oped to calculate ion density in a flowing plasma from a probe aligned with the flow. For
the HIA, a new method was developed to calculate discharge current density using synchro-
nized high-speed videos and discharge current measurements, and multiple methods were
developed to reliably calculate spoke velocity.

1.3 Organization

The organization of this work is as follows. Chapter 2 provides a general overview of electric
propulsion, the history of HET development, the fundamental physics behind HET operation, a
discussion of mode transitions, and a discussion of relevant plasma oscillations in HETs. Chap-
ter 3 describes the experimental setup including the facility, the H6 thruster, and diagnostics. The
analysis methods are developed for the two measurement techniques at the cornerstone of this
investigation: time-resolved probe measurements with the HDLP-ISR and optical measurements
from HIA.

Chapter 4 presents the results from an investigation where mode transitions are intentionally
initiated in an HET. Data are presented and discussed to quantify the impact of mode transitions
on discharge current characteristics, plasma oscillations in the plume, plume shape, and thruster
performance. Mode transitions are defined qualitatively and quantitative metrics are derived from
the empirical results. The results of the mode transition investigation lead to recommendations for
new methods to characterize thrusters.

Chapter 5 discusses azimuthal perturbations in the discharge channel commonly referred to as
“spokes.” An overview of possible mechanisms for spokes is provided and various techniques for
calculating spoke velocity from HIA data are derived and compared across the test matrix. An
empirical dispersion relation is derived for spokes and compared to existing theories.

Chapter 6 describes the observed axial ionization oscillations commonly referred to as “breath-



ing mode.” Data are presented to support the postulate that mode transitions are de-stabilization
of the ionization front axially in the discharge channel. Breathing mode frequency variations with
operating parameters are empirically determined

Chapter 7 summarizes the data from the mode transitions investigations and discussed recom-
mended future work to build on the results presented here. Appendix A describes a new technique
for calculating ion density in flowing plasmas with flow aligned cylindrical Langmuir probes. Ap-
pendix B presents 2-D plume maps of an HET operating at nominal conditions including spatially
and temporally resolved plasma properties and oscillation spectra. Appendix C presents results
from a mode transition investigation using two different magnetically shielded HETSs, the NASA-
300MS and the H6MS.



CHAPTER 2
Background

“Mankind will not remain on Earth forever, but in its quest for light and space will at
first timidly penetrate beyond the confines of the atmosphere, and later will conquer for

itself all the space near the Sun’”
— Konstantin E. Tsiolkovsky

2.1 Introduction

The idea of electric propulsion has existed for a century and HETSs in particular have been in devel-
opment for a half-century, but electric propulsion has only recently gained widespread acceptance
in the space community. The next century of space missions are likely to see a growing reliance
on electric propulsion systems. Section 2.2 discusses a brief history of electric propulsion and the
benefits to space missions with a timeline of HET development. Section 2.3 describes the princi-
ples of HET operation including diagrams, magnetic field topology, and plasma properties in the
discharge channel. Section 2.4 describes previous investigations into mode transitions. HETs are
known to have a broad range of oscillations, but Section 2.5 surveys the low-frequency breathing
mode and azimuthal spoke oscillations studied in literature.

2.2 Electric Propulsion

The opening quote from this chapter was penned by the visionary K. E. Tsiolkovsky in a letter to
B.N. Vorob’yev in 1911 and epitomizes the human desire break the confines of Earth in pursuit
of exploration. In order to accomplish this, he wroteArRocket into Cosmic Spaae 1903: “I|
propose a reactive device for investigating the atmosphere, i.e., a type of rocket—-however, a very
grandiose rocket and one constructed in a special manner.” [7] He started a derivation about rocket



flight from conservation of momentum

where a rocket of dry madgly with onboard propellanM, ejects a small amount of propellant
dMp with velocity Ve to increase its velocity bgtV. [7] Integrating Equation 2.1 yields the famous

rocket equation

_Mda = exp[—ﬂ} (2.2)
Mg+ Mpo Vex

where My is the mass of propellant at liftoff antlV is the total change in the velocity of the

rocket. Equation 2.2 shows that in order to maximize the fraction of total liftoff mass, that is

usable dry mass, the exhaust velocity should be maximized.

All propulsion systems in common use today are simply energy conversion devices. In the
case of chemical propulsion, chemical potential energy is converted into thermodynamic energy in
the combustion chamber through exothermic reactions, which is then converted into kinetic energy
as the exhaust is expelled through a nozzle. In the case of Electric Propulsion (EP), external
electrical energy is converted into kinetic energy by first ionizing a gas and then accelerating the
exhaust through electrostatic or electromagnetic means. Ultimately, “rocket science” focuses on
techniques to convert some other form of energy into high velocity matter ejected out of the device
to impart momentum to the spacecraft through Newton'’s third law. [8]

Equation 2.2 implies the highest achievable exhaust velocity is optimal to maximize the pay-
load for a given mission. For this reason, many of the early pioneers focused exclusively on the
fastest known particles at the time (early 1900’s), which were electrons in cathode tubes. [9] While
Tsiolkovsky mentions using “electricity to produce a huge velocity for the particles ejected from
the rocket device,” [7] Robert Goddard is the true pioneer of electric propulsion, having filed the
first patent for an electrostatic accelerator. [9] Hermann Oberth, Ernst Stuhlinger and many others
contributed to the early vision that became the active field of electric propulsion. An enlightening
and entertaining summary of the first half-century of EP development was exquisitely written by
Choueiri, [9] and the first authoritative textbook on electric propulsion was Jahn [10] with a recent
textbook focusing on ion and Hall thrusters from Goebel and Katz [11]

EP systems can be broadly categorized into electrothermal, electrostatic and electromagnetic.
In electrothermal thrusters, a resistor or electrical arc (resistojet and arcjet, respectively) are used
to heat a gas which then exhausts from a nozzle similar to chemical propulsion systems. The
critical difference between electrothermal systems and chemical systems is that the energy to heat
the gas is supplied from an external power supply. Electrostatic or electromagnetic thrusters use



the Lorentz force where the force on a particle of chargean electricE and magnetic field is
F= J_rq(_E) +V xI_B)) (2.3)

Electrostatic systems, such as ion thrusters and HETS, ionize a gas to create charged particles
which are accelerated by electric fields that are generated by the device according to Equation 2.3.
Electromagnetic thrusters, such as pulsed-plasma thrusters and magnetoplasmadynamic thrusters,
use both the electric and magnetic fields in Equation 2.3 to accelerate an ionized gas. Once other
system factors are considered such as power supply mass, the optimum specific impulse for a
mission is typically one that is of the same order asANefor the mission. EP systems cannot
operate at atmospheric pressures, but require the vacuum of space or rarified gas conditions where
the ratio of molecular mean free path to a representative physical length scale, or Knudsen number,
is large Kn> 10 for the investigation presented here).

2.2.1 Benefits

The primary attraction of EP systems lies in their highly efficient utilization of propellant mass.
The high exhaust velocities (i.e., large specific impulse) provided by these thrusters can enable
a number of exploration missions outside of Earth’s gravitational sphere of influence that would
otherwise be impractical or impossible. The mission enabling capabilities of EP technology are
currently being demonstrated in spectacular fashion with the Dawn mission. This ambitious mis-
sion to the asteroid Vesta and dwarf planet Ceres is the first mission ever to orbit two extraterrestrial
bodies and requires a staggering 11 km/s in-spa¢g12] from its ion propulsion system. The
Dawn spacecraft has three ion thrusters each producing a maximum of 91 mN of thrust with a
specific impulse of 3100 sec at an input powerd.5 kW [13]. The Dawn mission would not be
possible without EP; thaV is accomplished with only 358 kg of xenon propellant [12] whereas
a traditional chemical propulsion system would require over 17,000 kg of propellant for the same
payload mass. Consider a hypothetical mission such as a Neptune/Triton explorer that could re-
quire a change in velocity on the order of 25 km/s from Low Earth Orbit (LEO). A 10 metric-ton
spacecraft could require 5,800 metric-tons of propellant using a traditional chemical propulsion
system, but would require only 9 metric-tons of propellant with an ion thruster or HET [14]. Use
of EP yields a 19 metric-ton spacecraft wet mass; this is within current space lift capabilities to
LEO [15] and saves $58 billion with current $10,000/kg launch costs.

Unfortunately, the low thrust levels from ion thrusters and traditional single-channel HETs
(a few hundred mN [16]) result in trip times that are impractical for human space flight; from
the launch of Dawn to Vesta orbit insertion was nearly 4 years. The ion thrusters on the highly
successful Deep Space 1 mission operated for over 16,000 hrs. [12] Propulsion systems such as
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high-power EP with high specific impulse and high thrust are needed to enable ambitious planetary
exploration missions.

2.2.2 Timeline of Hall Effect Thrusters

Below is a chronology of historical trends and important events in HET development. This shows
that although HETSs have a half-century of development and over four decades of flight operations,
new advancements are still being made and their use is becoming more prevalent.

» Early 1960’s: HET development efforts started in U.S. and Union of Soviet Socialist
Republics (USSR). [1,17,18]

» 1971: First USSR Stationary Plasma Thruster (SPT)-60 thruster launched on the “Meteor”
satellite (first operated in 1972). [1]

* 1970’s: U.S. abandoned HET development due to lower efficiencies than ion thrusters and
budgetary reasons. Soviets were unable to produce adequate grids for ion optics so ion
thrusters were abandoned in the USSR. [18]

» 1970’s-1980’s: Significant Soviet HET development effort for station keeping with 2000-
3000 engineers and scientists involved. [17] Primarily used for East-West station keeping
and plasma contactors. [18]

» 1990’s: Exchange program with western engineers visiting Russia to learn HET technology
following collapse of the Soviet Union; resumption of HET research in U.S. and incorpora-
tion into U.S. systems.

» 1994: First use of a HET for North-South station keeping by Russia. [18]

» 1998: First U.S. flight of a HET; a D-55 Thruster with Anode Layer (TAL) made by TsNI-
IMASH in Russia was used on the National Reconnaissance Office (NRO) Space Technology
Experiment Satellite Space Technology Experiment Satellite (STEX). [11]

» 2003: European Space Agency (ESA) Small Mission for Advanced Research in Technology
(SMART)-1 mission launches with PPS-1350 G from SNECMA based on Russian SPT de-
signs. [11]

» 2004: First commercial HET use in U.S., Space Systems/Loral on MBSAT with Fakel SPT-
100 [19] with an example shown in Figure 2.1.
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Figure 2.1: SPT-100 with key components and typical mounting on Space Systems/Loral space-
craft. Primary use on SS/L communication satellites is for north-south station keeping. Repro-
duced from Figure 1 of Ref. 19.

* 2006: First U.S. design HET, Busek Hall Thruster (BHT)-200, flew on the Air Force Re-
search Laboratory (AFRL) TacSat-2 [11]; the BHT-200 also flew on the United States Air
Force Academy (USAFA) FalconSat 5 launched in 2010 and is due to launch on FalconSat
6in 2015¢

» 2008: Over 140 HETs have been operated in space, most of Russian design heritage. [11]

» 2010: Advanced Extremely High Frequency (AEHF) communication satellite launched with
four Busek Primex Thruster (BPT)-4000 thrusters as shown in Figure 2.2; failure of liquid
apogee engine forced orbit raising to Geostationary Earth Orbit (GEO) with HETs and saved
the mission. [20]

» 2009: Magnetic shielding first observed on a BPT-4000 during ground testing. [21]
From 2010-2013 National Aeronautics and Space Administration (NASA) Jet Propulsion
Laboratory (JPL) scientists and Aerojet engineers learned the physics behind magnetic
shielding and demonstrated it on a modified 6 kW lab thruster which reduced erosion be-
low the threshold of detection. [4,22]

» 2013: NASA selects magnetically shielded HETs as the baseline propulsion system for the
proposed Asteroid Retrieval Mission (ARM) and begins development effort. [23]

1Busek Flight Programs: http://busek.com/flightprograms.htm, accessed March 27, 2014.



(a) Reproduced from Figure 3 of Ref. 24 (b) Reproduced from Figure 4 of Ref. 24

Figure 2.2: BPT-4000 Engineering Qualification Model.

2.2.3 Current State and Future Trends

Space Systems/Loral was the first commercial U.S. provider to use an HET in 2004 [11] for sta-
tion keeping in GEO and has been using them routinely with a representative example shown in
Figure 2.1. The AEHF satellites built by Lockheed Martin are a series of spacecraft to replace
the Milstar military communication satellites that are critical to national security. The first AEHF
launched in 2010 and had a failure of the liquid apogee engine that would take the spacecraft to
GEO. Onboard were four BPT-4000 HETs shown in Figure 2.2 that were meant for station keeping
only, but they were used in a 14-month orbit raising campaign to save the mission. [20] In March
2012 Boeing received its first contract for an all electric spacecraft, the 702SP, which will do orbit
raising and station keeping with EP. [25] Although HETs were considered, ion thrusters were ulti-
mately selected due to Boeing’s heritage with Xenon lon Propulsion Systems (XIPS). Finally, the
ARM would use a 40 kW Solar Electric Propulsion (SEP) system with 10 tons of Xe to capture an
asteroid up to 1000 tons and return it to long-term stable lunar orbit. For this mission, a 12.5 kW
magnetically shielded HET operating at 800 V with a specific impulse of 3000 s and a capability
of 3400 kg throughput would be developed. [23] Given the success of EP on the Dawn mission and
AEHF coupled with the plans for Boeing’s all EP spacecraft and new magnetically shielded HETs
for ARM, there is a trend of spacecraft becoming more reliant on EP for main propulsion and not
just station keeping.

Future missions with high-power capabilities (100+ kW) can achieve significant mass savings,
increased thrust and throttle range with Nested Hall Effect Thrusters (NHT), where two or more
annular channels are arranged concentrically. Two-channel (X2) and three-channel (X3) thrusters
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have been built at the University of Michigan. The X2 is a 10-kW class thruster, but tests operating
at a constant 6 kW showed the thrust could be varied from 275-450 mN and anode specific impulse
from 1500-2700 s with an anode efficiency above 50%. [26] A typical single-channel HET will
produce 100’s of mN of thrust, but the X3 will produce 10’s of N and offer a 52% decrease in
thruster footprint compared to the equivalent single-channel thruster. [27]

2.3 Principles of Hall Effect Thruster Operation

2.3.1 Introduction

The fundamentals of HET physics and design have been thoroughly discussed in the literature
[1,17,28-30] and specifically in a textbook about ion and Hall thrusters [11]. The primary compo-
nents of a typical HET shown in Figure 2.3 are the annular discharge channel with the combined
electrical anode and neutral gas distributor recessed into a dielectric, insulating channel. A cathode
mounted either outside the discharge channel radius (external) or on channel and thruster centerline
(internal) provides electrons to neutralize the plume and sustain the discharge. Modern systems
typically use a hollow cathode for this purpose, but other cathode types can be used. The dis-
charge voltage is applied from the anode (positive) to the cathode (negative) with a power supply,
which is isolated from ground. A magnetic field is applied radially outward or inward across the
discharge channel exit plane to impede the electron motion through the discharge channel to the
anode. The magnetic field is crucial to HET operation and the field strength and topology are
produced by a carefully designed magnetic circuit that consists of ferromagnetic pole pieces and
permanent or electromagnets. The magnetic field causes a large resistivity in the plasma which
creates an axial electric field to accelerate the ions downstream. These high exhaust velocity ions
create the thrust to accelerate a spacecraft according to Newton'’s third law. The discharge channel
walls in magnetic layer thrusters are dielectric materials with low sputter yield and relatively low
secondary electron emission coefficients under Xe ion bombardment. Typical materials are boron
nitride (BN) or Borosil (BN-SiQ) for both flight and lab thrusters.

A heavy noble gas is typically used as a propellant with xenon the most common due to its
large mass and low ionization energy. Most ions are singly charged because the high electric
field typically removes the ion from the ionization zone before another electron collision can ion-
ize it further, [17] but higher charge states are present nevertheless. The plasma throughout the
discharge channel is quasi-neutral allowing higher charge densities and higher fluxes than ion
thrusters, which are space charge limited. The electrons are magnetized meaning they respond to
the magnetic field while the ions are non-magnetized due to their larger mass. The electrons ap-
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Figure 2.3: HET diagram showing the gas feed into the anode, the discharge channel, and an
internal hollow cathode. Neutrals are injected from the rear of the discharge channel to be ionized
and accelerated downstream by the electric field. Electrons emitted from the cathode neutralize
the plume and propagate in thex B direction, which is clockwise for a radially inward magnetic
field. Reproduced from Figure 2.3 of Ref. 31

proximately execut& x B drift around the discharge channel in the azimuthal Hall current, which
is where HETs derive their name.

HETs can be broadly categorized into three different types: magnetic layer, anode layer, and
magnetically shielded. The device described in the preceding paragraphs and shown in Figure 2.3
is typically called a Hall thruster, Hall Current Thruster (HCT), Hall Effect Thruster (HET), Sta-
tionary Plasma Thruster (SPT), or magnetic layer thruster. This device will be described in more
detail throughout this chapter. The Thruster with Anode Layer (TAL) has a significantly shorter
discharge channel with the conducting walls. Although the physics discussed here applies to TALs,
these devices will not be described in this work and detailed descriptions can be found in lit-
erature. [11, 17] Magnetically shielded thrusters are a recent development and are derived from
magnetic layer thrusters with a special magnetic field topology to reduce discharge channel wall
erosion. [4,22] The walls of the first magnetically shielded thrusters were made of an insulating
dielectric, but the use of conducting carbon walls has also been demonstrated. [32]
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2.3.2 Scaling and Discharge Channel Plasma Properties

This section describes some of the critical scaling parameters for HETs and typical plasma prop-
erties inside the discharge channel. An important parameter quantifying the magnetization of a
species (e: electrons, ions) is the Hall parametef), which is the cyclotron frequency, di-

vided by the collision frequency,

We e,

Qe,i =

(2.4)

The Hall parameter describes the number of times a particle orbits around a magnetic field line of
force before undergoing a collision. The cyclotron frequency is

Wee = ?TE Wei = ?n—B . (2.5)

For electrons, the collision frequency in Equation 2.4 is the effective collision frequeggy,
which is the sum of electron collisions with heavy species is [3]

Vef = Ven =+ Ve + Vi + Va (2.6)

wherevg, is the electron-neutral collision frequeney; is the electron-ion collision frequency,
andvy, is the wall collision frequency. The electron-neutral and electron-ion collision frequen-
cies can further be divided into momentum transfer, electronic excitation and ionization collision
frequencies. The anomalous collision frequency or the collision frequency from turbulent plasma
fluctuationsy,, can be described by [3, 33, 34]

1

Va = 1_60,’(1)(;e (27)

wherea is an adjustable, empirical factor for simulations to match experimental results. For clas-
sic Bohm diffusion,a = 1, but typically 0.1< « < 10. The so called “anomalous electron trans-
port” observed in HETSs is captured in thg and v4 terms, where an experimentally validated,
first principles-based theory to predict these collision frequencies would allow for predictive HET
models.

In order for the electrons to be magnetized, meaning they complete many cyclotron orbits
before a collision, the square of the Hall parameter must be l&§er wZ/vZ, > 1. The
electron Larmor radius must be less than the characteristic length s¢ald,

Vihe. Me [80Te 1 [8Me
r.= = — ==, |—-—T L 2.8
" we 9BV 7me B\7q e (2.8)

where v, is the electron thermal velocity afd is in eV. The characteristic length scale,can
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be the ionization zone length,;, the width of the channel)V, or the length of the channdlgp,.
For ions to be non-magnetized, their Larmor radius must be greatet_tfilj

r|_i = i = ﬂ % = l z—me > L (29)
wi BV m BY g

where the ion velocity, iy and beam voltagéeyy,, will be described in Section 2.3.3. For 25 eV
electrons in a 150 G field, , = 1.3 mm from Equation 2.8, which is smaller than the plasma or
thruster length scales. For Xe propellant with a beam voltage of 270 V in the same 150 G field,
ry, = 1.8 mfrom Equation 2.9, which is larger than the thruster length scales, but not the plume
length scales. Ideally the ions in an HET are non-magnetized, but in reality they may have a small
angular velocity component in thex B direction that causes the ions to follow a slightly helical or
spiral trajectory through the plume. This velocity will be very small compared to the axial velocity,
but still may impart a small “swirl torque” on the spacecraft. The PPS-1350-G HET developed
by SNECMA used on the ESA SMART-1 mission produced 70 mN of thrust at 1.4 kW. [35] A
torque about the thruster centerline of 5462 m was calculated by disturbances in the spacecraft
angular momentum. The direction of the torque was noted to be dependent on the direction of the
magnetic field, i.e. th& x B direction, indicating it results from slightly magnetized ions.

An example of the plasma properties in the discharge channel from simulations using the
Hall2De code [36] is shown in Figure 2.4 and experimental results will be shown later in Fig-
ure 5.13 of Section 5.6.1. The plasma potential is nearly constant for most of the discharge channel
until a steep decline near the channel exit where the magnetic field peaks followed by a gradual
slope out into the near-field plume. The electron temperature gradually increases from the anode
with Te < 10 eV until a sharp peak near the channel exit whiere 30 eV. The sharp decrease in
plasma potential and increaseTin near the channel exit constitutes the acceleration region. The
electron density maximum value is upstream from the acceleration region in the ionization region
where the peak is approximately~ 2.6x 1018 #/m3. The ion velocity vectors shown in Figure 2.4
show how the ions are focused onto discharge channel centerline by the magnetic lens topology.

The simulation results in Figure 2.4(c) shows that plasma density peaks on discharge channel
centerline, so plotting discharge channel centerline plasma property profiles yields important in-
formation about the physical processes occurring in the discharge channel. Experimental results
for channel centerline plasma potential, axial electric field, and electron temperature are shown in
Figure 2.5. These data have been reproduced fronvghand Te values presented in Ref. [37]
where the peak electron temperature is 33 eV and the peak plasma poten®@ds/. The axial
electric field is calculated fror, = —dVp/dz and peaks at 60 V/mm.

The important features to note in Figure 2.5 are the profile shapes. The plasma potential shape
resembles an error function nearly centered on the exit plane with a smaller inner characteristic
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Figure 2.4: Plasma properties within the discharge channel of the H6 from simulation: (a) plasma
potential, (b) electron temperature, and (c) electron density with +1 ion current density vectors.
The “US” stands for “Unshielded” or non-magnetically shielded. Reproduced from Figure 4 of
Ref. 36.

length,Lcn, than the outer characteristic lendtky,, < Lchg,

Vip(2) o exf [M] . (2.10)
Leh
From conservation of energy, the ion velocity is related to plasma potential by
29
Vi(z)= \/ ™ (Vo - Vp(2)) (2.11)

with the assumption that most ions are creatédnn < 0.9 where the plasma potential is nearly the
discharge voltag¥p ~ Vp. The primary acceleration region is 0.9% /Lchn < 1.05 with the ions
asymptoting to their final velocity bg/Lcn ~ 1.5. The axial electric field and electron tempera-

tures both resemble sharply peaked Gaussian functions. The electron temperature is approximately
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Figure 2.5: Plasma properties of the H6 at nominal conditions on discharge channel centerline
including plasma potential relative to cathode, axial electric field and electron temperature. All
profiles have been normalized to their maximum values. Reproduced\goand T, data pre-
sented in Figure 15 of Ref. 37. Axial electric field is calculated fifgym- —dVp/dz and smoothed

with a moving average filter.

symmetric about its peak and the electric field has a larger characteristic outer length than inner
characteristic length similar to the plasma potential.

2.3.3 Currents, Voltages and Power

This section discusses some of the ion, electron and total currents that are typically discussed or
measured in the discharge channel, the plume and through power supplies of HETs. The different
electrical potentials that arise are also discussed and shown schematically. Some thruster efficien-
cies will be discussed, but a full phenomenological performance model will not be developed.
Detailed phenomenological Hall thruster performance models are developed in [11, 30, 38] and
only relevant efficiencies will be discussed here.

The discharge potential is applied between the anode (positive) and cathode (negative). For a
typical laboratory setup, the power supply operates in voltage regulated mode where the output cur-
rent is varied to maintain a constant output voltage. Therefore, by mode of operation the discharge
current is allowed to vary to maintain the discharge voltage from anode to cathode. Consider a po-
tential profile along discharge channel centerline starting at the anode as shown in Figure 2.6. The
cathode will be taken as reference potential or zero so the anode will be at the discharge potential,
Vp. A sheath will form near the anode with potentigl_s, so the plasma will be slightly above
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the discharge potential. Using a 49-mm radius, 2-kW laboratory HET, the plasma potential within
10 mm of the anode on channel centerline was measured to be 7-10 V above anode potential for
200-400 V discharges. [39, 40] The potential will be gradually decreasing (i.e. low axial electric
field) along channel centerline towards the exit. Once in the primary ionization and acceleration
zone, the potential will rapidly decrease and the electric field will be maximized, which is the
mechanism for accelerating ions.

The cathode coupling voltag®,_c is the voltage necessary to draw current from the cath-
ode [11], which is typically~ 20 V. The axial profile of the plasma potential with respect to cath-
ode isVp_¢(z) a just Vp(z), and the boundary conditions a¥(z = 0) = Vp at the anode and
Vp(Z= o0) = Vpo = Ve in the far field plume. The cathode to ground voltage,g, represents
how the thruster is floating with respect to facility ground since the cathode, power supply and
anode are isolated from ground. The cathode to ground voltage is typicall V. The plasma
potential measurements with downstream probes are initially calculated with respect to ground,
Vp—g, SO the plasma potential with respect to cathod€ys- [Vp_g| +[Vc_gl. The plume maps in
Appendix B will show thatv, is~ 30 V for these tests, which is 10% Wh. The potential profile
is also shown for the cathode which reaches the same potential downstream from the exit plane;
Figure B.4(b) will show the potentials do not converge until approximately three mean channel
radii or eight channel widths downstream.

Figure 2.6 shows that ions are not accelerated through the entire discharge voltage, but on
average are accelerated through the beam voltgge Vp — V;. The voltage utilization efficiency
or acceleration efficiency is

Vi
=—. 2.12
™=y (2.12)
A typical voltage utilization efficiency igy ~ 0.9. Using conservation of energy, the average ion
velocity will be
29V, 2qmnvV
<Vi>:\/ g b:\/ Qv Vb (2.13)
m m

The discharge currentp, referenced throughout this work is the current through the power
supply, as shown in Figure 2.6. However, this current is a complicated combination of different
currents. The variables for the currents are labeled with subscripts according to: species-origin-
destination. Species are ionggr electrons €), origin is cathodec@) or ionization zoneiz) and
destination are anode (an), beaom) or emitted (em). Secondary electrons and charge-exchange
ions are neglected for this simple discussion.

The discharge current is the sum of currents arriving at the anode, which is a combination of
electron current from the cathode,ca_an, €lectron current from the ionization zone,i;_an, and
ion current from the ionization zon&,.i;_an. The discharge current is also the sum of currents at
the cathode, which is the emitted electron currént,—em, and collected ion current. Neglecting
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Figure 2.6: HET schematic showing the discharge channel, cathode on thruster centerline, ion
and electron currents, and the discharge supply electrical schematic. The potential distribution is
shown aligned with the channel. Based on Figure 5 of Ref. 29 and Figures 7-7 and 7-8 of Ref. 11.
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the ion currents at both the anode and cathode and writing the emitted cathode current as the sum
of anode and beam currents, the discharge current is

Ip = le—iz-an+ le—ca-an ® leca—em~ le—ca—an+ le—ca—bm - (2.14)

The beam is neutral so the ion and electron currents must balancemn = le—ca_bm. FOr every
ionization event one or more electrons are generated in the ionization zone that diffuse to the anode
while the ion accelerates downstreamsg_om = le_iz_an. Therefore, the beam current is

Ib = li—iz-bm = le—ca-bm = le-iz-an (2-15)
and using Equation 2.14 and 2.15 the discharge current can be written as

Ip~ lp+le-ca-an - (2.16)

Equation 2.16 shows the discharge current is the sum of the ion beam current plus back-streaming
electron current crossing the exit plane.
The current utilization efficiency is

lp I
b= — &~ ————— . 2.17
7 Ip  lp+leca-an ( )
Assuming the number density ionization fraction of neutralg; iand the ions have an average
charge stat&, then the beam current can be written as
Zq

lp = ﬁmrm. (2.18)

The discharge current can be written using Equation 2.17 and 2.18

Zni\ q .
Ip _(%)Ema (2.19)
HETs have a high beam ionization fraction, so assym€0.95. From Table B-1 of Ref. [41] an
average ion charge state 0f 1.14 was experimentally found f&fp = 300 V andlp = 20.55 A.

The data presented in this work will shdw ~ 20 A for my = 19.5 mg/s. Using Equation 2.18 with

ni = 0.95 andZ = 1.14 yieldsn, = 0.78. Combining these values in Equation 2.19 within mg/s
yields a useful relationship for estimating discharge current for high-efficiency HETs operating on
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Xe where the magnitude of the discharge current is approximately equal to the anode mass flow
rate

|Ipl = My (2.20)

and the coefficient of 1.03 A/mg/s has not been explicitly written.
The thrust can be calculated from [11]

T=y, /%“wa—: 1.65y1pyVo (2.21)

wherey is the thrust correction factor due to beam divergence and multiply charged species and is
typically v ~ 0.95. The second equality in Equation 2.21 is for Xe in mN. When comparing per-
formance between different thrusters, it is important to remember that phenomenological models
may differ in their definitions of efficiencies or coefficients, but the scaling will remain the same
as shown by comparing Equation 2.21 with Equation 33 of Ref. 38. Alternatively, the thrust can
be measured on a thrust stand was done in this work. The discharge power is simply

Po=IpVp. (2.22)

The thrust to power and anode efficiency are defined as [30]

T/P:l (2.23)
Pp
T2
= — 2.24
Na 2MaPp ( )

wheremy is the anode mass flow rate. Anode efficiency is used in this investigation instead of total
efficiency for ease of comparison with previous works. Total efficiency would also include the ef-
ficiencies of the cathodend magnets, which do not directly affect thruster operation. Optimizing
cathode and magnet efficiencies are important for flight systems, but not as critical for laboratory
settings.

2.3.4 Magnetic Field

The magnetic field in a HET is arguably the most critical design element that directly impacts
thruster performance and lifetime. The magnetic field topology shown in Figure 2.7(a) for the
NASA-173Mv1 and Figure 3.2 for the H6 is that of a plasma lens where the magnetic field lines
are concave and symmetric about the discharge channel centerline. This configuration focuses

2Cathode flow rates and location can affect thruster operation, but the efficiency of cathode operation does not.
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Figure 2.7: Magnetic field for the NASA-173Mv1 from Ref. 30.

plasma away from the walls to decrease plume impingement on the walls and increase lifetime by
reducing erosion. [42] The fact that the magnetic field topology can influence the trajectory of ions
to focus them onto channel centerline may seem contradictory to the fundamental design of HETs
where ions are supposed to be non-magnetized. The reason is that the magnetic field lines are
approximately equipotential lines called the “thermalized potential,” so the direction of the electric
field is tied to the shape of the magnetic field. The magnetic field impedes electron motion across
field lines, but electrons can still flow freely along field lines. Therefore, along a line of force of
indexy, the electron temperature will be constafd= Te(¥). Integrating the electron momentum
equation along that line of force yields the thermalized potential 2]

\mf:vp—Tgn(E%) (2.25)
e

whereTe is in eV andngg is the reference electron density at the reference potential. The natural
log term will be of order unity, so the magnetic field lines are plasma equipotentials to an accuracy
within the order of an electron temperature. [17]

The radial component of the magnetic field on channel centerline has the shape of a Gaussian
function with different characteristic widths upstream and downstream from the peak as shown
in Figure 2.7(b) for the NASA-173Mv1l. Similarly, the radial magnetic field value on discharge
channel centerline for the SPT-100 can be described as [33]

o
Broexp—(ZLBO) z< Lg,

I‘E“in

B/ (2)= : : (2.26)

L2
By, €Xp —(Z LBO) z> Lg,

LBout
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where the peak value is afg,. The width of the magnetic field is described by characteristic
lengthsLg,, and Lg,, for the upstream (anode side) region and downstream (exhaust side) region
of the peak, respectively. As shown in Figure 2.7 for channel centerline, the outer magnetic field
typically has a larger characteristic width than the inhgy,, > Lg,,, SO it appears stretched down-
stream. Typically, the peak magnetic field occurs at or near the discharge chanihg} exltchn).

2.3.5 Electric Field and Potential

The magnetic fieIdTS), of an HET is carefully controlled with the magnetic circuit and the applied
potential between the cathode and anddg,is regulated by the power supply. The electric field,

I_E>, however, is not directly controlled. Poisson’s equation cannot be used to determine the electric
field because of the assumption of quasi-neutrality

_q(n-ng _
£0

V.E=-V2 0 (2.27)

Instead, consider the steady-state, perpendicular velocity component from the electron fluid equa-
tion of motion [43]

mn% = —qn(_E> +V, xTB))—Vpe— mnyv =0 (2.28)

Without making any other assumptions except, /dt ~ 0 for steady-state, the perpendicular ve-
locity component for electrons can be written from Equation 2.28

Vp Vexe+ Vb
V.= E- ©
1 M1 Hi an 1+1/Qg

(2.29)

where quasi-neutrality has been assumed sa, ~ n;. The cross-field mobilityy, is defined as

M
= 2.30
and the mobility coefficienjy, has the usual meaning
lal
= 2.31
H = over (2.31)
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The E x B drift, Vexg, (species independent) and the diamagnetic d¥if, for electrons are

ExB
VExB = (2.32)
P T on® '

For the channel centerline, assume the electric field is purely_E>x:iaE22 and the magnetic field

is purely radial,l__%> ~ B;f. Assume axisymmetry s@/00 ~ 0 and uniformity across the discharge
channel near centerling/dr ~ 0. The axial and azimuthal velocity components of Bre B drift
velocity in Equation 2.32 are gxg - 2 = (E; By — E¢B;)/B? ~ 0 and Vexg -6 = (E;B; — E/B,)/B? ~

E./B;. The axial and azimuthal velocity components of the diamagnetic velocity in Equation 2.33
arevp-2~0andVp -0~ (Te/B;)(1/n)(dn/dz)+ 1/B,dTe/dz Writing the pressure as @ = nqTe

for Tein eV, the perpendicular velocity components of Equation 2.29 are

Vg = —ﬂLEz—“—;d(z}) _ _1+1Qg_, m;ef [E +%$+%} (2.34)
Vo= 1+11/Qg [%Jr;_(:%%JrBir%} (2.35)

The electron current density to the anode is
jz=—anv; (2.36)

Figure 2.6 shows that the current collected at the anode is approximately the electron current from
ionization events and cathode electrons crossing the magnetic field, which comprise the discharge
current. Thereforej; is approximately the discharge current densjtys jp = Ip/Achnl SO the
perpendicular electric field can be written as

Mevei .  Tedn dTe

@#n P hd @ (2.37)

E,=(1+0f)

The density gradient peak @n/dz~ 10%° #/m°m and a representative peak electron tempera-
ture isTe ~ 30 eV from Ref. 44. The maximum value for the second term in Equation 2.37 is
(Te/n)(dn/dz)~ 3 V/Imm and is< 10% of the expected value f&; ~ 50 V/mm. The maximum

value fordTe/dz is ~ 5 V/Imm determined from Ref. 37, which is 10% of the expected value

for E;. These pressure gradient terms are not negligible, but combined are less than 20% of the

23



expected peak axial electric field value. Neglecting the density and temperature gradient terms in
Equation 2.37, the electric field can be written as

BZ

E;~n. jp~(1+Q3)n jo~ i (2.38)

r
Mevef N
which is Ohm’s law where the cross-fiejd and classical resistivities are

MeVef
n. :<1+Qg))7 n= q2: (2.39)

The second approximation in Equation 2.38 uses the assumptiof¢hatl, which is justified
as the Hall parameter is known to be between 200 and 800 in the ionization region of HETSs [3].
Equation 2.38 shows how the electric field is formed from the magnetic field which creates high
cross-field resistivity in the plasma. The large resistance created by the magnetic field also heats
the plasma through Joule heating. The peak electron temperature in a HET discharge is typically
~ 30 eV, while the the rest of the plasma<4.0 eV.

In order to check Equation 2.38, representative values can be used from previous works. A
reasonable effective collision rate near the discharge channel exit from Ref3-40’ s™! and
Ref. 44 shows an electron densityref~ 10 #/m3. For a current density ofp ~ 130 mA/cn?,
the resulting electric field i&; ~ 40 V/mm and is the correct order of magnitude from Ref. 44 and
Table 3.1.

Using the magnetic field approximation in Equation 2.26, the electric field in Equation 2.38

can be written as X
_dp ip@ z-Lg,
S =4 rveron) 0 P A T (2.40)

The magnetic field length tering in Equation 2.40 is understood to bg, forz < Lg, and Lg,,
forz > Lg,. Equation 2.40 is the form of a Gaussian that has a smaller width than the mag-
netic field (more sharply peaked), which in principle agrees with the empirical results discussed in
Section 2.3.2 and shown in Figure 2.5.

Making the assumption that the terjp/(vesn) is nearly constant in the region of maximum
magnetic field where the potential drop mostly occurs, Equation 2.40 can be integrated in

\/mLBiDBrzo][l 1 [‘/E(Z— LBO)D
- T H=_= erf - 7
MeVefN 2 2 Lg

Pn(2) ~ ( (2.41)

wheregy, is the potential referenced ¥,., = Ve in Figure 2.6 so the limits argy(z=0) = Vp

and ¢p(z> Lenn) = 0. The second bracketed term in Equation 2.41 varies from 1 at the anode to O
in the far field plume, therefore the first term must be approximately the beam voltage. Using the
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representative values listed above, the first term 30 V, which is large but the correct order of
magnitude. This also agrees in principle with the shape of the empirical potential profile discussed
in Section 2.3.2, Equation 2.10, and the data in Figure 2.5.

It is important to remember that these derivations are only meant to provide order of magnitude
approximations and a mathematical construct for the qualitative shapes observed in the measured
plasma property profiles. Simple models like Equations 2.40 and 2.41 will not predict a specific
device performance, which even the most sophisticated numerical simulations cannot reproduce
without empirical correction factors.

2.3.6 Hall Current and Azimuthal Drift Velocity

The azimuthal current, or Hall current, can be written as
jH = Jo=—0nvy (2.42)

Using the azimuthal velocity from Equation 2.35 with > 1 0 1/(1+ 1/Q32) ~ 1 yields

SN N (2.43)

o _anEZ
IH a Br Me Vef

The density gradient term and temperature gradient term in Equation 2.35 are bo% of the
E./B; term, so while not negligible they will not be considered for this approximation.

This also implies the ubiquitous x B drift velocity in HETs scales as
E: B

VExB= 5 =~
Br  Mevetn

ip (2.44)

The linear scaling betweertyg o< By is counter to the inverse scaling that is intuitively expected
Vexg « 1/B; if E; were controlled independently froBy. The assumption of nearly constajit

with varying B is justified in local mode as shown by Figures 4.2 and 4.3 where the discharge
current is constant to within 5% before the mode transition to global mode. While the scaling of
the E x B drift with B is counter intuitive, the neglected terms from the diamagnetic drift do scale
as\p « 1/B;.

2.3.7 Anomalous Electron Transport

Researchers have been attempting to understand cross-field electron transport since the inception
of HETs and have various explanations including, but not exclusive to: classical cross-field diffu-
sion, Bohm diffusion, turbulence, shearing, [45] near-wall conductivity [1] and azimuthal electric
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fields. [46, 47] As Hofer noted, [3] the real cause is likely a combination of these mechanisms.
An excellent summary of anomalous transport mechanisms is provided in Section 2.3 of Ref. 6.
The term “anomalous electron transport” is used broadly in literature to describe the issue that is
more appropriately term unresolved electron dynamics, because more mechanisms are not under-
stood such as waves, instabilities, and movement along field lines (including electron “bounce”
at a separatrix). This void of knowledge regarding electron motion in HETSs is the reason why
first-principle based predictive models have eluded researchers for decades. It is helpful to catego-
rize the unknown electron dynamics and discuss how they affect HET operation: electron mobility
in the discharge channel (in the near-anode, ionization and acceleration regions), electron mobil-
ity due to wall collisions (so called “near-wall conductivity”), azimuthal Hall current (how the
electrons propagate around the discharge channel), and electron mobility in the plume (how the
electrons get from the cathode to the discharge channel). Complicating matters are the different
sources of electrons: emission from the cathode, ionization events (mostly in the ionization zone),
secondary electron emission from the discharge channel walls, and secondary electron emission
from other thruster or facility surfaces.

2.3.7.1 Electron Mobility in the Channel

Some models of the discharge channel will divide anomalous electron mobility coefficients into
the near anode and ionization/acceleration region [3], but for the purposes of this qualitative dis-
cussion we treat the discharge channel as the entire region from the anode to the discharge channel
exit plane. In the limit ofQZ > 1, which is true in the channel but not necessarily the plume,
Equations 2.6 and 2.37 can be used to show hgwelates tove; and the anomalous collision

term,va

- men Vpe Ve

JDzVefE[Ez‘FE %[EZ+E
Therefore, the discharge current increases as anomalous collisions increase. Higher electron mo-
bility in the ionization zone and near-anode zone represents inefficiency, where it is desirable to
minimize le_ca—an iN Figure 2.6 to increase the efficiency in Equation 2.17. The causesané
therefore critical to understanding the anomalous cross-field transport in the discharge channel,

but it is likely caused by a combination of Bohm diffusion, turbulence, shearing, [45], azimuthal

= (Ven+ Ve + vw + Va) (2.45)

electric fields, [46,47] and near-wall conductivity. A majority of the research into anomalous elec-
tron transport has focused on these areas with no consensus on the the relative importance of each
mechanism. Ducrocq [48], Cavalier [49], and Adam [50] investigated high-frequency oscillations
theoretically, numerically, and computationally, respectively, and determined that they could be

a significant source of cross-field electron transport that resembles turbulence. An illustration of
how collisions (anomalous or otherwise) propagate electrons towards the anode can be seen from
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Figure 2.8: Electron trajectory in the discharge chamnet plane from fully-kinetic PIC simula-

tion showing electron guiding center along the magnetic field line, reflection at the inner channel
wall due to the magnetic mirror, and a collision event moving the electron to a new streamline
closer to the anode. Reproduced from Figure 3 of Ref. 51.

Szabo’s fully-kinetic, axi-symmetric Particle-In-Cell (PIC) model of a BHT-1000 discharge chan-
nel. [51] Figure 2.8 shows an example electron trajectory irr the plane with its guiding center
along a magnetic field streamline until a collision event moves it to a new streamline closer to the
anode. The magnetic mirror effect turns the electron back into the channel at the inner wall while
it remains on the new streamline.

Using the fluid approximation in Equation 2.45 assumes a Maxwellian energy distribution,
which is not accurate based on measurements in the channel of an SPT. [1] Three distinct popula-
tions of electrons are shown in Figure 8 of Ref. 1 in the channel of an SPT: low-energy electrons
(< 10 eV) that do not reach the walls and rotate about the thruster i& ¥ drift, intermediate
energy electrons (20— 20 eV) that undergo inelastic collisions with the wall and are responsible
for near-wall conductivity, and a high energy electron tai26 eV) that undergo elastic reflections
from the wall moving towards the anode with little energy loss. Therefore, some of the anomalous
cross-field transport could be due to the deviations from an assumed Maxwellian energy distribu-
tion in most models.

2.3.7.2 Near-wall Conductivity

Near wall conductivity results from electron collisions with the walls as theorized by Morozov and
summarized in Ref. 1 with other Soviet journal articles referenced therein. These collisions scat-
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ter the electrons due to microscopic inhomogeneities or macroscopic structures on the discharge
channel wall surface. The scattering collisions reduce the azimuthal drift velocity and allows the
electrons to increase their net axial velocity towards the anode.

Figure 2.19 in Section 2.4.2 shows the magnetic field lines for an SPT type thruster. The
magnetic field lines intersect the wall perpendicularly at the exit plane in the location of maximum
radial magnetic field, but the magnetic fields have a large axial component parallel to the wall
farther into the discharge channel where the field is weaker. Collisions allow electrons to “jump”
magnetic field lines to ones that are closer to the anode, which progressively move the electrons
upstream to eventually be collected by the anode.

Understanding plasma-surface interactions including collisions, secondary electron emission
and sputtering are critical to determining the relative importance of near-wall conductivity in newer
HETSs, which Morozov states that it is “clear that this type of conductivity prevails in the SPT.” [1]
Also critical to this are the sheath conditions at the wall, which are strongly dependent on secondary
electron emission.

2.3.7.3 Azimuthal Electron Motion

The Hall current is critical to HET operation and the force is transferred from the plasma to the
thruster (and hence the spacecraft) by interactions between the Hall current and the magnetic
field. [11] Yet the exact dynamics of how it propagates around the discharge channel are not known
as discussed below. King [52] used single particle motion to show demonstrate that a radial electric
field at the outer wall is required to keep the electrons on a nearly circular path in the discharge
channel due to the cylindrical geometry as reproduced in Figure 2.9. Measured internal proper-
ties of the NASA-173Mv1 were used to calculate the trajectory of a single electron around the
discharge channel and it was noted that the radial electric field force and magnetic mirror force
(1/10M the electric field force) repels the electron at the outer wall towards channel centerline,
while the magnetic mirror force predominantly reflects the electron at the inner wall. This motion
is supported by the fully-kinetic PIC simulation of Szabo [51] and shown in Figure 2.8 where the
electron guiding center follows the magnetic field lines as the electron “bounces” in the channel.
Even though this model is axi-symmetric so azimuthal propagation is not modeled, it demonstrates
the idea of electrons propagating around the discharge channel in a circular fashion akin to cars
around a race track is overly simplistic and inaccurate. Considering the thermal velocities of 5-
35 eV electrons, their bounce frequency between walls (across the channel width along a B-field
stream line) would be 15-40 MHz.

Katz® pointed out that the sinusoidal motion suggested by King in Figure 2.9 is likely not accu-

3Personal correspondence, May 2013.
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Figure 2.9: Guiding center trajectory of 20 eV electron in the discharge channel of the NASA
173Mv1. Motion inr —z plane (left) with B-field streamlines and magnitude in Tesla. Motion in
r — 6 plane (right). Reproduced from Figure 10 of Ref. 52

rate because the electrons would spend more time at the extrema (inner and outer walls assuming
all electrons have the same oscillation amplitude)icausing the electron density to peak off-
channel centerline which is not seen in experiments. We can calculate the electric field required to
keep the electrons in a circular path following the discharge channel walls from simple centripetal
acceleration. Considering thex B drift velocity and the electron thermal velocity, the range of
azimuthal electron velocities o consider is & 10* to 5x 10° m/s. Using the electron equation

of motion, the radial electric fiel&, = (me/q)(vg/Router) required for the electron to maintain cir-

cular motion at the outer wall is@v/mm to 1.5 V/mm. This is a small electric field that could be
established by sheaths at the walls or internal to the plasma in order to maintain quasineutrality, so
it could be assumed that electrons travel in nearly circular motion around the discharge channel.
Regardless, a radial electric field is required to reflect electrons back into the channel per King or
to keep electrons in a circular motion around the discharge channel per Katz.

Despite the fact that HETs are known as “closed-drift thrusters,” [17] the details of the electron
motion to make the closed-drift occur requires further research. The mechanisms that can reflect
electrons back into the bulk plasma in order to continue azimuthal propagation for the Hall cur-
rent are summarized below. Note that particle collisions are not considered as they act to change
the guiding center gyration of electrons, but do not preferentially reflect them back into the bulk
plasma.

1. Electrostatic Sheaths at the WallsAn electron gyrating about a magnetic field line towards
the wall will be reflected once the sheath potential is of order the electron temperature (5-
35 V) or the radial electric fields arei8//mm to 1.5 V/mm as calculated above.
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2. Magnetic Mirror Reflection An electron gyrating about a magnetic field line towards the
wall be reflected by the magnetic mirror effect (conserving the second adiabatic invariant)
as the streamlines converge towards the wall in the ionization/acceleration as shown in Fig-
ures 2.7 and 2.11(left).

3. Ambipolar Reflection An electron gyrating about a magnetic field line towards the wall
will be traveling through a field of essentially stationary ions (from the electron’s perspective
since v, > Vi) whose density decreases closer to the discharge channel walls. As the elec-
tron attempts to stream out of the higher plasma density region to the lower density region,
an ambipolar electric field will be self-generated within the plasma to maintain quasineutral-
ity. As analyzed in Section 2.3.8 for magnetically shielded thrusters, the hot electrons could
travel 100’'sum or more out of the plasma before reflection.

4. Electron ExchangeAn electron gyrating about a magnetic field line towards the wall could
penetrate the sheath and impact the wall. In steady state, the dielectric walls will have to
give up an electron through secondary electron emission or ion neutralization to maintain
a constant surface charge. Higher temperature electrons are more likely to penetrate the
sheaths to reach the walls, but electrons emitted from the walls as secondary electrons are
likely to be lower temperature so this effect will change the electron energy distribution in
the bulk population.

2.3.7.4 Electron Mobility in the Plume

As shown schematically in Figure 2.6, the electrons must travel from the cathode to the plume for
neutralization and to supply electrons in the channel. If the channel becomes starved of electrons
because they cannot transit the plume, then an instability can occur. It is important to understand
how electrons travel through the plume to ensure they can reach the discharge channel, which will
differ in ground test facilities from in space due to the presence of background neutrals.

A 2-D map of electron density in the H6 plume at nominal conditions is shown in Figure B.5(a)
of Appendix B, where the data are discussed in detail. Figure 2.10(a) shows this electron density
map with magnetic field streamlines overlaid and labels of key features for the present discussion
of electron motion in an HET plume. The very center B-field line on thruster and cathode centerline
(through the center of the cathode orifice) for a center mounted cathode extends straight out into
“infinity,” which is the beam dump- 6 m downstream in the Large Vacuum Test Facility (LVTF).

An electron trapped gyrating about this field line will travel downstream to be collected by the
beam dump and shunted to ground. Subsequently, an electron would have to be emitted from
some grounded surface in the facility and re-enter the plume to maintain continuity. The B-field
lines eventually reconnect at the separatrix starting/Btnhn = 2, Z/Rehni = 0 and extending at
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a ~ 40° radially outward from thruster centerline. An electron guiding center following a field
line emanating from the center of the thruster within the cathode keeper radius (but not exactly
on cathode orifice centerline) would still travel downstreandZ /Rqnn) before curving in front of

the discharge channel in the far-field plume. If it stays gyrating about the same field line it would
travel radially out> 2.5 r/Rehn before the field line curves upstream to encounter the separatrix.
At the separatrix, if it does not encounter any collisions it would bounce off the separatrix like a
magnetic mirror and begin the return trip to the origin near the cathode. However, it is more likely
a collision in the plume emanating from the discharge channel would move the electron guiding
center to a magnetic field line closer to the discharge channel.

One must consider the gyroradius or Larmor radius of the electrons about the field lines to
determine the guiding center for the electron to reach the beam dump or extend far into the plume.
The Larmor radius i$; = Vin,/wee Where the thermal velocity isgy = 4/qTe/Me. The Larmor
radius normalized by the channel radius in the plume is shown in Figure 2.10(b) using the electron
temperature map in Figure B.5(d) of Appendix B. Figure 2.10(b) shows that an electron on the
field line emanating from the thruster center would have a gyroraditinn ~ 0.01 and 0.05 at
Z/Rennl ~ 1 and 2, respectively, which is reasonable to assume the electron is trapped discount-
ing collisions. The gyro radius increasesrtgRehn ~ 0.25 atz/Rehn ~ 3 and r /R ~ 2.0 at
Z/Renni ~ 5, which is unlikely to remain magnetized. Note this does not take into account the
Earth’s magnetic field, which is larger than the applied magnetic field fRjn = 3.5.

Figure 2.10 shows the density over the inner-polRgn = 0.50) is less than % 10 #/m3
for z/Renn < 1 and increases to match the density on thruster centerline/Rfn > 1.25. The
densities for all four locations in Figure B.4 converge atxd®®Y #/mS at z/Rehn) = 2.75. One
can speculate that the “bridge” for electrons emitted from the cathode to the plasma emanating
from the discharge channel begins before this axial distance. So electrons would on average travel
~ Z/Rennl = 2 downstream before entering the discharge channel plume for neutralization and
electron supply for the discharge channel.

The external cathode configuration can present more challenges for the electrons to travel from
the cathode to the discharge channel depending on the location and orientation with respect to
the thruster and the magnetic field topology. Figure 2.10(a) shows that an external cathode on
the H6 is outside the separatrix, although the cathode exit could be positioned inside the plume
where some plasma impingement on the cathode keeper would occur. Several studies [53-58] have
investigated cathode placement with thruster performance where some sensitivities were observed
with discharge current and cathode-to-ground voltage. The critical factors were the conditions at
the cathode exit including location inside or outside of the separatrix, axial and radial magnetic
field, and local neutral density. Coupling of the plasma to the facility has also been proposed,
which would reinforce the idea that the electrons travel far downstream on the B-field lines to
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interact with vacuum chamber walls. The net results of these studies is that electron motion in the
plume from the cathode to the discharge channel both parallel and perpendicular to the B-field is
not well understood.
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Figure 2.10: H6 plume maps at nominal conditions from Figure B.5 in Appendix B. Labels on
ne show the approximate region where cathode electrons begin to merge with the channel plume,
central B-field lines extending far into plume, the outer separatrix and the location of the external
cathode configuration. The electron Larmor radius map only considers the applied B-field, not the
local Earth magnetic field which will in the far field.

2.3.8 Magnetic Shielding

Two problems in HET research remained unresolved for 50 years: 1) Cross-field electron mobility
limiting performance and 2) Discharge chamber erosion limiting life. In particular, thruster life
has been a major technological problem for all EP systems throughout their development history.
While the problem of electron mobility as discussed in Section 2.3.7 remains unresolved, recent
advancements in magnetic field design have potentially solved the issue of erosion limiting thruster
life in HETSs through a technique known as magnetic shielding [4,22] that is shown in Figure 2.11.
Magnetic shielding was first observed in 2009 on a BPT-4000 during long-duration ground test-
ing [21] in preparation for use on AEHF, where the thruster erosion decreased below the threshold
of measurements after 5600 hours of operation. [59] The physics behind the decreased erosion were
investigated through simulations [4, 21] and experiments [22] from 2010-2013 and demonstrated
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Figure 2.11: Magnetic field topology comparison between an unshielded thruster (left) and a
magnetically shielded thruster (right). Reproduced from Figure 1 of Ref. 4.

on a modified H6 HET. The modified thruster reduced erosion below the threshold of detection by
limiting plasma contact with the discharge channel walls. This has enabled the use of conductive
discharge channel walls made from carbon [32] without significant performance degradation.

Erosion of the discharge channel walls can eventually expose the magnetic circuit and lead
to system failure. The erosion is caused by ion bombardment with sufficient energy to sputter
material. In an unshielded thruster as shown in Figure 2.4 with B-field topology of Figure 2.11(left)
it can be seen that the electron temperature is high along the channel wall near the exit. This large
Te means the magnetic field lines are no longer equipotential lines from the thermalized potential
in Equation 2.25 and large potentials form across the wall sheath that accelerates ions into the
wall, sputtering material. In a magnetically shielded thruster as shown in Figure 2.11(right) and
Figure 2.12, the near-wall electron temperature is kept low and the plasma potential adjacent to
the wall is near anode potential along the entire length of the discharge channel. Maintaining
a low electron temperature allows the magnetic field lines to be equipotential lines because the
Telog(ne/neo) term in the thermalized potential Equation 2.25 is small.

Comparison of Figure 2.4 and Figure 2.12 shows some important differences between un-
shielded and shielded thrusters. The ionization and acceleration regions are outside of the dis-
charge channel, whictould make magnetically shielded thrusters more susceptible to 1) facility
effects and 2) instabilities or plasma oscillations without the walls to act as moderators. The peak
electron temperature in magnetically shielded thrusters is higher. Performance between equivalent
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Figure 2.12: Plasma properties within the discharge channel of the magnetically shielded H6
from simulation: (a) plasma potential, (b) electron temperature, and (c) electron density with +1
ion current density vectors. The “MS” stands for “Magnetically Shielded.”. Compare with the
unshielded channel properties in Figure 2.4. Reproduced from Figure 4 of Ref. 36.

unshielded and magnetically shielded thrusters showed that the total efficiency decreased by 1.7%
and the specific impulse increased by 2.9% in magnetically shielded thrusters. It is estimated that
the life of a magnetically shielded thruster is 100,000 to 1,000,000 hours, [22] which is sufficient
for any deep space missions under consideration.

The fully kinetic simulation of Szabo [51] in Figure 2.8 shows that the electrons bounce across
the channel width along magnetic field lines reflecting at the walls until a collision knocks the elec-
tron to a different line closer to the anode. The single particle simulation of King [52] in Figure 2.9
showed that electric fields formed by sheaths on the outer wall and the magnetic mirror on the
inner wall were primarily responsible for reflecting the electrons back into the channel to facilitate
azimuthal electron motion. Both of these investigations show the important and complicated role
the magnetic mirror and sheaths at the walls play in azimuthal electron motion to form the Hall cur-
rent critical to HET function. In magnetically shielded thrusters, however, plasma contact with the
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Figure 2.13: Diagram of the plasma outside of the discharge channel for a magnetically shielded
thruster. Electrons are shown streaming radially along magnetic field lines while ions only have an
axial velocity component. The electrons cross the quasineutral plasma boundary and are reflected
by the self-generated ambipolar electric field.

wall is minimized so the role of sheaths at the wall will be fundamentally different. Figure 2 from
Ref. 60 shows that the peak electron temperature and electric fields are now outside the channel
atz/Lehn ~ 1.1 instead of inside a/Lcnn ~ 0.95 as shown in Figure 2.5 for the same unshielded
thruster. There are still strong magnetic mirrors in magnetically shielded HETSs, but they will be
outside the discharge channel on the face of the magnetic pole piece instead of inside the discharge
channel as shown in Figure 2.11.

An additional force to retain the electrons could be from ambipolar electric fields self-generated
within the plasma if the ions are assumed to move purely axially and essentially stationary in
compared to the electron thermal velocity. This assumption is not entirely true because plume
divergence yields a small radial velocity component, but it is justified because the electron velocity
along field lines will be orders of magnitude larger. One can consider a sheath formed by high
energy electrons+(35 eV) trying to stream out of the bulk plasma along magnetic field lines that
are retained by a sheath formed on the plasma boundary (not a material surface like a discharge
channel wall) as shown in Figure 2.13. Consider a quasi neutral plasnang ~ nj ~ 1018 #/md3)
with a Maxwellian electron energy distributiod~ 35 eV) and a free boundary where ions are
considered immobile.
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Combining Gauss’ law and the Boltzman relation for electron density assuming a Maxwellian
velocity distribution [43] yields

V. E=-V%
- -

—Npexp
£0 &0 £0

_an-neg ane g [¢] (2.46)
Using a 1-D coordinate system along a magnetic field streamfings shown in Figure 2.13 and
using the non-dimensional parameiee ¢/Te, the non-linear, ? order, Ordinary Differential
Equation (ODE) is ,

j—;; exp[—x] = ;?e
This can be easily integrated numerically to yig(g) with the boundary conditiong(0) = v’ (0) =
0 which implies no potential at the plasma boundary (i.e. the plasma potential is the reference po-
tential) and no electric fields at the boundary. The electrons will be reflected when the average
kinetic energy has been converted to potential energy in the ambipolar shéht‘ev@e/: dref-
The reflection distance gt ~ 63 um with the values listed above. Using the same integration
trick found in derivation of the Child-Langmuir law [10] to integrate Equation 2.47, an approxi-
mate analytic expression for the reflection distanceris ~ 1/2egTe/(Qno). This is a very con-
servative estimate and the valueygt; is likely to be larger since the ion density does not stop
abruptly as depicted simplistically in Figure 2.13. The plasma sheath will be on the order of 10-
100’sum thick or larger (possibly)(1 mm)) before the average electron is reflected back into the
main discharge plasma. The strength of the magnetic field will determine whether the electrons
are primarily reflected by the magnetic mirror effect or the ambipolar effect. Therefore, the elec-
trons could travel farther out (inside the inner channel wall radius and outside the outer channel
wall radius) radially along the field lines reflecting near the magnetic field cusps at the poles or
retained through self-generated electric fields. Although only a qualitative discussion, this differ-
ence between magnetically shielded thrusters and unshielded thrusters could be responsible for the
different oscillations and lack of azimuthal spokes observed in Appendix C.

(2.47)

2.4 Mode Transitions

2.4.1 Definition of Mode Transition

HETs have been under development for over 50 years in Russia [1] and the United States with
significant experimental and flight histories. Mode transitions have been commonly observed
throughout their development as noted by some of the early pioneering Russian research. [61]
HETs have several parameters that define a single operating point such as discharge voltage, mag-
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netic field strength (or magnet coil current), anode mass flow rate and cathode mass flow rate.
Laboratory HET discharge power supplies typically operate in voltage regulated mode where the
discharge voltage between the anode and cathode is held constant and the discharge current is al-
lowed to fluctuate. Generally, mode transitions are identified by changes in the discharge current
characteristics including mean value and oscillation amplitude. Mode transitions can be caused by
changes in discharge voltage, anode mass flow rate, cathode mass flow rate, magnetic field magni-
tude and/or shape, wall shape due to erosion, wall properties due to release of absorbed compounds
or deposition, ambient neutral density in the near-field plume region between the cathode and dis-
charge channel, cathode location, and deposition/oxidation on the anode. Note that changes in
the magnetic field can be intentionally induced by changing the electromagnetic coil currents or
unintentionally caused by degradation of the magnetic circuit or changes in the environment local
to the thruster.

The most detailed delineation of operational modes for varying magnetic field strength was
conducted by Tilinin [61] where six regimes were identified as shown in Figure 2.14. Note these
definitions were developed using an older SPT type thruster almost 40 years ago and the term
“loop” oscillations refer to what are currently called breathing mode oscillations.

I Collisional (classical) conductivity: The weak magnetic field causes the electron Larmour
radius to be comparable to the effective dimensions of the channel and Coulomb collisions
explain conductivity.

Il Regular electron drift wave: Dominated by an azimuthal drift wave that propagates at
0.4- 0.8VE><B.

[l Transition: Moderate amplitude loop oscillations due to poor conductivity in the discharge
channel.

IV Optimal operation: Discharge current and loop oscillations are minimized. The electron
drift wave is detectable, but of lower amplitude.

V Macroscopic instability: Discharge current abruptly increases and loop oscillations become
strong with visible instabilities in the thruster. Drift waves are absent.

VI Magnetic saturation: Discharge is again stabilized and loop oscillations are minimized.
Transit time oscillations dominate.

The general shape shown in Figure 2.14 will be demonstrated repeatedly in the present work, but
the description of oscillations and regimes are significantly different as described in Chapter 4

An investigation into the operational modes of an SPT-100ML was performedebinBin
which four different modes were identified by varying discharge voltage. [62] The modes are
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Figure 2.14: Discharge current as a function of magnetic field with constant discharge voltage
showing the size operational regimes defined by Tilinin. Reproduced from Figure 5 of Ref. 61.

shown in Figure 2.15 with names that qualitatively describe the discharge current signal shape:
irregular mode (100 V), fluctuating mode (300 V), oscillating mode (400 V) and pulsed mode
(600 V). The shape of the discharge current trace for oscillating and pulsed mode are similar to
global mode discussed in Chapter 4, as well as the marked increase in discharge current and de-
crease in thruster efficiency.

An ATON type thruster called the A53 was developed by SNECMA and used for characteriza-
tion testing. [63] ATON thrusters are magnetic layer thrusters, but the gas is injected into a buffer
chamber behind the anode instead of the anode acting as the gas distributor. The magnetic field
shape is also different with a magnetic null point in the center of the channel cross section. This
thruster has an external cathode similar to the SPT-100. By changing the magnetic coil currents
to change the magnetic field strength, two different modes were induced called “spike” mode and
“swallow tail” mode. [63] The names for these modes are inspired by the shape of the plume as
shown in Figure 4.26 of Section 4.7.

These operational mode investigations and classifications are useful and underscore the impor-
tance of understanding the oscillatory characteristics of HETs. As noted by Zhurin [64]: “oscilla-
tions at conditions of otherwise poor electron mobility provides the necessary electric conductivity
for operation.” However, modern HETs such as the H6 discussed in Section 3.3 have benefitted
from a half century of research, development and flight history that has improved magnetic field
topology, magnetic circuit design, and anode design (gas injection) amongst other improvements.
In addition, significant advancements have been made in the field of high-speed diagnostics due to
advances in electronics. All factors combined, a renewed investigation into oscillations and oper-
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Figure 2.15: Discharge currents as a function of time at four discharge voltages for constant Xe
gas flow of 3.5 mg/s in an SPT-100ML with 4.5 A coil current . Four modes are identified: I)
Irregular at 100 V, 1) Fluctuating at 300V, I1l) Oscillating at 400 V, and IV) Pulsed mode at 600 V.
Reproduced from Figure 6 of Ref. 62

ational modes using the latest advancements in time-resolved plasma measurements is warranted
and presented here.

A general description of mode transitions can be deduced from the previous research as the
point where a sharp discontinuity is observed in the mean discharge current, discharge current
oscillation amplitude and plasma oscillations while varying one parameter and maintaining all
others constant. More recent studies have identified two primary operational modes [41, 65—-67]
In one mode, the discharge current oscillation amplitude is small with respect to the mean dis-
charge current value, while after the mode transition the mean discharge current rises sharply as
well as the oscillation amplitude. Two mechanisms may play a role in mode transitions. The first
idea involves wall effects and has been proposed with accompanying physical mechanisms and
models. The second idea involves more recent investigations that suggest the plume physics in
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the region immediately downstream of the discharge channel exit (near-field plume) has an in-
fluence on mode transitions, although the physical mechanisms were beyond the scope of that
study. While the answer is likely a combination of the two ideas (and possibly other ideas not
yet proposed), investigating the plasma oscillations during mode transition offers insight into the
underlying mechanisms. This investigation only considers magnetic layer thrusters with deep dis-
charge channels and non-conducting walls, but anode layer thrusters have exhibited similar mode
transitions [68] to those described below.

2.4.2 \Wall Effects

Gascon [65] investigated different wall material effects on SPT-100 thruster operation including
borosil (BN-SiQ), alumina (AbOs), silicon carbide (SiC) and graphite (C). The significant differ-
ences among these materials include ion bombardment sputter yield, secondary electron emission
yield coefficients, electrical conductivity (especially graphite), and thermal properties. Here we
only discuss the borosil results as the closest to the Boron Nitride (BN) used in the H6. Varying
the magnetic field by changing the magnetic coil currég} &s shown in Figure 2.16 results in

a sharp mode transition between 3.5 and 4.0 A. Below the magnetic field transition threshold the
mean discharge currenkp) and discharge current oscillation amplitudes increase significantly.
This work was related to a previous study by Gascon [69] where azimuthally spaced probes were
used to investigate wave propagation and mode transitions were also observed.

In a companion paper to Gascons later work, Barral [66] expanded on the ideas of Baitin [70]
and Jolivet and Roussel [71] who considered the effect of secondary electron emission on sheath
potentials in HETs. A 1-D axial fluid model was developed that accounts for electron temperature
anisotropy with different electron temperatures parallg|, and perpendiculaile;, to magnetic
field lines. The sheath potentiah®s, from balancing ion and electron flux to the wall with
effective total secondary electron emission yietdjs

_ kgTey [ m

wherem is the ion massy is the electron masg,is the elementary charge akglis Boltzmann'’s
constant. Once approaches unity, Equation 2.48 results in a singularity and the sheath transitions
to a Space Charge Saturation (SCS) regime where the potential is no longer monotonically chang-
ing from the plasma to the wall. This results in a potential well that traps electrons near the wall as
shown in Figure 2.18. The mean energy of electrons at the gyailhich is a function ofl¢ and
Te., determinesr and was based on a linear fit to experimental data.

The classical cross-field mobility for electron transport was used in the 1-D model so no ad-
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Figure 2.16: SPT-100 mean discharge Figure 2.17: Simulated discharge cur-
current (crosses) and oscillation extremarent of an SPT-100 from 1-D fluid model
(triangles) for anode flow rate of 5 mg/s with magnetic field variations for differ-
and 300 V discharge voltage with vari- ent wall materials. The steep rise in dis-
able magnetic field strength representedcharge current is attributed to the SCS
by magnetic coil current. Reproduced transition.B; is the maximum radial mag-

from Figure 2 of Ref. 65 for borosil. netic field andB; is the nominal value.
Reproduced from Figure 10(b) of Ref.
66.

justable parameters to account for anomalous electron transport were used to fit experimental
data. [66] Therefore, the simulation results can only be qualitatively compared to experimental
results. When the mean electron energy at the wéd function of ¢ and Te ) for a given ax-

ial position in the discharge channel exceeds a material dependent crossover(enesty then

o — 1 and that position on the discharge channel wall sheath is in SCS. As discharge voltage
increases and more energy is available to incrdagend Te, or as the magnetic field strength
decreases and energy is more easily transferred across magnetic fiéldfimegeases and more

of the channel length is in SCS. The SCS regime starts at the maximum radial magnetic field
strength location where the electron temperature is highest, which is at the exit plane for the SPT-
100, and migrates upstream in the discharge channel towards the anode as discharge voltage and
magnet coil current change.

The magnetic lens topology in Figures 2.7 and 2.19 show the magnetic field lines converging
towards the discharge channel walls. A trapped population of electrons near the walls would have
greater access to field lines that extend deeper into the channel closer to the anode, thus facilitating
cross-field transport. In addition, a higher electron density would increase collisions with the walls
enhancing near-wall conductivity from scattering collisions as discussed in Section 2.3.7.2. The

4The decrease in B-field strength causes an increase in electron mobility such that higher temperature electrons in
the ionization region can diffuse farther into the channel to propagate the SCS regime.
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duced from Figure 3 of Ref. 66. Ref. 72.

implication is the potential well near the wall surface for regions in SCS provides the electrons
an easier path across magnetic field lines. As the SCS region grows along the channel length, the
low impedance path eventually reaches a region of lower magnetic field (increased mobility) or
where the magnetic field lines are parallel to the wall and the electrons can easily reach the anode,
resulting in a significant increase in discharge current. The magnetic field lines for the SPT-100B
are shown in Figure 2.19. Note the magnetic field lines intersect the wall perpendicularly (almost
purely radial in direction) at the exit plane in the location of maximum radial magnetic field, but
the magnetic fields at the inner wall have a large axial component (parallel to the wall) farther
into the discharge channel where the field is weaker. The model used in Ref. 66 is 1-D (axial)
and only considers a radial magnetic field, while Figure 2.19 clearly shows the magnetic field
has significant axial and radial components upstream from the exit plane. The qualitative shape
of the transition between high-current to low-current is captured by the model and SCS theory
as shown by comparing Figure 2.16 to Figure 2.17, however the quantitative magnitudes differ
without empirical coefficients for electron transport.

2.4.3 Near Field Plume

Brown [41] showed that at low discharge voltages (100-120 V), the H6 thruster would operate
either at a high-efficiency “low-current” mode with low mean discharge current values and low-
amplitude oscillations, or low-efficiency “high-current” mode with high mean discharge current
values and strong oscillations. It is important to note that the transition between modes occurred
by making slight changes in either magnetic field settings, background vacuum chamber pressure,
or cathode flow rate, or by introducing ambient gas near the center-mounted cathode. Varying
discharge voltage for various Cathode Flow Fraction (CFF) in Figure 2.20 showed the discharge
current decreased by approximately 10% when transitioning from “high-current” to “low-current”
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Figure 2.20: Change in discharge current between high-current mode and low-current mode for
the H6 at low voltages. Reproduced from Figure 9 of Ref. 41.

mode. Figure 2.20 also shows the transition occurs at higher discharge voltage for lower CFF.
From Figure 13 of Ref. 41 the discharge current Power Spectral Density (PSD) decreased by over
two orders of magnitude when transitioning from the “high-current” mode to the “low-current”
mode. Note that for this study, the magnetic field was varied in order to maximize thruster effi-
ciency. This transition occurred at higher voltages (closer to nominal levels) and at lower chamber
pressure, suggesting that the thrusters may operate differently in the space environment than in
ground test facilities. During the transition from “high-current” to “low-current” modes, the thrust
remained constant, but the decreased discharge current resulted in up to a 20% increase in thrust-
to-power. Using an array of plume diagnostics including a nude Faraday probe, retarding poten-
tial analyzer and cylindrical Langmuir probe, Brown showed the transition from “low-current” to
“high-current” modes corresponded to increased electron current to the anode and is therefore re-
lated to increased electron transport. Although no physical explanation is offered for the observed
transitions, the effect of ambient chamber pressure, cathode flow fraction and augmented xenon
flow at the cathode exit hint at a near-field plasma plume mechanism involving neutral density,
collision rates and electron mobility for mode transitions without any consideration of wall effects,
which is in contrast to the ideas of Gascon and Barral [66].

Further research by McDonald [67] using ultra-fast imaging on the H6 in low-voltage operation
was the first to show the transition from “high-current” to “low-current” modes correlated with the
formation of spokes. Figure 7 from Ref. 67 shows that strong discharge current oscillations or
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strong azimuthal oscillations could both be achieved at a discharge voltage of 105 V by variation of
CFF at constant magnetic field settings. Note that Brown [41] observed hysteresis at this condition
where the thruster could be in either mode. Based on the parametric study, McDonald noted that
the operating mode was a stronger function of magnetic field strength than discharge voltage.

2.4.4 Summary

In order to understand HETs and develop first-principles based models, the question of anomalous
electron transport must be resolved. The transition between modes causes a change in electron
current to the anode, implying that understanding mode transitions could offer insight into the
unresolved question of anomalous electron transport. Furthermore, tens of kilohertz oscillations
where breathing mode oscillations and azimuthal spoke oscillations dominate could play a critical
role in electron transport. The previous research cited above suggests two completely different
scenarios for mode transition: 1) Plasma interaction with the wall inside the discharge channel;
and 2) Near-field plasma plume properties that affect the upstream discharge channel plasma. The
research reported on below uses time-resolved plasma diagnostics to study plasma oscillations
during induced mode transitions.

2.5 Oscillations

2.5.1 Oscillations Overview

Although HETSs are steady-state devices, they contain a rich menagerie of plasma oscillations
across the frequency spectrum from 1 kHz to 60 MHz [64, 73] and higher with the breathing mode
and rotating spokes modes of primary interest. The so-called breathing mode, a global depletion
and replenishment of neutrals akin to the predator and prey models of ecosystems, is commonly
observed in HET operation [5, 74, 75] and numerical models [33, 34, 76, 77] from 15-35 kHz.
The spoke modes are azimuthally propagating radially oriented disturbances (spokes) travelling
within the channel in th&; x B, direction. Both phenomena are believed to be related to ioniza-
tion processes and it is uncertain how they interact or feed off each other, however, it is strongly
suspected these modes greatly affect anomalous electron transport. Janes and Lowder [47] first
discussed oscillating azimuthal electric fields as the cause for spokes and electron transport. Mc-
Donald [6,67,78,79] and Raitses et al [80—-82] further explored whether so-called spokes (rotating
azimuthal waves) could explain anomalous electron transport, but further conclusive evidence is
needed. Many numerical models exist for Hall thrusters that focus on steady state operation and
performance [3, 83, 84], but a few select models have focused on the oscillations present in Hall
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thrusters. The breathing mode has been numerically modeled by Fife [77], Boeuf [76], Barral
et al [33, 85], Hara [34, 86], Adam [50] and Szabo [51]. Additional azimuthal studies have been
performed by Hirakawa [87,88] and Lam et al [89].

2.5.2 Breathing Mode

The breathing mode oscillations are the most widely studied HET oscillation in the literature dat-
ing back to the pioneering work of early Soviet researchers, [61,90,91] where it is also known as
the “current,” “loop,” or “contour’oscillation. The breathing mode did not gain acceptance as an
ionization related instability until the 1990’s [33]. The term “breathing” mode oscillation derives
from the numerical studies cited here where the ionization front is shown to move back and forth
in the discharge channel and the thruster appears to inhale neutrals and exhale plasma. This quali-
tative picture has been further visualized in the time-resolved plasma parameter measurements by
Lobbia. [5, 74]

Fife [77] conducted a 2-D model in the axial and radial direction where the electrons are treated
as a Maxwellian fluid and the ions and neutrals are modeled by PIC. The 2-D numerical simula-
tions were able to reproduce a breathing mode of 11 kHz for an SPT-100 type thruster, which is
close to the~ 30 kHz typically seen during operation. A simple 0-D model was developed for the
discharge channel based on influx of neutralsputflow of ions,n;, and ionization ratek;

on \;

_at“ = —k;nnn; + n”f? (2.49)
on; \Y
8_tl = kinpn; — nifli (2.50)

which is the form of the Lotka-Volterra predator-prey equations. To carry the predator-prey analogy
further, the electrons act as the predators and neutrals as prey; quasi-neutrality is assumed so ion
and electron density are equaj € ng). Linearizing and solving the undamped, harmonic oscillator
equation yields an oscillation (breathing mode) frequency of

fo ViVn (2.51)

" 2nl
Laser Induced Fluorescence (LIF) was used to measure a neutral velocity at the H6 exit plane
of approximately 300 m/s with a 250 V discharge and 10 mg/s anode mass flow rate. [92] In
addition, extensive thermal characterization was performed on a three-channel NHT [93] including
simulation and measurements during operation. The results in Figure 5.6 and 6.17 of Ref. 93 show
that most regions of the thruster near the anode (channel cups and magnets) were in the temperature
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range of 200-400C or 473-673 K. It is reasonable to assume the anode is in this temperature range
so the neutral velocity is likely 280-330 m/s, which agrees with the H6 measurements. The fluid
analysis of Barral [33] assumes 200 m/s neutrals, which is approximately room temperature. These
velocities are all of the same order of magnitude and will not greatly affect the analysis.

Assume a thermal velocity of 300 m/s for gas entering the discharge channel of an SPT-100,
the ions are accelerated through a 200 V potential, and the ionization region towerd an, the
breathing mode frequency from Equation 2.51 would be 24 kHz. Similarly, a neutral velocity of
200 m/s yields a frequency of 20 kHz. The breathing mode frequencies for these types of thrusters
are typically a few to 10's kHz, so this simplistic model is of the correct order to capture what
has been observed experimentally. Barral [94] pointed out that not only is the above model overly
simplistic (assumes all neutrals are ionized and does not consider losses), but it is fundamentally
flawed in that the influx of neutrals in Equation 2.49 is dependent on a priori knowledge of neutrals
inside the chamber (thgv,/L; term). This is not realistic because the influx of neutrals is constant
without regard to the population of neutrals in the volume.

200 200 = 200

Time (ps)
S

50

Position {cm) Paosition (cm) Pasition {cm)

Figure 2.21: Time-resolved numerical simulations of the breathing mode. Left: neutral density
with units of 132 cm=3, Center: ion density with units of 10 cm~3, Right: axial electric field

with units of V/cm. Reproduced from Figure 8, 9 and 10 (left, center and right, respectively) of
Ref. 76. Lines have been added to guide the eye for pre-avalanche ionization (top), post-avalanche
ionization (bottom) and neutral refill (middle).

Boeuf [76] used a 1-D axial hybrid transport model where electrons are a fluid and ions are
described by a collisionless kinetic equation with quasi-neutrality assumed throughout; the neutral
density is modeled with the continuity equation. The computations were performed for an SPT-
100, with an outer channel wall diameter of 100 mm and channel length of 4 cm. In performing
a 1-D axial (zdirection) simulation, the thruster discharge channel is assumed to be axisymmetric
in the 6 direction and uniform in the direction. Results for neutral density, plasma density and
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electric field are reproduced in Figure 2.21. The following is Bouef’s description of the breathing
mode: [76]

“The current oscillations are associated with a periodic depletion of the neutral atom
density near the exhaust of the SPT. The magnetic field is large in this region, and
the resulting low electron conductivity leads ... to an increase of the electric field in
order to maintain current continuity. The electron temperature and ionization rate are
large in this region and the neutral flow tends to be quickly ionized by the electrons.
This depletes the neutral atom density and the front of the neutral flow moves back up-
stream inside the column to a region where the electric field, mean electron energy and
ionization rate are lower. The plasma density near the exhaust decreases drastically as
the neutral atom density is depleted. Due to the corresponding decrease of the electron
incoming flux at the exhaust the neutral atoms can flow again to the exhaust without
substantial ionization, and the neutral density increases in this region. The increase of
the xenon density in the large electric field region makes possible an increase of the
ionization in this region, which leads to a depletion of the neutral atom density and so
on.”

Barral has done extensive simulations for the Hall thruster breathing mode with a series of
publications [33, 85,94, 95]. An SPT-100 type thruster was simulated with an outer channel radius
of 5 cm, but a channel length of only 2.5 cm using fluid equations. The results from Ref. 33 are
reproduced later in Figure 6.1. Section 6.5 will use this fluid model to investigate breathing mode
triggers and damping. Hara [34, 86] uses a direct kinetic simulation for ions with comparison
between direct kinetic and continuity models for neutrals and a simple fluid model for electrons.
The approach has recovered the breathing mode for the SPT-100 of approximately 20 kHz. This
work will also be discussed in more detail in Section 6.5. Adam [50] used a fully kinetic two-
dimensional simulationz- ) of an SPT-100 type thruster and one month of computation time
which reproduced a 16-kHz oscillation in the axial direction that was identified as the breathing
mode. Finally, Szabo [51] used a fully-kinetic, time-resolved, PIC simulation that reproduced the
breathing mode and reasonably matched the plasma properties and performance of a BHT-1000.

The breathing mode oscillations originating in the discharge channel also affect the downstream
plasma density as measured by the revolutionary HDLP and spatio-temporal data fusion techniques
developed by Lobbia. [5, 96, 97] Figure 2.22 shows how the electron density varies throughout a
breathing mode cycle in a planar region 2.5 mean channel diameters radially and 2.25 mean channel
diameters axially beginning 2.5 mean channel diameters downstream from the thruster exit plane
measured at 400 kHz. These measurements support the characterization of these discharge current
oscillations as a “breath” of plasma exiting the thruster.
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Figure 2.22: Breathing mode oscillations seen as electron density oscillations in the plume of a
two-channel NHT measured with high-speed probes using spatio-temporal data fusion. For each
of the 18 frames, th&-coordinate is axial extent from 2.5 to 4.75 mean channel diameters down-
stream from the exit plane, and thiecoordinate is radial extent from -1.25 to +1.25 mean channel
diameters about thruster centerline. Reproduced from Figure 8 of Ref. 74.

The evolution of the breathing mode cycle from Figure 2.21 and Figure 6.1 will be discussed
in more detail in Section 6.5.1. It is important to note the amplitude of oscillations in the plasma
properties from these simulations. The change can be a factor of 2-3 up to an order of magnitude
in plasma and neutral density as will be shown in more detail in Figure 6.6. This violates the
assumptions used in typical linearized analysis for plasma waves wjieren,/n, ~ 0.10—0.5.

In summary, the mechanism behind the breathing mode is reasonably supported from numerical
simulations, but a fundamental theory for the initiation mechanism and stability analysis is lacking.

2.5.3 Azimuthal Spokes

A coherent theory with supporting experimental evidence for spoke propagation has yet to emerge,
[73] and the location in the plasma of their formation and mechanism for propagation are unknown.
However, there has been no shortage of research published on azimuthal oscillations since the early
work of Morozov, Tilinin and Espipchuk [91] in the former Soviet Union and Janes and Lowder
[47] in the United States. Recently, Escobar provided an excellent overview of experimental,
theoretical and numerical research on azimuthal oscillations [98]. Spoke theories, mechanics and
observations will be discussed in more detail in Chapter 5 with a brief summary presented here.
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2.5.3.1 Experiments

The original work by Janes and Lowder [47] detected azimuthal oscillations with probes in the
discharge channel where they even noted a spoke angle with respect to the walls. However, their
experimental setup had significant differences from modern HETS. The experiments of Lomas [99]
supported Janes and Lowder’s original work, although it was conducted on a Hall accelerator using
hydrogen.

Chesta [75] used probes downstream of the discharge channel exit plane and observed spokes
propagating in the plume at least one channel diameter downstream. While investigating mode
transitions, Gascon [69] used azimuthally space probes to investigate wave propagation in the
Stanford Hall Thruster similar to the work presented here. McDonald [6,67,78,79, 100] has done
extensive work analyzing azimuthal spokes in the same H6 thruster used in the present investigation
using the ultra-fast imaging techniques described in Section 3.5. McDonald’s findings will be
referenced for comparison throughout this work.

Recent work on a Cylindrical Hall Thruster (CHT) [80, 82] has demonstrated that 50% of the
discharge current is carried through a single spoke. The CHT results have questionable relevance
due to the significant difference in geometry (no inner channel wall) and magnetic field topology
versus the H6, SPT-100 or other annular HETSs.

2.5.3.2 Linearized Waves

The body of literature on dispersion relations for various waves is voluminous and the most rel-
evant are presented here. A drift relation shown by Esipchuk [91] that accounts for density and
magnetic field gradients has been used to reproduce azimuthal oscillations in the 10’s kHz in the
near-field plume of an SPT-100. [73] Kapulkin [101] developed a similar dispersion relation anal-
ysis for the near-anode region of an SPT-100, which is also very applicable to the H6 conditions
tested here. Frias recently developed two new dispersion relations; one accounts for electron flow
compressibility and the other includes temperature oscillations and gradients. [102,103] The lin-
earized 2-D axial-azimuthal models by Chesta [104] and Escobar [98] that account for ionization
and neutral density are also relevant. A dispersion relation developed by Ducrocq [48] to study
high-frequency azimuthal oscillations has been used by Cavalier [49] to nhumerically investigate
azimuthal waves and found modes that resemble ion acoustic waves. Finally, Smoldevy [105] de-
veloped a dispersion relation with unstable modes that couples bulk plasma oscillations with the
wall sheaths and bears resemblance to ion sound waves.
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2.5.3.3 Simulations

Hirakawa conducted PIC simulations for ions and electrons with collisions and neutral density
modeled by Direct Simulation Monte Carlo (DSMC). [87, 88] Azimuthal perturbations in plasma
density were observed in the simulations with azimuthal electric fields peaking at 60 V/cm. Hi-
rakawa noted from Janes and Lowder’s original work [47] that if the oscillatory azimbjtfegld
crossed with the steady radial magnetic fiBjdare in the correct phase with the peaks in electron
densityne, then ankgy x By drift will be produced towards the anode which could account for the
anomalous electron current.

Lam [89] published & - 6 fluid simulation that shows promise to numerically investigate the
combined axial breathing mode and azimuthal spoke modes. Unfortunately, the simulations end
at 1-3us due to computation difficulties, which is far too short to capture either mode which are
expected to be of the order 10’s kHz. The simulation duration must be of the orden&00ith
timesteps less thanyis to capture the oscillations of interest.

Adam [50] used a fully kinetic two-dimensional simulatian-(©) of an SPT-100 type thruster
to reproduce a 16-kHz oscillation in the axial direction and high-frequency (low-wavelength) os-
cillations in the azimuthal direction. However, the azimuthal extent of the domain was too short to
capture long-wavelength or low wave number oscillations. The azimuthal spokes observed here for
various spoke orders have wave numbers in the ranige-080— 80 rad/m. This is two or more or-
ders of magnitude lower than the findings of other work [48-50] that investigate short wavelength
(~rL.), large wave number oscillations that resemble plasma turbulence and enhance cross-field
electron transport.

What is needed is a— 6 simulation, which can be kinetic, fluid, PIC or a hybrid of any of
these, that can resolve time steps ofslor less (in order to resolve 10’s kHz oscillation) and wave
numbers less than 100 rad/m. The domain should be from the anode out at least one channel width
downstream of the exit plane for a time duration of several hundred micro-seconds. Finally, in the
limit of 1-D in the z-direction, it should recover the 10-30 kHz axial breathing mode.
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CHAPTER 3
Experimental Setup and Analysis

“If a scientist is not befuddled by what they’re looking at, then they’re not a research
scientist”
— Neil deGrasse Tyson

3.1 Introduction

This investigation uses the well-characterized H6 HET to study mode transitions by varying mag-
netic field strength for various operating conditions. High-speed diagnostics including ultra-fast
imaging and probes provide valuable insight into plasma oscillation changes during mode transi-
tions. The purpose of this chapter is to explain the experimental setup used for the testing including
facilities in Section 3.2 and the thruster in Section 3.3. The analysis techniques that are at the heart
of this investigation, the HDLP-ISR and HIA are discussed in detail in Sections 3.4 and 3.5, re-
spectively.

3.2 Plasma Dynamics and Electric Propulsion Laboratory

3.2.1 Large Vacuum Test Facility

This investigation was conducted in the Large Vacuum Test Facility (LVTF) of the Plasmady-
namics and Electric Propulsion Laboratory (PEPL) at the University of Michigan. The LVTF is

a 200 n? stainless steel-clad vacuum chamber 9 m long and 6 m in diameter. Rough vacuum is
achieved with two 57 fimin (2000 cfm) blowers backed by four 1fmin (400 cfm) mechanical

pumps with a final base pressure in the low 1Torr achieved by seven CVI TM-1200 re-entrant
cryopumps with LN baffles and a nominal pumping speed of 500,000 L/s on air or 245,000 L/s

on xenon. During thruster operation, the chamber pressure is measured with an external ion gauge
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mounted at the top of LVTF above the thruste3(m away) and the pressure measurement un-
certainty was estimated to be 20%. [106] Pressure varied for conditions based on anode flow rate
but with a fixed chamber pumping speed. The xenon corrected chamber pressures wéas8.5
1.1x107° and 1.4x 107° Torr for 14.7, 19.5 and 25.2 mg/s anode flow rate, respectively. A more
complete discussion of pressure measurements and pressure effects on HET operation is provided
by Walker. [107] Using a gas kinetics relation for mass flux [168]= 1/4nNMNVinyAchnl, @n
ambient pressure ofxX1107° Torr and room temperature neutrals because they have thermalized
with the chamber walls, the mass flow rate into the discharge channel from ambient neutrals is
0.06 mg/s, which is less than 0.5% of the lowest anode flow rate used in this investigation. There-
fore, background gas should not significantly affect neutral densities within the channel, but may
play a large role in processes that occur outside the channel.

Discharge voltage and current to the thruster were supplied with an Amrel 100-kW DC power
supply across a 102F Maxwell Laboratories Caster Oil capacitor. Telemetry including mean
discharge current, cathode-to-ground voltage, discharge voltage, inner and outer magnetic coil
currents and voltages were measured at 1-s intervals with an Agilent 34970A Data Logger and
recorded on a computer using Agilent Benchlink software. The discharge voltgageias mea-
sured using sense lines on the anode and cathode. Sense line raw voltage signals were sent to a
10,000:1 voltage divider that was calibrated with a BK Precision 5491A multimeter. Mean dis-
charge currentp = (Ip(t)) where() denotes the average was measured with an NT-50 FW Bell
sensor. Magnet coil currents were measured with IDghunt resistors. All currents were cali-
brated using a precision 10-m®@sistor accurate to 0.1% and a BK Precision 5491A multimeter.
Plume photographs were taken with a Nikon D80 digital camera with a DX AF-S Nikkor 18-
135 mm lens set to 5.6, 1/100 s shutter speed and manual focus.

Xenon gas (Research Grade 99.999% pure) was used for the anode and cathode for all testing.
The xenon propellant is delivered to the HET using Alicat Scientific MC Series mass flow con-
trollers through electro-polished stainless steel lines. Mass flow calibration takes place through a
Bios Definer 220L DryCal system plumbed in parallel to the anode and cathode feed lines with
a measurement accuracy of 1% of the reading between 5 and 500 sccm. Mass flow calibrations
are taken for each mass flow controller at several flow rates and a linear fit is used to determine
the flow produced at any arbitrary set point. The AC component of the thruster discharge current,
Ip,c(t) was measured either with a Tektronix TCP 312 (DC to 100-MHz bandwidth) or TCP 303
(DC to 15-MHz bandwidth) split-core Hall current sensors through a Tektronix TCPA 300 current
probe amplifier. The signal was measured on the discharge current line external to the chamber
on the anode side and was acquired simultaneously with Langmuir probe (HDLP-ISR) signals on
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the same Data Acquisition (DAQ) system described later. The total discharge current, time history
signal is the combination of the two measurements

Ip(t) = Ip + Ip,c (1) (3.1)

Discharge current oscillation amplitude will be defined here as the root-mean-square (RMS) of the
AC component of the discharge current time history signal in amperes

o= \/{(100-10)°) = (10, )2 (32)

Note that Equation 3.2 is the square root of the sample variance for a samph aienot the
square root of the bias-corrected variance which would héMe-1 in the denominator. The
difference is negligible for the discharge current signal where the samplbl $&deetween &k 10°

and 45x 10° points. The relative discharge current oscillation amplitude is the RMS value fraction
of the mean discharge curreﬁj/ﬂ). The normalized, AC component of the discharge current,
Ib(t), is calculated from the discharge current time-history signal, by

. Ip(t) - It
(o(t) = o(®-1o (3.3)
Ip
Discharge current density averaggand time historyjp(t) values are defined as
- _Ip
= 3.4
o=a - (3.4)
Ip+Ip,e (t
jD(t): ID(t): D+ DAC() (35)

Ach Ach

whereAgh = n(R% - RZ) = 2nRc:nWe is the area of the discharge channel with outer and inner radius,
R, and R, respectivelyRq, is the mean channel diameter ang, is the channel width.

3.2.2 Motion Tables

Two perpendicularly-mounted motion stages, one radial and one axial, were used to acquire plasma
plume data in a 2-D plane. The radial stage is a 1.5 m long Aerotech ATS62150 ball screw stage
driven by a stepper motor as shown in Figure 3.1. It is used in open loop position feedback mode
with a 15-V string potentiometer to monitor the radial stage position during movement. The axial
stage is a 0.5 m long Parker Trilogy T2S I-Force Ironless Motor Positioner, a linear motor capable
of a maximum of 6 g acceleration and 5 m/s velocity. This stage is better known as the High-
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Figure 3.1: HDLP-ISR mounted on HARP shown at full extension to the discharge channel exit
plane (zR:nn = 0) on cathode centerling {Rchn = 0). Note the ISR probe is over the outer pole.
This configuration was used to generate the plume maps in Appendix B.

speed Axial Reciprocating Probe (HARP) and is used for axial injection of plasma probes into

the thruster plume as shown in Figure 3.1. It operates in a closed loop position feedback mode
with 5 um resolution Renishaw LM10 encoder. Both stages are operated by Aerotech motion

controllers, an Aerotech MP10 for the radial stage and an Aerotech CP20 for the axial HARP

stage, that are both automated from LabView.

3.2.3 Thrust Stand

PEPL uses an inverted pendulum thrust stand based on the NASA Glenn Research Center (GRC)
design of Haag [109] to measure thruster performance. This design has extensive heritage for
testing electric propulsion devices. [44,110,111] In summary, the inverted pendulum thrust stand
operates in null mode using a Proportional, Integral, Derivative (PID) controller and a solenoid
actuator to maintain the pendulum in a vertical position based on feedback from a Linear Variable
Differential Transformer (LVDT). The thrust stand tilt must remain constant throughout operation,
which can shift during pump down and thruster operation due to thermal expansion of structural
components. An inclinometer is used to monitor thrust stand tilt and manual adjustments are
made with a control motor as necessary. A cooling loop with glycol powered by a Polyscience
Durachill 6860T chiller with 5.2 kW cooling capacity is used to thermally regulate the thrust
stand. The thruster was operated for over three hours before any data were acquired in order
for the thruster and thrust stand to reach thermal equilibrium. Even if the thrust stand were not at
complete thermal equilibrium, this is accounted for by taking zero values at regular intervals where
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the thruster is briefly turned off and the zero output is recorded. The thrust stand was calibrated
by lowering and raising a series of high-precision weights to ensure a linear response. Calibration
was performed before thruster operation, two times during testing when the thruster was briefly
turned off, and once again after testing was complete. All calibrations showed a linear response
and were combined to generate the thruster calibration curve to convert PID controller output in
volts to thrust in mN.

3.3 H6 Thruster

The H6 Hall thruster shown in Figure 3.2 is a 6-kW class Hall thruster with a nominal design
voltage of 300 V and a 7% CFF. CFF is the mass flow rate of gas through the cathode divided by the
mass flow rate of gas through the anode, CRR.AM,. It uses a hollow cathode with a lanthanum
hexaboride (LaB) insert that can either be mounted centrally (on thruster centerline which is the
nominal configuration) or mounted externally. The inner magnet colil is one, continuously wound
solenoid core while the outer coil consists of eight discrete solenoid cores wound in series and
separated by 45 The outer pole is designed such that inside the discharge channel the magnetic
field shown in Figure 3.2 (Right) is azimuthally uniform to less than one Gauss. Note that the
magnetic field within the discharge channel cross-section is radially symmetric about (mirrored
above and below) discharge channel centerline from the anode to the exit plane, [42] whereas the
SPT-100 magnetic field shown in Figure 2.19 is not. The H6 was a joint development effort of
the University of Michigan, the Air Force Research Laboratory (AFRL) at Edwards Air Force
Base (AFB), and the NASA Jet Propulsion Laboratory (JPL). A separate copy of the thruster is
maintained at each institution. It is notable for its high total efficiency; e.g., 64% at 300 V (6 kW)
with a specific impulse of 1950 s, and 70% at 800 V (6 kW) with a specific impulse of 3170 s. [37]
Slightly different nominal operating conditions are used between institutions.

At the University of Michigan, work by Reid [44], Shastry [110], Huang [112] and McDonald
[6] studied H6 operation between 5 and 30 mg/s flow rates, but primarily focused on 20 mg/s for
~ 6-KW operation at 300 V. Work by Hofer at JPL has tuned the H6 to even discharge currents and
power levels; i.e., 20 A for exact 6 kW operation at 300 V. For xenon these operating conditions
vary only by a few percent in current or mass flow rate (1 mg/s~X& A discharge current),
but peak magnetic field strengths between the two cases may vary by up to 15%. At the 300V,
20 mg/s, 6.1 kW Michigan operating condition, the H6 has a 20.3 A discharge current and produces
397 mN of thrust at a specific impulse of about 1900 s. [44] At the nominal 300V, 20 A, 6 kW JPL
condition, the specific impulse is 1950 s with a thrust of 401 mN. [37]

Since first firing in 2006, the H6 has been well characterized by a variety of diagnostic and
modeling techniques at Michigan, AFRL and JPL. Six experimental doctoral dissertations have
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Figure 3.2: (Left) H6 with direction of magnetic field arfitix B shown. (Right) Profile picture
of the H6 operating at nominal conditions with magnetic field stream lines overlaid and discharge
channel outlined.

focused on the thruster to date, [6, 44,110, 112-114] which have spawned numerous associated
conference and journal articles. Modeling of the H6 has been performed using the hybrid PIC
simulation HPHall-2 [115] and the more recently developed fluid code Hall-2De. [83] The H6 is

a well-characterized HET with multiple references for steady-state values and provides an ideal
platform for high-speed investigations of oscillatory plasma phenomena.

The flow rate of 19.5 mg/s is the nominal setting used for comparison in this work and the
cathode flow fraction of 7% was maintained for all conditions. Centerline cathode mounting is
the nominal configuration of the H6 as shown in Figure 3.2 and Figure 3.3 (Left), but an external
cathode configuration was also tested as shown in Figure 3.3 (Right). The only data presented here
for the external configuration are for the nominal 300-V, 19.5-mg/s case. Unless explicitly stated,
all data shown below are for the centerline-mounted cathode configuration.

The magnetic field shape shown in Figure 3.2 (Right) was kept constant during testing, though
the magnitude, noted I8 /By, was varied throughout the testing in order to induce a mode change
within the H6. The quantity,/B; is the maximum radial magnetic field value at a particular
setting of inner magnet () current and outer magndigy) current (;m/lom = 1.12) divided by
the reference maximum radial magnetic field. The reference magneticBjgldt(ength at 300 V
and 20 A discharge current whg, = 3.50 A andlom = 3.13 A, which maximizesotal efficiency
according to Hofer. [22] This magnetic field strength was used as the non-magnetically shielded
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Figure 3.3: Internal cathode (Left) and external cathode (Right) configurations shown with probes.

thruster baseline to compare with a magnetically shielded thruster equivalent during their initial
development. [22,37] Therefore, this setting has been well characterized and is used for the plume
maps presented in Appendix B. However, as will be shown later in Figure 4.30 of Section 4.8,
this reference magnetic field strength does not coincide with maximum thrust to power and anode
efficiency or minimum mean discharge current.

In order to confirm the magnetic field magnitude was varied and not topology, magnetic field
simulations of the H6 were performed using MagNet Version 7.4.1.4 (32-bit) from Infolytica Cor-
poration for all magnet settings used during B-field sweeps. The peak magnetic field value varied
linearly with inner magnet current from the minimum of 1.45 A to approximately the reference
setting of 3.5 A as shown in Figure 3.4. However, a second order, least squares fit best repre-
sents the peak B-field value across the range of magnet coil currents used with the equation shown
in Figure 3.4. This captured the deviation from linearity for the peak B-field that occurred for
lim = 3.5 A. In practice, deviations in the magnetic lens symmetry for the H6, which is an im-
portant assumption in this investigation, begind at ~ 4.5—-5.0 Al The axial location of the
peak B-field did not change to within the 2 mm grid used in simulations. NotingLifat the
channel length, the maximum deviation of B-field direction withiy/2 axial distance from the
exit plane along the outer wall, channel centerline and inner wall was 6.3, 0.9 and 5.9 degrees,
respectively. Foe-Lq,/4 axial distance from the exit plane the maximum deviations were 1.8, 0.3
and 1.9 degrees, respectively. Based on the internal measurements of Reid, [44] most of the ion-
ization and acceleration occurs within the axial region approximatels/4 from the exit plane.
Therefore, the magnetic field shape shown in Figure 3.2 can be considered constant throughout

Personal correspondence with R. Hofer, September 2013.
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Figure 3.4: Normalized maximum radial magnetic fieR} (B;) on channel centerline as a func-
tion of inner magnet current (). A linear least squares fit from the minimum current to the
reference setting is shown as well as"d @der least squares fit over the entire range.

sweeps (validated foB, /B; < 1.2) and the resulting mode transitions are due solely to the mag-
nitude change. This conclusion will be further supported by the fact that mode transitions across
different operating conditions do not occur at any one preferential magnetic field setting.

3.4 High-speed Dual Langmuir Probe with lon Saturation Ref-
erence (HDLP-ISR)

The purpose of this section is to explain the techniques used for the time-resolved probe measure-
ments using the HDLP-ISR. The High-speed Dual Langmuir Probe (HDLP) was developed by
Lobbia [96] and used successfully to measure plasma oscillations in the plume of an HET as the
world’s fastest fully swept Langmuir probe. [74] The work presented here expands on the HDLP
by adding an lon Saturation Reference (ISR) probe to provide the Direct Current (DC) reference
needed by the HDLP, serve as an electrostatic probe for monitoring oscillations, and enable ion
density calculations that are typically corrupted in HDLP signals due to noise. When used as a
simple electrostatic probe, the ISR signal is not dependent on the HDLP signal, so at times it
will be used independently to monitor plasma oscillations. Calculating plasma properties from
the HDLP signal does require the ISR signal. A new method for calculating ion density from a
flowing plasma with a cylindrical Langmuir probe aligned with the flow is reserved for a detailed
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discussion in Appendix A. The time-resolved techniques shown here can also be used to calculate
time-averaged plasma properties as well, which are discussed and shown in Appendix B.

3.4.1 Principles of Langmuir Probes

The first technique for measuring plasma properties was the electrostatic probe developed by Irv-
ing Langmuir circa 1924 [116] and remains one of the most fundamental diagnostics for plasma
measurements today. The Langmuir probe consists of a small metallic electrode, usually a wire,
inserted into a plasma and biased at various voltages to measure the current response known as
I-V traces (for current-voltage). The plasma properties including density, plasma potential and
electron temperature or Electron Energy Distribution Function (EEDF) can be calculated with the
voltage-current traces. Due to their ubiquitous use, Langmuir probe theory has enjoyed consid-
erable attention within the literature [116—123] so only the relevant basics will be recapitulated
here.

Langmuir probe voltages can be varied slowly to generate time averaged measurements of
plasma properties or can be swept fast to measure plasma transients, exemplified by [74] where
the plasma properties and EEDFs were measured at a remarkable 400 kHz. Such measurements
were made possible using the HDLP [5, 96, 124] developed by Lobbia shown schematically in
Figure 3.5. The HDLP uses an active and null probe to cancel the capacitive clyggnt,

generated by rapid, high amplitude (i.e. lathdt) voltage sweeps with the resulting plasma cur-

rents measured by a wideband current transformer manufactured by Pearson Electronics (Pearson
coil) in the vacuum chamber. However, the current transformer cannot measure DC currents so
either a shunt resistor must be used or another reference to the low frequency current is necessary.

3.4.2 lon Saturation Reference

The null probe in the HDLP is meant to cancel capacitive current due to stray and line capacitance
as well as cancel noise incident on both probes, but the plasma sheath capacitance is of order
10’s pF [125]. Consider a50 V, 200 kHz sine voltage signal, the maximulv/dt yields a peak
capacitive current from Equation 3.6 of 688 assuming a 10 pF sheath capacitance. This current
overwhelms the plasma current in the ion saturation region where the current is also of the order
100uA. Therefore, an alternative, reliable measurement of the ion saturation current is needed that
fluctuates with the plasma. The solution is to use a second Langmuir probe several millimeters
or more away, far enough not to disturb the swept probe, but close enough to maintain reasonable
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Figure 3.5: Diagram of HDLP adapted from Lobbia [124] showing active and null probes with
capacitances represented schematically.

spatial resolution. This probe is maintained at a continuous negative bias for time resolved ion
saturation measurements. Additionally, this probe is able to provide the ion saturation portion of
the I-V trace which acts as the DC reference necessary for the HDLP probe which was not provided
by the current transformer. The resulting system is hereby known as the HDLP-ISR.

The ISR signal alone can provide useful information for identifying plasma oscillations without
actually calculating plasma properties. From Equation 3.10 for thin sheath Langmuir probe theory,
lisris linearly related to ion density at constant electron temperature if the probe is operated in
ion saturation

lisr
n = 3.7
' 0.605ApeVET/my 3.7)

Note that ion density calculations in a flowing plasma where the ion velocity is larger than the
Bohm velocity is discussed in Appendix A. Figure B.5 shows a plasma plume map of the H6
with a discharge voltage of 300 V and discharge current of 20 A for the reference magnetic field,
B:/Bf = 1. Using the plume information from Figures B.5(c) and (d), the plasma potential and
electron temperature are 30 V with respect to ground and 3.7 eV, respectively. In order to ensure the
ISR probes are in ion saturation, they must be biased well below the floating potential, which from
Equation 3.15 i3/ = Vp—5.8Te. The ISR probes were biased+80 V with respect to ground,

which is more than 16, below the plasma potential and therefore are safely in ion saturation.

During this investigation, the magnetic field, discharge voltage and flow rate were varied, so the
plume properties will differ from those shown in Figure B.5. However, with a factor of 3 margin

60



(16 Te versus 5.8¢) at nominal conditions, the probes are still expected to be in ion saturation at
the off-nominal conditions.

3.4.3 Linear Correlation

The Pearson linear correlation coefficient or product-moment coefficient of corrgigjisused
to quantify how well two signalsg andy, are linearly correlated [126]

% (Xi = () (Yi —<¥))

(3.8)

Pxy =
\/ > (% = (O0)2 2 (Vi — (y))?
N N

This technique will be used to show the correlation between the discharge current with the ISR
probe signals and between probe signals. The coefficient ranges-frarp,y < 1 where 1 means

the signals are perfectly correlated= y), —1 means they are inversely correlated=(-y) and 0
means they are not correlated. Additionally, the cross-correlation is used extensively to calculate
the time-offset between two signals. The cross-correlation function is [126]

Rxy = Tlinoo % fOT x(t)y(t+7)dt (3.9

Signal delays for non-frequency dispersive propagation can be identified by peRisas is

done with discharge current and probe signals. When calculBpérom Equation 3.9, the AC
component is isolated by subtracting the mean and then normalized by dividing by the RMS value;
the time delay is determined from the largest peaRyjn

3.4.4 Temporal Limits

Lobbia discussed the temporal limits of Langmuir probes in Ref. 124 and only the important results
will be discussed here. A full set of frequency limitations were developed for Langmuir probe
measurements based on plasma properties and probe characteristics. As summarized in Table
1 of Ref. 124, the near-field region for a typical HET has the frequency limits in the single to
hundreds of MHz, which are well above the sweep frequency used here of only 200 kHz. The
stray capacitance is mitigated by the HDLP configuration which uses a null probe. The mutual
capacitance limitation is avoided with the HDLP-ISR because shunt resistors are not used since
the ISR provides the DC reference.
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e gl

Figure 3.6: Two HDLP-ISR probes in position at the 6 o’clock location. A complete HDLP-ISR
consists of an active probe, a null probe and an ISR probe. The exposed Tungsten wire is only near
the arrow tip for the ISR and active probes. This configuration was used for the mode transition
investigations of Chapter 4.

3.4.5 Hardware

A 200-kHz sinusoidal signal generated by a Tektronix AFG3101 is amplified using a Krohnhite
7500 wideband power amplifier capable of DC to 1 MHz output wi#io0-V range to generate

the probe bias. The DAQ system consists of eight channels sampled at 180 MHz with 16-bit
AlazarTech ATS9462 digitizers. The HDLP current is measured with the active and null probe
lines wound in opposite directions through a model 6585 Pearson coil protectively mounted inside
LVTF with less than 2 m of cable length from the probe tip to current measurement location to
minimize capacitance. The ISR current is measured external to LVTF across-a188unt
resistor through an Analog Devices AD 215 120 kHz low distortion isolation amplifier where the
2 — us offset has been accounted for. The s offset was specified on the data sheet and verified
using the AFG3010 and a Tektronix digital oscilloscope.

The probes consist of 0.38 mm diameter pure tungsten wire with 3.2 mm exposed for the
active HDLP probe and 3.3 mm exposed for the ISR probe. For the mode transition investigation
of Chapter 4, the probes in Figure 3.6 were positioned using the 1.5-m-long Aerotech ATS62150
ball screw stage driven by a stepper motor and controlled with an Aerotech MP10 controller. The
probe table was used in open loop position feedback mode with & $&#g potentiometer to
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Figure 3.7: Example time history of probe bias and probe current for the first 0.05 ms of the
channel centerlineR/R, = 1) shot. Each half-cycle of the probe bias was “chopped” into an
individual |-V trace for calculating plasma properties.

monitor the stage position during movement and ensure proper positioning in front of the thruster
to within 5 mm radially. Figure3.6 shows the two HDLP-ISRs in position in front of the thruster 1.5
mean channel radii downstream in the 6 o’clock position on discharge channel centerline (within
+5 mm). The ISR probe gap was 22H.5 mm apart, which corresponds to Z141.7° of
azimuthal spacing; i.e~ 11° on either side of 6 o’clock.

For the plume maps in Appendix B, the thruster was moved on the Aerotech motion table and
the HDLP-ISRs in Figure 3.1 were injected into the plume using the HARP. In Figure 3.1, the
bottom probe was the HDLP and the top probe was the ISR, which were separated by 26.5 mm.
This gap is larger than preferred for HDLP-ISR operation since the ISR probe will be sampling a
different segment of plasma and will not provide the correct ion saturation current to correct the
HDLP trace. However, the fluctuations in ion saturation current are 10’s to 10@A aehd the
rest of the |-V trace is 10's to 100’s of mA as seen in Figure 3.7 so the effect on electron density
calculations is negligible.

The voltage range swept for the HDLP varied based on radial location, but in general ranged
from -50 to +150 V around the floating potential. At each radial location, the probes were first in-
jected to generate a floating potential profile for each shot. The probes were subsequently injected
again while sweeping around the floating potential. Figure 3.7 shows an example segment of the
time history trace for the probe bias and probe current. Note that each half-cycle of the probe bias
and corresponding probe current form one complete I-V trace.
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3.4.6 Automated I-V Trace Processing
3.4.6.1 Regions of I-V Trace

As will be shown later for this testing, time-resolved plasma measurements require processing of
10° to 1C° I-V traces, which is impractical to do by hand. Therefore, an automated technique that
was initially developed for HDLP [5, 74,96] has been adapted for HDLP-ISR automated I-V trace
processing. The premise of HDLP analysis is the standard collisionless, thin-sheath Langmuir
probe theory which has been discussed in literature [116—123] with the basics outlined below.
Note that all electron temperaturels, in the equations below, are in eV. The criteria for thin-
sheath is the probe radius to Debye lengtp)(should be greater than 1. A typical I-V trace for a
cylindrical Langmuir probe is shown in Figure 3.9 and consists of three regions:

1. lon saturation region where the probe is biased negative to repel most electrons and collect
ions.

2. Electron retarding region approximately between the floating potential and the plasma po-
tential where the probe is collecting both ions and electrons.

3. Electron saturation region where the probe is biased positive with respect to the plasma
potential to repel ions and collect electrons.
3.4.6.2 Probe Current and Electron Density

Not accounting for flowing plasma as discussed in Appendix A, the ion current to a probe account-
ing for the Bohm criteria and assuming only singly charged ions is [117]

I+ =0.61n,gAsVE (3.10)

wheren,, is the plasma density outside of the shegqtis,the fundamental charg@g is the sheath
area and g is the Bohm velocity given by

gTe
VR = ,|— 3.11
B= m (3.11)

The electron current to a probe biased @t the electron retarding region, assuming a Maxwellian
velocity distribution, is

1 -V
= =7 AprNeQVin exp[¢ i (3.12)

le =
€T 4 Te

whereAy is the area of the prob¥,, is the plasma potential anghV's the thermal velocity
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The electron density can be calculated from Equation 3.12 with the electron saturation current, ,
the point at which the probe enters electron saturation

Iemt
= 14
ne O.25Apthh (3 )

3.4.6.3 Plasma Potential

While not as precise as emissive probes, plasma potential can be determined from Langmuir probe
I-V traces by identifying the “knee” in the curve identifying the transition from electron retarding

to electron saturation. As noted frequently in the literature, determining the plasma potential from
the “knee” in the I-V curve is imprecise because the “break in the characteristic is frequently far
from abrupt,” [122] especially for a cylindrical probe where the transition from electron retarding

to electron saturation is gradual even in the best of circumstances (c.f. Fig. 5 from Ref. 116).

The slope of the electron curremtle/de, is exponentially related to the probe bias dnrdas
seen from the derivative of Equation 3.12; therefdlg/dg should be increasing witk until the
electron saturation region is reached where the slope will then decrease significantly. Therefore,
the peak indle/d¢ is a reasonable measure for plasma potential [121, 123]. As noted in Ref. 30,
this method tends to under-predict the plasma potential where +2/-1 V error was assumgd on
calculations in that work. An example of detecting thg/d¢ peak value is shown in the lower-left
plot of Figure 3.9.

Testing with various methods of fitting lines to the electron retarding and electron saturation
regions to determin¥y from the intersection yielded unsatisfactory results because the electron
saturation region was not well represented by a straight line. Therefore, the method of determining
Vp, and hencee, from the peak oflle/d¢ will be employed in this work. The electron saturation
current is the electron currentd and is then used to calculatg from Equation 3.14. Using this
technique yielded more consistent results, which is critical for autonomous analysis of hundreds
of thousands of |-V traces for time-resolved plasma property calculations.

3.4.6.4 Electron Temperature

The electron temperature with an assumed Maxwellian energy distribution for traditional, col-
lisionless, thin-sheath Langmuir probe analysis is found from the inverse of the slopdf In(
versusg in the electron retarding region from the floating potenti&l, to Vp, (from taking the
natural log of Equation 3.12). However selecting all points betwéeand V, will include the
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gentle transitions (the gradual “knee”) between the regions and thus skew the slope of the line, so
only the linear points in the center betweénand V, should be selected. This process is simple

to perform manually, but to automate analysis for 100,000’s I-V traces, a reliable selection method
is necessary. The slope of a line can be determined from as few as two points, so the selection
criteria for what datum to include from the tens to hundreds in the electron retarding region during
a single 1-V sweep could be stringent. However, the maximum number of reliable points are de-
sired because Lobbia [5] points out the non-systeniatiencertainties are reduced by a factor of
1/4/Nt,— 1 whereNr, is the number of |-V points used to calculdtg Before a point selection
method can be consideréd, and V¢ need to be determined.

The floating potentialVs, is the point of zero crossing for the I-V trace; however, the ion
saturation current portion of the trace is so small compared to the electron retarding and electron
saturation currents that noise often corrupts the signal introducing significant error in determining
the probe bias for zero current. This is a peculiarity to high-speed Langmuir probe data because
the floating potential is the characteristic typically easiest to measure with low speed I-V sweeps.
For the HDLP-ISR system, the purpose of the ISR reference is to give a reliable ion saturation
current to calculate ion density and compensate for this noise, but since the ISR bias is not varied
V¢ cannot be determined reliably.

The total current to the probe is the sum of Equations 3.10 and 3.12. When the probk is at
the total current is zero because the ion and electron currents balance. Equating 3.10 and 3.12 and
assumingAs ~ Ap for thin sheath yields a relationship fo%, Vp and Te [120, 122] where the
coefficient has been calculated for xenon

1 m
Vo= Vi +Teln| == /- | < v +5.8T, 3.15
p=Vit e”[o.al 2nme] f+9.Sle (3.15)

The importance of Equation 3.15 is to show that the floating potential should be several electron
temperatures below the plasma potential.

The value ofdle/d¢ up to electron saturation should be approximately O for the entire ion sat-
uration region since negligible electron current is collected and then from Equation 3.12 it should
become exponential aftéf; up to Vp and le,,,. The lower left plot in Figure 3.9 shows this to
be accurate except closeVg, which is clearly no longer exponentially increasing. Very near the
plasma potential the I-V curve does not follow the simple, collisioinless, thin-sheath model. A
consistent and robust method for setting the lower bound of points to select f6g tadéculation
is whendleg/d¢ rises above some constant threshold value, which should be somewhat dlgse to
Subsequently, select a certain fraction of points between that threshold valig atadting with
the threshold value. This will ensure that no points are selected near the gentle transition region to
electron saturation ned,. An example of this threshold value is shown in the lower-left plot of
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Figure 3.8: Parametric variation of the threshold value and fraction of points used in calculating
Te for the time-averaged resultsRiR, = 1 and a rangeZ/Rg, from 0.5 to 2.

Figure 3.9. To illustrate this concept, consider a single I-V sweep with 50 datum points between
V¢ and Vp. Using a threshold value of 25% and an inclusion fraction of 40%, 15 of those points
would be used to fit a straight line whose slope yields the electron temperature.

A parametric study was conducted by varying the threshold value (percentaid @p|peax
to begin selecting points) and the fraction of points to select between that threshold value and
Vp as shown in the time-averaged results of Figure 3.8. The results were insenBitivarying
by less than~ 0.1 eV) to the threshold value as long as it was 15-33%llefd¢|pear, Which
according to (7) should be 1-2 T¢ aboveV;. Selecting a fraction of points between the threshold
value andv, was insensitive until the fraction was large enough (75-100%) to include the electron
saturation transition. This caused the electron temperature to be artificially increased as seen in
Figure 3.8 by decreasing the slope of the fitted line. In fact, the values for threshold 20/fraction
50, threshold 25/fraction 40 and threshold 33/fraction 33 all lie on top of one another. Therefore, a
threshold value of 25%le/d¢|peak Was the start and 40% of the IR) points from there towards
Vp were selected to conduct a linear fit to determigavith an example shown in the upper-right
of Figure 3.9.

3.4.6.5 Quality Control

Figure 3.9 shows a typical I-V trace and resulting analysis. dlggd¢|peak is well defined and is
clearly below the peak probe bias which ensures electron saturation is achieved. Also shown is the
linear fit to the selected electron retarding region to calculate electron temperature. The validity
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of results from automated data processing can be questionable without adequate quality controls
in place to build confidence. In order to maximize the reliability of results from automated data
processing, automatic reject criteria were developed for each I-V trace:

1. If Rp < Ap then the probe was no longer in thin sheath regime.

2. If the potential for thelle/d¢ peak was within the last 10% of the I-V sweep, then the probe
bias may not have reached plasma potential and entered electron saturation.

3. If the R? value for the linear fit to Inlg) versusg was less than 0.990, then the electron
energy distribution may not have been Maxwellian or the data contained noise.

Finally, a manual auditing process was also used whereby traces were selected at random or
odd features were examined on a trace-by-trace basis to determine regions of rejected data. An
entire radial shot was rejected if the ISR current was of the wrong sign, which most likely resulted
from experimental setup and operator error where the ISR bias was not applied. Additional entire
radial shot rejection criteria were plasma properties not conforming to adjacent radial shots. These
situations only occurred in 4 out of 61 shots.
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3.4.6.6 Uncertainty Analysis

A critical component of any experimental investigation is an uncertainty analysis of measurement
accuracy (error with respect to true value) and precision (error in repeatability). While Langmuir
probe measurements are not renowned for their accuracy, the measurements presented here appear
precise as demonstrated in the time-resolved plasma properties of Figure B.3. If the oscillations
were entirely due to inaccurate measurements, then the points would simply oscillate approxi-
mately every other point about the mean bouncing up and down. The time-resolved data shows
the properties appear to have a sinusoidal nature with three to four points together above or below
the mean before transitioning. As shown in Figure B.3, the electron temperature and the plasma
potential oscillate by less than 2 eV and 4V, respectively. If the uncertainty on the measurements
were conservatively estimated to be 1 eV and 3V, which are reasonable values for Langmuir probe
measurements, then the time-resolved data would be rendered nearly meaningless. Therefore it is
important to distinguish the uncertainty in the mean values (time-averaged) and uncertainty in the
oscillatory values (time-resolved).

During development of the HDLP [5], Lobbia included a detailed discussion and analysis
of error. Comparative measurements were made of averaged results from rapidly swept probes
(100 kHz) to slowly swept probes (100 Hz) with a difference in measured plasma properties of
approximately 23%. Error analysis of the thin sheath relations yielded approximate errors of
dneg/Ne = dTe/Te = 10-20% andoV,/Vp = 10-40%; however, these are dependent on the local
plume conditions tested in Ref. 5. This represents the error in time-resolved values to time-
averaged values (error in oscillatory values to the mean). As noted in the numerous Langmuir
probe theory reviews [116—123], interpretation of |-V traces to plasma properties is difficult and
error prone. Sheath limited electrostatic probe theory has an error on the order of 50% [5] with
electron density possibly in error by a factor of 2 or 3 [127]. Based on the preceding discussion,
the uncertainty in time-resolved, oscillatory plasmas value to the local mean value will be assumed
as 25% and the uncertainty in time-averaged, mean value of a plasma property to the true local
value will be assumed as 50%.

3.5 High-speed Imaging Analysis (HIA)

A HIA technique was developed by McDonald [6, 78,79, 100] to investigate azimuthal oscillations
from videos. Here the McDonald technique has been adapted to transform the videos into mea-
surements of discharge current density distribution in the discharge channel in order to quantify
oscillations. These techniques will be referred to as HIA throughout the following discussion.
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Figure 3.10: Raw FastCam video frame and subsequent enhancement with the McDonald tech-
nique to visualize spokes.

3.5.1 FastCam

High-speed imaging was acquired with a Photron SA5 FASTCAM with a Nikon ED AF Nikkor
80-200 mm lens at its maximum aperture f/2.8. The SA5 is capable of up to 1,000,000 fps with
12816 pixel resolution, but was used at 87,500 fps with>2866 pixel resolution for this testing.

The camera was 6 m downstream from the thruster outside LVTF with a view of the thruster
through a viewport. The image enhancement technique developed by McDonald [79] allows for
easy visualization of rotating spokes as shown in Figure 3.10. When watching the raw FastCam
video the rotating spokes are very clear to the casual observer; the visualization technique shown
in Figure 3.10 is only meant to enhance what is unambiguously present. Here small fluctuations in
light intensity from a mean value can be seen and have been shown to rotat&ir Bxdirection

as azimuthally propagating spokes. It is important to note that the pixel value corresponding to
light intensity is not a direct measure of plasma properties. However, if light is assumed to be
produced primarily by collisional processes or spontaneous emission then the brightness should be
related to collision rates and densities as will be discussed later. Also important is that the camera
records an integrated light intensity through the plume to the anode, meaning it cannot distinguish
where the brightest regions of the plume are located axially.

3.5.2 HIA Processing Steps

The Fourier analysis techniques developed by McDonald [78, 100] have been adapted to process
the FastCam videos to determine breathing and spoke mode frequencies. The high-speed imaging
technique consists of the following eight steps:
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. Import the raw video file into MatLab as@&(x,y,t) = 256x 256x N; matrix, whereN; is

the number of frames in the video. The Photorn SA5 has a 12-bit sensor, so eaclppixel,
has 22 = 4096 possible values assumed to linearly represent light intensity. McDonald notes
that raw pixel output is non-linear at high incident fluxes to the camera, but by design the
“high frame rates used [imaging HETSs] are sufficient to keep the light intensity reaching the
camera well inside the linear regime.” [78] The cathode region saturates and becomes non-
linear, but that is not used in this analysis so it is negligible. The light from the discharge
channel critical for this analysis remains within the linear region of pixel output and the
assumption is justified as discussed in Ref. 100.

. Calculate and subtract the mean imauf&,y) from each frame in order to isolate the AC
component of the videp(X,y,t) = p(x,y,t) — p(x,y). The mean image is a 25656 matrix

where each pixel has been averaged acrosNaffames. Subtracting the mean image to
isolate the AC component removes any DC bias for pixel values and is discussed in more
detail at the end of this section with an example shown in Figure 3.13.

. Automatically identify the center of the circular discharge channel using a Taubin circle
fit [100] and isolate the annular region of the discharge channel in each frame.

. Convert the pixels into cylindrical coordinatp$x;y,t) — p(r,6,t), divide the annulus into
Np = 180 two-degree bind), and determine which pixels from the 256256 array belong
to each bin. The number of pixels per bMy, is 120 < My < 160.

. Average the pixel value for each bin to generate axiB®ector of light intensity values for

each frame.
ro 6pi1

2 2 p(re.1)

r=ri G:Hb

Mp

a(b,t) = (3.16)

. Calculate then= 0 or mg spoke order, which is the entire channel added together.
Np

mo(t) = > a(b.t) (3.17)
b=1

. The discharge current is linearly related to thgt) spoke order as first shown by Lobbia
[128] and will also be shown later in Figure 4.8. The discharge current sampled at 1 MHz or
higher is down-sampled to the camera frame rate of 87.5 kHz usinlj and@r Chebyshev
Type 1 filter to smooth and resample. Apply a linear, least squared fit to igldtemy,
wherec; and ¢, are the resulting linear coefficients. Note, the total discharge curggiit
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can be written as the sum of the discharge current through each(t). Assuming the
offset coefficientc,, can be equally distributed amongst the bins allows it to be included in
the summation. The discharge current can then be written as

Np Np
Ib®=> lIp,(b.) = cimp(® +c2= » (cla(b,t) ¥ %) (3.18)
b=1 b=1 b

Assuming that local light intensity is linearly related to local discharge current, each element
of the summation in Equation 3.18 can be equated. The local discharge current gignsity
for binbis then

IDb (b,t) C1 C2
—— = —ab,t)+ — 3.19

While the linear relation in Equation 3.18 between the global varidpjemd my are well
supported in the results, the assumption of a linear relation between local light intensity and
local discharge current at present only has indirect support. The discharge current density

ij (b,t) =

surface is a 188 Nt matrix for the angular discharge current density over time as shown in
Figure 3.13(c) and discussed in more detail below with uncertainty analysis.

8. Perform a 2-D Discrete Fourier Transform (DFT) on the discharge current density surface
to compute frequency and order number. The magnitude of the 2-D DFT generates a PSD
surface map of frequency (1/s) versus 1/deg or 1/rad using Equation 3.41 as discussed below.
The angular location is converted to spoke ordgrnwhich are the number of spokes present
in the channel.

The light observed by the FastCam is integrated through the plume and through the discharge
channel to the anode at the back of the discharge channel. Photographs from angles nearly orthog-
onal to thruster centerline (e.g. Figure 4.24 and Figure 4.25 in Chapter 4.7) show the plasma in the
discharge channel is significantly brighter than the plume. Even though the path length through the
plume is longer than the path length through the discharge channel, the brighter discharge channel
generates most of the light recorded by the FastCam. The camera is vertically level with the thruster
and offset horizontally with an angle of 2.% the left of thruster centerline and has a more direct
view of the 6 to 12 o’clock side of the channel. Even though the view of the discharge channel
3 o’clock region will be integrated through more of the plume, part of the discharge channel will
be masked and could appear dimmer to the camera. The inner channel wall and near-anode region
within ~ 2 mm of the thruster inner diameter will be blocked from the camera at 3 o’clock, which
is less than 3% of the discharge channel radial-axial cross-section. However, light producing colli-
sions and plasma oscillations are not expected to be significant in these masked areas compared to
the discharge channel exit plane where the bulk of ionization and other collisional processes occur.
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Isolating the AC component of pixel value as in Step 2 will remove any constant pixel brightness
differences that may occur due to these offset or other factors.

The spoke surface is discussed in detail in Section 3.5.5 where examples are shown in Fig-
ure 3.13. Figure 3.13(a) shows an example plot of average pixel value pex(lbj),from Equa-
tion 3.16, that would be produced in Step 5 without executing Step 2 to isolate the AC component.
Figure 3.13(b) shows the average pixel value per bin when all steps are executed and very little
difference is observed with Figure 3.13(a) other than scale change. Figure 3.13(c) shows an ex-
ample current density plot that is produced in Step 7, which also retains all of the same features
as Figure 3.13(a) and (b) with only a scale change. It is important to note that the calculation
of discharge current density does not alter the features of the Spoke Surface plots that McDonald
originally developed during his analysis so those techniques for calculating PSDs remain valid and
comparable.

3.5.3 Local Discharge Current to Local Light Intensity

The assumption in Section 3.5.2 that local light intensity is linearly related to local discharge
current density to allow Equation 3.19 from 3.18 will be justified in three different ways:

1. Segmented anode experiment from McDonald [78] comparing local discharge currents to
HIA;

2. Linearized fluid analysis and optical emission theory to relate discharge current density to
particle density to light intensity; and

3. Hybrid direct kinetic simulations from Hara [34] that include an excited neutral state and
light emission from de-excitation.

3.5.3.1 Segmented Anode

The most direct evidence for the assumption that local light intensity is linearly related to local
discharge current density would be a direct, linear correlation between FastCam images and local
discharge current measurements from a segmented anode. McDonald [78] conducted an investi-
gation using a 12-segment anode in the H6 and used the same Photron SA5 FastCam where he
concluded that “visible rotating spokes detected via high speed camera correspond to azimuthally
localized electron current deposition to the anode.” Unfortunately, the experiment experienced
technical difficulties with electrical isolation, thermal control and sense circuits, so the experiment
did not allow for the desired level of correlation.

Figure 3.11 reproduces two important figures from Ref. 78. Figure 3.11(a) shows HIA PSD
from the segmented anode experiment exhibiting the broad breathing med® &Hz and spoke
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(b) Discharge current PSDs from anode segments reproduced from Figure 13 of Ref. 78.

Figure 3.11: H6 segmented anode PSDs from HIA and segment discharge currents.

ordersm=4 at 14 kHz,m=>5 at 18 kHz andn= 6 at 23 kHz. Figure 3.11(b) shows the PSDs
from an individual segment (red), three segments added together (yellow), six segments (blue), and
eventually all of the segments (green) which is the total discharge current. The single segment PSD
shows strong peaks at 14, 18 and 23 kHz matching the HIA PSD in Figure 3.11(a). In contrast, all
of the segments added together show the same shape as the breathing mode, because the individual
segment current oscillations constructively and destructively interfere. This indicates the anode
segments are observing local current oscillations that are not present in the global discharge, but
are observed as azimuthal oscillations with the FastCam.

Figure 9 from Ref. 78 shows the time history of discharge current signals from three segments
where the time delay between signals of adjacent segments is interpreted to be the result of passing
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spokes. The time delay between signals can be estimated as approxim&eéy ms to travel
3 segments which corresponds to 1/6 - 1/4 of the discharge channel circumference. This yields a
very reasonable spoke velocity between 1700 and 2500 m/s.

While not direct evidence that local light intensity is linearly related to local discharge current,
matching PSDs and discharge current peaks moving from segment to segment like spokes provides
evidence that the local discharge current oscillations are related to azimuthal light fluctuations
in the discharge channel. Repeating this experiment with improved electrical isolation, thermal
control and electronics is recommended in Section 7.2.4.

3.5.3.2 Linearized fluid analysis and optical emission theory

This method will show that oscillations in light intensity, are approximately linearly related
to oscillations in electron and neutral density in the discharge channel, which are approximately
linearly related to oscillations in discharge current density

JD o Mg, A oc L (3.20)

noting that the tilde indicates an oscillatory component of a quantity and the bar indicates the
steady-state value.

The first step will correlate downstream density in the plume to light in the discharge channel.
In a study using a Busek BHT-600 thruster, Lobbia [128] correlated high-speed imaging results
with downstream high-speed Langmuir probe measurements of electron density, plasma potential
and electron temperature. This analysis showed total light intensity for the portion of the dis-
charge channel imaged with a Photron FastCam-1024-PCI (0BB6 of the discharge channel
is imaged) at 109,500 fps was correlated to discharge current and electron density oscillations
downstream using linear, frequency domain transfer functions. In processing the FastCam images,
Lobbia used an integrated, normalized image intensity which effectively gives £h@ order de-
scribed here. The correlation was observed at the strong 18.4 kHz breathing mode and no attempt
was made to analyze azimuthal variations although they were qualitatively noted. The location of
the probes was varied from 3 to 11 thruster diameters downstream with a linear relation shown
throughout.

In Section 4.5, Figures 4.13, 4.14, and 4.20 will all show that downstream probes measur-
ing density are strongly correlated to the discharge current in global mode. More importantly, in
Section 4.6, Figures 4.21 and 4.22 will both show that the downstream probes measure density os-
cillations that are linearly correlated to the light oscillations from passing spokes in the discharge
channel that is immediately upstream from the probes. Although very conclusive, these examples
only show that light in the discharge channel is linearly related to plume density, not the density
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inside the discharge channel. The assumption can be made that the increased electron and ion den-
sity are produced in the discharge channel which then propagates axially downstream, so the light
intensity correlates to electron density oscillations in the channel. This assumption makes physi-
cal sense as Lobbia [128] noted that in the discharge channel the “unsteady emission of photons
generated by increased atomic state transitions [are] associated with the bursts of ionization.”

Having made the reasonable assumption that light intensity fluctuations are linearly correlated
to density oscillations in the channel, an argument can be made that oscillations in local discharge
current densityj, are linearly related to electron density and neutral densityy, fluctuations to
first order with a common relation

jp = —0nev; (3.21)

where v is an effective cross-magnetic field, axially directed, electron velocity. This makes the
reasonable assumption that discharge current is mastB000) composed of electron current to
the anode. [11] However,,Ms a complicated and unknown function of density, magnetic field
and other parameters. Indeed, researchers have been attempting to understand cross-field electron
transport since the inception of HETs and have various explanations including, but not exclusive to:
classical cross-field diffusion, Bohm diffusion, turbulence, shearing, [45] near-wall conductivity
[1] and azimuthal electric fields. [46,47] Linearizing Equation 3.21 with mean (bar) and oscillatory
values (tilde) and neglecting second order terms the local discharge current density can be written
as

ib=1p+ D = —GNeVz— qNeVz — GV (3.22)
In order to justify the assumption thas ~ fie, iy to first order, Equation 3.22 shows thatmust
also be linearly related 6, andnj, to first order.

The axial velocity Equation 2.34 derived in Section 2.3.5 can be written as

Vg = 5 = ——————1In(np) (3.23)

q Vef (E +dTe) qTe Vvef d
_1 S+ —
mevgf+wc

where it has been noted thatridne/dz = d/dzIn(ng). The effective collision frequencyes,
can be broken down into electron-neutral collisions, electron-ion collisions, wall collisions and
turbulence as discussed in Ref. 3. However, for this first order derivation only electron-neutral and
electron-ion collisions will be considered. The generalized collision frequency for electrons with
neutrals is [123]

Ve-n = Kmn (3.24)

wheren, is the neutral density arlg, is a rate coefficient that is generally a function of electron
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temperature, but will be assumed as constant here. The collision frequency for electrons with +1
ions is [43]

Ve-i = BNe (3.25)
B=2x% 10-12':(71/\2) (3.26)
e

for Te in eV, ne in m™3 and noting In(A) = 10. Using Equations 3.24 and 3.25, the simplified
effective collision frequency is

Neglecting oscillations in electron temperature that chdgagend 8, the effective collision fre-
guency in Equation 3.27 can be linearized as

Vef = Vef +’17ef = kmﬁn + kmﬁN +ﬁﬁe +ﬂﬁe = Vef + kmﬁN +ﬁﬁe (328)

Linearizing Equation 3.23 using Equation 3.28 and neglecting oscillations in electric field and
electron temperature, the effective cross-field velocity is

dT Vet n n,
VZ:_E(EZ+ dze)(_z e 4 Fe + 2km nz)_

2 2 2 3
Vet tWE  Vgs tWE Vg HWE

qTe Vef BNe Kmfn 1dne TNedne
-— + +
me | 72 2+ wi z

2 2 25

wheredng/dz has been neglected and the assumptionggiie < 1 has been used to justify a

binomial expansion
d _ 1 .

dz Ne Ne

dne
dz
Additional assumptions in Equation 3.29 while expanding the denominator include neglecting sec-
ond order terms and assuming the oscillatory component in the denominator can be been neglected
since?ﬁf + wg > 2vetfNe + 2vei kmhn. The effective cross-field velocity,\can now be written in

the linearized form of steady, and oscillatoryv, components

(3.30)

V,=

_ g Vef (E dTe)_qTe Vet 1 dne (3.31)

mevgf + Wi dz Me vgf +w?Ne dz
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(3.32)

Equation 3.32 shows that given the lengthy list of assumptions and simplifications used above, the
oscillatory component of the cross-field velocity is linearly related to electron and neutral density
oscillations. Inserting Equations 3.31 and 3.32 in Equation 3.22 valia@t@sﬁe,ﬁn.

Variable Value Source
e 2x 108 m=2 Figure 7-10 for 20 mg/s from Ref. 44, as-
sumed fromm; and quasi-neutrality
fin 2x 108 m=2 Figure 3-12 from Ref. 44 (simulation)
E; 40 V/mm Figure 7-21 for 20 mg/s from Ref. 44
Te 30 eV Figure 7-14 for 20 mg/s from Ref. 44, Fig-
ure 15 from Ref. 37
dne/dz 10° m=3/m Figure 7-10 for 20 mg/s from Ref. 44, esti-

mated from change in from over~ Lchni/2.
Positive (directed downstream) far< Lenn,
negative (directed upstream) 1> Lennl.
dTe/dz 5V/mm Figure 15 from Ref. 37

Km 2.5x10 8B m3/s | From Ref. 33

Table 3.1: Sample H6 properties used to calculate cross-field current density.

In order to validate this approach, sample values for the H6 can be used to calculate steady
state current densityp, by inserting Equations 3.31 and 3.32 in Equation 3.22 to ensure the cor-
rect order of magnitude is obtained. Table 3.1 contains representative discharge channel plasma
properties for the H6. The calculated current density is 167 mAighere 149 mA/crhis from the
axial electric field with electron mobility term and 18 mA/@iis from the electron density gradient
and temperature gradient terms. Although the sigrdngfdz anddTe/dz are dependent on loca-
tion (dne/dz > 0 for z< Lenn and dne/dz < O for z> Lenny), the difference is not significant since the
gradient terms are 10% of the discharge current density. This result is the correct order of magni-
tude for discharge current density whichvid30 mA/cnt at nominal conditions. Assuming small
oscillations in electron and neutral densitiag/ne ~ Np/Nn ~ 0.10, using Equations 3.31 and
3.32 in Equation 3.22 with the values in Table 3.1 yields an oscillation amplitugé mA/cn?
which is ~ 10% of the mean value. A less conservative assumptiam . ~ Np/Ny ~ 0.20
yields+34 mA/cn? or ~ 20% of the mean value. This simple model calculates the correct order of
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magnitude steady-state current density and yields reasonable oscillation amplitude, so it supports
the idea that oscillations in density are linearly related to discharge current oscillations.

For azimuthal electric field€y, the derivation of Yoshikawa [46] as discussed by McDonald
[78] derived an analytical expression for the local current density dég 0B, drifts

j(0)= Z Ez(ﬁesin ©) +?—%gn2(e) (3.33)
4B Ne
where the linearized density g = Ne + NeSiN(6) . Equation 3.33 also shows that local discharge
current density is linearly related @ to first order after neglecting the second or@grterm.
When integrating Equation 3.33 around the discharge channel frer@0to calculate the average
current density over the entire channel due to azimuthal electric fields, thgisie@rates out and
the result is orE. T2
- TE,
=8B R (3.34)
Therefore thaveragedischarge current density is related to the square of the oscillation amplitude
for cross-field current due to azimuthal electric fields.

It is very important to note the derivation shown above and the relation from Yoshikawa are not
meant to be all-inclusive models of electron transport in the discharge channel of a HET, which
even far more sophisticated models cannot reproduce accurately. Also when considering near-wall
conductivity, turbulence and shearing, the relation may not be linear betweenandn,. The
sole purpose of this derivation and discussion is to reasonably justify the assumption that to first
order the local discharge current density oscillations are linearly related to local density oscillations
which are linearly related to light intensity oscillations in order to support the assumption used to
derive Equation 3.19 from Equation 3.18.

Now consider the relation between optical emission (light) intensity and the physical processes
occurring in the discharge channel. Plasma spectroscopy can be used to calculate neutral densities
and electron densities [128] using a given plasma model (e.g. thermal equilibrium, coronal equi-
librium, collisional-radiative, etc). Assume the plasma is in coronal equilibrium where all upward
transitions in atomic energy state (excitations) are collisional and all downward transitions are ra-
diative. Also assume the plasma is optically thin so all emitted photons escape the plasma and are
not reabosrbed. [120] Finally, assume the time constarigr this equilibrium is faster than the
10’s kHz oscillations considered here se< 100us. In equilibrium, the emission of radiation
from atoms or ions in an excited state will balance the collision frequency that produced the ex-
cited state. [120] This means light emission will be related to electron density, neutral density, ion
density, and electron temperature. Ref. 123 shows that optical emission intensity due to excitation
from ground state is linearly related to the free radical density and in Ref. 129 continuum emission
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Figure 3.12: Correlation between light intensity and discharge current in (a) breathing mode and
(b) stable mode from simulations. Reproduced from Figure 10 of Ref. 34.

coefficients are linearly related to electron and ion densities. We assume that fluctuations in optical
emissions are linearly related to oscillations in electron and neutral densities to first order. This as-
sumption implies that the electron energy distribution is Maxwellian and remains constant during
plasma oscillations. From this discussion the assumption can be reasonably made TlaAf,.

In summary, the linear correlation of light intensity to downstream density is conclusive as
well as downstream density to discharge current in global mode. Reasonable assumptions and
simple calculations support that local light intensity is correlated to density in the channel which
is correlated to the local discharge current, thus supporting Equation 3.20.

3.5.3.3 Light Intensity from Simulation

The most direct support for the assumption that local light intensity is linearly related to local
discharge current density is provided by a hybrid-direct kinetic simulation by Hara. [34] The model
solves the kinetic equations to obtain the velocity distribution function and considers three heavy
species, neutrals, electronically excited neutrals, and +1 ions while treating electrons as a fluid.
The result is a time-resolved 1-D model of the plasma properties on channel centerline of an SPT-
100. The work in Ref. 34 was inspired by the work presented here where the magnetic field
strength was varied to initiate mode transition in the simulations which observed a breathing mode
oscillation (global mode) and a stable mode (local mode).

By including electronically excited states, light is emitted each time an excited state decays
back to the ground state. [34] These optical emissions are summed in the simulation to give the
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total light intensity. Using a 1-D axial simulation to calculate total discharge current effectively
calculates a local discharge current at one point in the thruster and integrates it over the discharge
channel assuming axisymmetry and no radial dependence. Figure 9 from Ref. 34 shows the time
history of the metastable density compared to the discharge current, which demonstrates a strong
linear correlation. Figure 10 from Ref. 34 is reproduced in Figure 3.12 which quantifies the linear
relationship between local light intensity (i.e. metastable density) and local discharge current. This
supports the assumption made in Equation 3.19 in order to calculate discharge current density sur-
face plots. While light intensity is linearly correlated to discharge current as seen in Figure 3.12, the
correlation coefficient is different between the modes indicating the stable mode more efficiently
generates excited states. [34]

3.5.4 Error Calculation

Three primary sources of uncertainty will be considered, other sources of uncertainty such as probe
resolution, calibration uncertainty, model uncertainty and linearity of camera response are assumed
to be of lower order. The three sources of error considered here are:

1. Standard deviation of pixel values in tafrom the mean pixel valua,. This will be different
for each binb and timet.

2. Error from the linear fit ofng(t) to Ip(t) , which will vary in time but be applied equally for
each birb.

3. Difference betweelp(t) at the native sampling rate or full bandwidth of the current probe
(whichever is lower) andp(t) down-sampled to the camera frame rate. This will vary in
time but also be applied equally for each bin

The total error injp is estimated as the sum of the three error sources considered above:
Tip, (0.1) = jp 1(b,Y) + ojp 2(t) + oy, 3 (1) (3.35)

The standard deviation for the pixel value in birs computed similar to how the average value is
calculated in Equation 3.16.

fo 6o+l 1/2

> (B.6.0)-ab.n)? (3.36)

r=rj 9:9b

1
oa(b.t) = Mo 1
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Using the error propagation equation [130] on Equation 3.19 yields

9100 by = Lorabt (3.37)

Uijl(b’t) = oa Oa Ay

where the error irt; and ¢, will be accounted for iraerbg.

The error in linear fit betweemp and my is estimated using built in MatLab functions
(polyfit and polyval) while calculating the least-squared coefficient€; and c,. The esti-
mate of the standard deviation of the error at each point is calculated using the triangular factor of
the Vandermonde matrix, the degrees of freedom and the norm of the residuals. [131] Assuming
the error in measurements is independent with constant variance, the uncertainty egtigéjes
will encompass 50% of predictions Ig frommy. The uncertaintw-ijg introduced by the linear

fit betweenlp andmg is
Alp (t)

Achni
The discharge currenp is filtered and down-sampled to correlate with as described in Step

7. It is then up-sampled using interpolation to calculate the difference with the origindlhe
difference is re-sampled at the camera frame rate without smoothing or filtering in order to deter-

Tip,2(t) = (3.38)

mine the difference between the original and down-sampled discharge current. An example of this
is shown later in Figure 4.8.

|{|D (t)} —{lp (t)}DownSampleh

3.39
Achni ( )

Uip,3 (t) =

For a mean discharge current b = 20 A the average discharge current densitw'_['bs:
133 mA/cn?. An error of 1 A in discharge current for Equations 3.38 or 3.39 yields an uncer-
tainty of 6.6 mA/cnt for Tjp,2 OF Tjp, 3- Regardless of the uncertainty introduced, the method
outlined above provides meaningful quantification of FastCam images to discuss oscillation am-
plitudes during mode transitions.

3.5.5 Spoke Surface Plots

An example of a discharge current density surface plot calculated from Equation 3.19 is shown in
Figure 3.13(c) with the uncertainty calculated from Equation 3.35 shown in Figure 3.13(d). In the
discharge current density surface plot, the ordinate is azimuthal location around the discharge chan-
nel in clock positions and the abscissa is time with each vertical column of values representing one
frame of video. Vertical features in the discharge current density surface plot represent extremes
in discharge current density that occur everywhere in the channel simultaneously. Horizontal fea-
tures would be discharge current values that remain constant at a fixed azimuthal location, which
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is not typically observed because they are removed in Step 2. Diagonal features are perturbations
in discharge current density that propagate azimuthally around the discharge channel. Lines from
upper-left to lower-right are propagating counter-clockwise around the discharge channel and lines
from the lower-left to upper-right are propagating clockwise. Hwe B direction in the H6 is
counter-clockwise since the B-field direction is radially out. It will be shown later that all az-
imuthally propagating features are in that direction represented by lines from upper-left to lower-
right with the slope corresponding to propagation velocity in deg/s, which will be exploited to
calculate the spoke velocities. While in global mode, the discharge current rises in approximately
20-40us as shown in Figure 4.13, but the FastCam frame rate of 87,500 fps yields a resolution
of 11.4us which introduces error while matchimgy and Ip in Equation 3.38. The surface plots

of discharge current density (e.g. Figure 3.13(c)) have the same features and look identical to the
spoke surface plots developed by McDonald [78] due to the linear scaling. However, the scaling
adds physical units and is useful to investigate and visualize global discharge channel oscillations
as well as azimuthally rotating spokes.

3.5.6 Power Spectral Density (PSD)

Several methods can be used to describe the frequency response of a signal, so here we define the
methods and formulas used belowXiff) is the 1-D DFT of a time-series signa(lt) with length

N, then the periodogram spectral estim8tg f) of the signal, [132] which is an estimate of the

PSD without scaling, [132] is

PS Dio (f) = Snin () = £X" (1) X(1) (3.40)

whereX*(f) is the complex conjugate. A 2-D DFT of the discharge current density surface plot
ipy, (t,0) produceslp, (f,y) wherey is in units of 1/deg. Fourier transforms can be extended to
multiple dimensions, so by analogy to Equation 3.40 the 2-D PSD is

PS D () = Swap = 1035, (1) I, (£) (3.41)

The analysis of PSDs below only compares the change in relative magnitude of the PSDs
through mode transitions, so without proper scaling on Equations 3.40 and 3.41 the units will be
listed as Arbitrary Units/Hz. In a 2-D Fourier transform of a surface where one axis is time and
the other is angle (degrees), one axis of the transformed surface will be similar to a typical 1-D
Fourier transform of a time history signal with units b 1/s or Hz and the other will yielgt =
1/deg. Multiplyingy by 360 deg/circle yields the spoke ordeior number of segments per circle
(e.g. m= 3 means three segments or three spokes). As described by McDonald in his original

83



Pixel Value Pixel Value

600

; ,”'
:0, '.. I‘\" I‘,'

vl \' ‘ “'*‘:‘b

Azimuthal Location, Clock
S = N WP~ N0
i
. u
-y
"‘
_d
-
*"
o
b=
Azimuthal Location, Clock
G = N W AR OO NGO

11 ; \ 11
: 1 \
ol LN | o i\ |
0 02 0.4 1 o] 02 0.4 08 1
Time, ms Time, ms
(a) Pixel Value without Removing AC Component (b) Pixel Value AC Component Only

J, [mAJ: cml]

4 4
g 9 — g g
5 "! 5 \ '\ M S e
g7 "] 5 7
= 6 Ay = 18
S 5 \ . g 5
3 4 ' ‘ h S 4
— ‘{ ‘ Y —
23 " = @
5 =
<5 2 i ‘ = 2
s 198 g ERl’
S v " . ‘\' S
- 1 = 11
10 !\ 10
9 9
0
Tlme ms Time, ms
(c) Discharge ‘Current Density (d) Uncertalnty in Current Density

Figure 3.13: Surface plots for 300 V, 19.5 mgR;,/B; = 1. (a) Average pixel values from
Equation 3.16 without executing Step 2 to isolate the AC component; note the horizontal lines
present for some bins, (b) AC component of average pixel values calculated in Step 5; the pixel
values oscillate about zeros but all features and amplitudes are retained from (a), (c) Discharge
current density plot calculated in Step 7 from Equation 3.19 which retains all features of (c), (d)
Uncertainty in discharge current density calculated from Equation 3.35.

derivation,mis analogous to number of wavelengths per channel circumference. [78] Henbe
or mp is no wave in the channel (the entire channel is dark or bright) 1 means one wave in the
channel (one half bright, the other dark)= 2 is two waves per channel (two bright regions, two
dark regions)m= 3 is three waves per channel (three bright regions, three dark regions), etc. In the
literaturem s often called the wave mode, but here it is called spoke order to avoid nomenclature
confusion with the HET operational modes discussed later. The azimuthal wave nlmber,
calculated from the spoke order ky= m/Ry,. Equation 3.40 is used to calculate the PSDs for the
AC components of discharge current and ISR probe current, which removes large value® at
when there is a DC offset. When computing the 1-D DFTIfpiand |,sra Blackman window is
used and when computing the 2-D DFT jgf a Hamming window is used.

The 2-D Fourier transforms show the peak frequencies for each spoke order. Harmonics are
noted at higher frequencies than the dominant frequency due to the Fourier decomposition when
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the azimuthal bin intensity has a sharp edge that cannot be resolved as a single frequency. If a
spoke order has a very strong peak, then other spoke orders often show smaller peaks at the same
frequency, which are noted to be non-physical artifacts of the processing techniques. [100] As
discussed by McDonald [100], the absolute peak values for HIA PSDs should only be compared
within a given parameter study with the same experimental setup because the 2-D Fouier transform
values are sensitive to camera CCD quantum sensitivity, lens aperture size, shutter speed or expo-
sure time, vacuum chamber viewport optical quality, operating condition and other post-processing
variables. In this investigation, all setup and processing parameters were held constant.

3.5.7 Upper Limit of Observations

Each spoke order represents the number of light and dark regions in the thruster so the wavelength
is A = 2nRenni/m. If the spoke travels 1/2 wavelength during the period of time the shutter is open,
then the bright region will travel over the dark region rendering the spoke unobservable by the
camera. Assuming the open period of the shuttekis 1/f. wheref; is the camera frame rate,

then the observable spoke velocity is

Rehnife
m

Vep < (3.42)

Form= 3,5, 7 and 9, Equation 3.42 yields maximum observable spoke velocities of 7300, 4400,
3100 and 2400 m/s, respectively. This is within all of the spoke velocities for each spoke order as
shown in Figure 5.7; however, the highest spoke orders are close to the limit.
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CHAPTER 4

M ode Transitions

“The most exciting phrase to hear in science, the one that heralds new discoveries, is
not ‘Eureka!’ but ‘That’s funny...”
— Isaac Asimov

4.1 Introduction

This chapter shows how the measurement tools and data analysis techniques described in Chap-
ter 3 were used to analyze mode transitions induced in the H6 by varying magnetic field magnitude.
Magnetic field sweeps, or B-field sweeps denote®p\B;, were conducted with all other param-

eters including discharge voltage, flow rate and chamber pressure, held constant until the thruster
transitioned modes and eventually became unstable for low enough B-field values. For reasons
that will be made clear and discussed in great detailBi8; region of decreased discharge cur-

rent mean and oscillation amplitude will be called local oscillation mode an8,tH& region of
increased discharge current mean and oscillation amplitude will be called global oscillation mode.
Section 4.2 describes the test matrix of discharge voltages and flow rates investigated. Section 4.3
details how mode transitions are identified including quantitative metrics. Section 4.4 shows how
mode transitions change the discharge current characteristics. The changes to plasma oscillations
in the plume are discussed in Section 4.5 and Section 4.6 and the changes in visible plume struc-
ture are discussed in Section 4.7. Of critical importance, the thruster performance change through
mode transition is shown in Section 4.8. The modes are formally defined in Section 4.9 and the
impact of this investigation to thruster characterization testing is discussed in Section 4.10. A sim-
ilar investigation was conducted with magnetically shielded thrusters (HEMS and NASA-300MS)
and the results are discussed in Appendix C.
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4.2 Test Matrix

Table 4.1 shows the test matrix for the H6 used in this investigation. Discharge voltages of 300,
400 and 450 V were applied between the anode and cathode. Propellant mass flow rates tested
were 25.2, 19.5 and 14.7 mg/s through the anode and 1.8, 1.4 and 1.0 mg/s (7% CFF) through the
LaBg cathode. The flow rate of 19.5 mg/s is the nominal setting used for comparison in this work
and the cathode flow fraction of 7% was maintained for all conditions. Unless explicitly stated, all
data shown below are for the centerline-mounted cathode configuration. The only data presented
here for the external cathode configuration are for the nominal 300-V, 19.5-mg/s case.

14.7 mg/s| 19.5 mg/s| 25.2 mg/s
300V 1 4 2
400 V 2
450 V 1

Table 4.1: Test matrix showing discharge voltage and anode flow rate variations for the internal
cathode configuration. Green: tested, Red: not tested. Number indicates the number of sweeps at
the condition.

4.3 ldentification of Mode Transitions

The transition point is identified starting from the strong global oscillation mode where the entire
channel is oscillating in unison shown by vertical stripes in the spoke surface plot. The transition
point, B /Brltrans, IS qualitatively identified when the entire channel oscillations begin to break up,
become irregular and spokes begin to form sporadically as shown in FigurB, 48 & 0.58 for

(a) andB,/B; = 0.67 for (b)). The quantitative transition criteria from global mode to local mode
are listed in Table 4.2.

In Table 4.2,PS Dy, is the peak PSD for any spoke ordar> 1, PS Dy, is the peak for
m=0 andlp, is the minimum discharge current during the sweep. The criteria of Table 4.2
are guidelines and not absolute cutoffs. The transition point is associated with the destabilization
of global mode because typically that is the clearest to identify. This marks the lower limit of
the transition region. The upper limit of the transition region where the spokes dominate and
global oscillations are absent or negligible is not as easy to identify. The strong global oscillations
begin to lose coherency & /Bylirans, but the plasma oscillations are typically seen to alternate
between global mode and local mode By Bflirans < Br/B; < 1.1B;/Bflirans: This is considered
the transition region where the discharge channel displays both oscillatory modes.
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Figure 4.1: Example mode transition regions showing global ni&d&; = 0.55 and 0.64), the
initial breakup of global modeR; /B; = 0.58 and 0.67), global mode intermixed with local mode
(Br/B; = 0.65 and 0.73), and fully local mod&{(/B; = 0.73 and 0.79).

88



Criteria Global Mode | Local Mode
PS Diy,
:lg >0.15 <0.10
Ip, = 2-2m | 20,02 <0.02

Table 4.2: Transition criteria between global and local oscillation mode based on HIA PSD and
discharge current PSD.

Figure 4.1(a) and (b) shows example mode transition regions for 300 V and 400 V, respectively.
The lowest settingB,/B; = 0.55 and 0.64, shows global mode for both cases. The global channel
oscillations are seen to begin breaking up and becoming more sporads;/i8f = 0.58 and
0.67. ForB;/B; = 0.65 and 0.73 the diagonal lines indicate spoke propagation intermixed with
entire channel oscillations. The thruster is fully in local mode with strong azimuthal spokes for
B:/Bf = 0.73 and 0.79.

4.4 Discharge Current Response to Mode Transition

4.4.1 Magnetic Field Sweeps

The magnetic field was varied by changing the inner and outer magnet coil currents in a constant
ratio with all other parameters held constant including flow rates, discharge voltage, and chamber
pressure. Maintaining a constant 1.12 ratio of inner to outer coil current allowed the magnetic
field magnitude to be varied without significantly changing the shape shown in Figure 3.2; i.e. the
B-field topology was nearly constant as discussed in Chapter 3.3.

Magnetic field sweeps were typically started frd@yy B/|max and decreased until the thruster
discharge was unstable as indicated by an uncontrolled increase or “run-away” discharge current
as discussed in Section 4.4.3. However, a sweep at 300 V was conducted startifgy fBjmax
decreasing until thruster instability and then increased returnirigj AB;|max in order to demon-
strate directionality independence and the absence of hysteresis. The thruster was operated for
approximately 3-5 minutes at eaBh/B; setting during a sweep. In order to ensure thermal equi-
librium, the thruster was operated for a minimum of 3 hours before conducting B-field sweeps and
when changing conditions (discharge voltage or flow rates) it was operated for 0.5 to 1 hour prior
to sweeps. All flow rates at 300 V discharge voltage were repeated during different pump downs
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where the thruster was exposed to atmosphere between tests. Tests were also repeated with and
without the probes present in order to ensure the probes were not significantly altering the thruster
operation.

Decreasind, /B; below a certain threshold was shown to repeatedly induce a mode transition
similar to those discussed in Chapter 2.4, where the mean discharge current increased and the dis-
charge current amplitude increased. This was shown consistently for the three different voltages
(300, 400 and 450 V) and three different flow rates (14.7, 19.5 and 25.2 mg/s) as shown in Fig-
ure 4.2 and Figure 4.3 where the plotsl_gfand TD/I_D vs. By /By show two distinct regions with a
transition line. The thruster is considered to be more sensitive to mode transitions if the transition
Br /B ltrans OCcurs at higheB, /B; values. Becaus8;/B;|max IS an upper limit due to thruster
design, if the transition point occurs at high&/B; then the range of B-field values where the
thruster operates in local mode is diminished. As was discussed in Section 4.3, defining a single
transition value for the B-field is misleading because there is a transition region where the plasma
exhibits both types of oscillations, however the transition typically occurred over 0d§%
change inB;/B;. The transition line shown is where global oscillation behavior begins to domi-
nate and the transition region typically extends from B.9B; |irans t0 By /B ltrans. The estimated
uncertainty in transition point i€0.1 A for I,y which corresponds t&0.03 for By /B lirans-

Figure 4.2 and Figure 4.3 show that increasing discharge voltage or flow rate makes the thruster
more sensitive to mode transitions. The transition points from Figure 4.2 and Figure 4.3 have been
summarized in Figure 4.4 in order to highlight the trends. Figure 4.2(a) and (b) show the discharge
current mean and oscillation amplitude, respectively, for discharge voltages of 300, 400 and 450 V.
The parenthetical numbers in the legend show the number of sweeps where the 300 V condition
was repeated four times (one sweep was a continuous decreasing then increasing sweep and one
sweep was with probes) and the 400 V condition was repeated twice (once with probes and once
without). The different sweeps showed remarkable consistency with deviations less than 3% of the
mean indicating the transitions were not caused by transient thruster properties such as out-gassing
or thermal dis-equilibrium.

Figure 4.3 and Figure 4.4 show that increasing anode flow rate with a constant 7% CFF makes
the thruster more sensitive to mode transitions. Figure 4.3(a) and (b) show the discharge current
mean and oscillation amplitude, respectively, for anode flow rates of 14.7, 19.5 and 25.2 mg/s.
Only 1 sweep at 14.7 mg/s is shown, although a second was conducted before all current sensors
were calibrated and it yielded identical results. A second sweep at 25.2 mg/s was also conducted
and not shown where the thruster was not operated at that flow rate for adequate time to reach
thermal equilibrium, which caused a shift in mode transition. After adequate equilibrium time,
the transition region stabilized. The higher discharge voltages of 400 V and 450 V in Figure 4.2
showed a steadily increasing oscillation amplitudd3gd3; was increased foB, /By > 1, yet the
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Figure 4.2: Discharge current mean (a) and oscillation amplitude (b) variation with constant
19.5 mg/s anode flow rate and variable discharge voltages of 300, 400 and 450 V. The upper and
lower bounds for the transition region are shown. The number in parenthesis is the humber of
sweeps averaged together.
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Figure 4.3: Discharge current mean (a) and oscillation amplitude (b) variation with constant 300 V
discharge and variable anode flow rates of 25.2, 19.5 and 14.7 mg/s. The upper and lower bounds
for the transition region are shown. The number in parenthesis is the number of sweeps averaged
together.
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mean discharge current remained the same. Additionally, the lowest flow rate case of 14.7 mg/s
for 300 V showed significantly higher oscillation amplitude in Figure 4.380B; > 1.2 than the

other flow rates indicating a possible transition to an entirely different mode than the transition
between global and local mode&t/B; = 0.53.

4.4.2 Transition Point Characterization

Figures 4.2 and 4.3 show that mode transition occurs at higher magnetic field strength for increas-

ing discharge voltage and mass flow rate. The lower limit of the transition reBigB; 10V is

plotted versus anode mass flow rate and discharge voltage in Figure 4.4. The lower transition point

can be characterized as functions of discharge voltage and mass flow rate using linear and power
approximations.

30

- —a—1nd Vp=300V) ]
r —e—Vp (m,=19.5mg/s) 450
251 .
® -400
?Eﬁ o
"wf — — | @
|
I 1350
15 .
4300
10 i L L | L L L L 1 L L L L 1 L L L L 1 L L L L 1 L
055 06 0.65 07 075
Br/Brigiix

Figure 4.4. Mode transition point as a function of anode flow rate (left axis) at constant dis-
charge voltage (300 V) and a function of discharge voltage (right axis) at constant anode flow rate
(19.5 mg/s). The lower bound of the transition region is shown with an uncertaiy/ Bf |trans

of £0.03 The multiple sweeps for 300 V and 400 V have been averaged together.

For the linear approach, a least squares fit was performed betBeB IO and
(Vp/V5)(ma/m;) whereV] = 300 V andny, = 19.5 mg/s. The resulting fit is shown in Figure 4.5
and Equation 4.1.

V,
By/Blover— 0,284 2 M | 309 4.1)
Vg My

A “transition surface” can also be plotted using Equation 4.1 as shown in Figure 4.6. More
testing is required to validate the accuracy of the transition surface over the entire range, but the
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Figure 4.5: Lower transition point as a linear function of normalized discharge voltage and nor-
malized anode mass flow rate. The resulting least-squares fit is shown. The multiple sweeps for
300 V and 400 V at 19.5 mg/s remain as separate data points.

surface in Figure 4.6 demonstrates a new technique for defining the operational modes of an HET.
Using experimental data or an empirical relation the transitions points can be determined a pri-
ori over a prescribed range of discharge voltages and mass flow rates in order to avoid thruster
operation near those settings.

A power law approach for the relation betweB B; [|0%°! has the form

Vo VP (ma)”
r rltrans VD rna

Equation 4.2 can be written in matrix form and the coefficients can be solved according to

logC |
|og(Br/BF‘I{?§¥1esr)= B [1 Iog(xg) Iog(%)] (4.3)
Y
logC | B
B |=log(B/Brlicue)| 1 log(ve) log(fe) | (4.4)
Y

Equation 4.4 can be solved using the same data used to calculate Figure 4.5, which yields more
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Figure 4.6: Transition surface generated from Equation 4.1B,pr;*|{$;",’$srfor arange of discharge
voltages and anode mass flow rates. Black dots represent the conditions tested in Table 4.1.

equations than unknowns. Therefore the Moore-Penrose pseudoinverse matrix is used which is the
least-squares solution to the over-determined problem. The solution is

0.401,.. 10541
2"

Vo

Br/Bllirans = 0-593( -

Noting thats andy are close to 1/2, the power law in Equation 4.5 can be approximated as

Vp\(Ma
B /B IOV ~ 0.6 (—)(—) (4.6)
r rltrans VD n,.la

There are not enough different conditions tested to conclusively determine which approximation is
correct. However, over the range\g$ and m, shown in Figure 4.6, the difference between Equa-
tion 4.1 and 4.6 is less than 7% so both approaches are equally valid pending further investigation.

In order to theoretically investigate the physics behind the transition, Equation 4.6 should be
formulated as a function of quantities that appear in continuity equations. The ion velocity can be
related to the discharge potential using conservation of energy

mvy

Vp=—1
20y

4.7)
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whereny is the voltage utilization efficiency in Equation 2.12 (fraction of the discharge potential
the average ion is accelerated through). The mass flux of particles through the discharge channel
of areaAwhn| 1S

m= Any MNVthy (4.8)

whereny is the neutral particle density anehy= v8kgTn/(rmy) is the thermal velocity for
neutrals of temperaturgy in K and massny. Using Equations 4.7 and 4.8, Equation 4.6 can be
written as

Br /By hoarer ~ PVi iNViny (4.9)
Achni
¥=0.6m, |5 — 4.10

Equation 4.9 shows that the transition point scales linearly with ion velocity and as the square root
of neutral density and neutral velocity for the very limited number of data shown in Figure 4.6.
More data are required over a large rang&/gfand my, but the techniques presented here, espe-
cially the idea of a transitions surface, are still valid.

4.4.3 Highly Oscillatory versus Unstable Operation

A distinction needs to be drawn between oscillatory operation in global mode and unstable opera-
tion. An increase in mean discharge current and oscillation amplitude is often labeled as unstable
operation; however the thruster shows no sign of run-away behavior. Here we define unstable op-
eration as the condition where discharge current begins to rise uncontrollably at a constant B-field
setting. Figure 4.7 shows a typical B-field sweep at 300 V, 19.5 mg/s, lasting less than 1 hour
with approximately 3 minutes at each setting. The continuously recorded values for inner magnet
currentl;yy and mean discharge currel_mi are shown in Figure 4.7 with the discrete values used in
later plots shown as symbols. Inner magnet current is decreased from the max of 5.5 A in discrete
steps until the thruster goes unstable at 1.65 A. From 5.5 A until 2.1 A, the thruster is in local mode
and transitions to global mode below 2.1 A. From 2.1 Ato 1.75 A the thruster is more oscillatory
in global mode, but is stable at higher mean discharge current values. Below 1.75 A, the discharge
current begins to steadily rise and significant fluctuations are seen even on the 1-Hz telemetry in
Figure 4.7 without any thruster setting changes, which is unstable operation.
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Figure 4.7: Telemetry for discharge current (right axis) and inner magnet current (left axis) for a
B-field sweep at 300 V, 19.5 mg/s recorded at 1 Hz. The reported values used in Figure 4.2(a) and
Figure 4.3(a) are shown as symbols. T¢B; regions of local mode, global mode and unstable
operation are noted.

4.5 Plasma Oscillations Response to Mode Transition

4.5.1 Discharge Current Density

FastCam videos of the thruster were acquired aBglB; settings during a B-field sweep and were

time synchronized with discharge current measurements. All videos were processed as described
in Chapter 3.5 in order to generate a discharge current density surface as shown in Figure 3.13(c).
Figure 4.8 (a) compares a 0.5 ms sample dfthsignal and the (t) signal filtered and down-
sampled to the camera frame rate of 87.5 kHz with a normalized, AC componentgrffpm

the FastCam. The discharge current samplett at1 MHz in Figure 4.8(a) shows higher fre-
guency discharge current oscillations that are not captured with FastCam. The difference between
the originali(t) signal andi (t) signal filtered and down-sampled yields the uncertaingy(t) in
Equation 3.39. The correlation is visually apparent in Figure 4.8(a) with a linear correlation coef-
ficient of 0.92 between the down-samplét) signal andry. This matches the result first reported

by Lobbia. [128] A linear correlation coefficient gf> 0.8 is always observed betweés and

Mo, supporting the assumption made in Chapter 3.5 that the time varying light intensity within the
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discharge channel is linearly related to the discharge current. The PSD of the down-séft)pled
andmg are nearly identical as shown in Figure 4.8(b). Therefore, PSDs of the discharge current
from the split core Hall probes amdy spoke order from HIA are excellent proxies for each other
and are important comparisons during mode transitions.

(¥

Normalized Magnitude

=N

Ip

Iy - DownSampled

{
[

(| ——m=0
_3 ! I n I ! 1 L 1 L 1 L | L 1 L 1 L 1 L
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(a) Time History
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(b} Power Spectral Density

Figure 4.8: Comparison of normalized, AC component of the discharge current measurements
to m= 0 spoke order from HIA. (a) The time history of the discharge current signal shows higher
frequency components than the= 0 signal, but the down-sampled discharge current and the

m = 0 signal are well correlateg, = 0.92. (b) PSD of the down sampled discharge current and

m = 0 signal also match well. A 1-kHz moving average filter has been applied to smooth both

PSDs.

During B-field sweeps, HIA of the discharge current density surface shows a distinct change
in the discharge channel oscillations in Figure 4.9 where the transition poBy/ B = 0.61.
While in local mode B;/B; > 0.61), the spoke surfaces in the right plots show clear diagonal
stripes, indicative of strong, coherent spokes or azimuthally propagating perturbations. Figure 4.9
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shows the discharge current mean and RMS values with HIA during the B-field sweep and mode
transition for 300 V, 19.5 mg/s, where the nominal discharge current is 20 A or 133 rRA/cm
average discharge current density.

Several important features can be distinguished on the discharge current density surface plots,
beginning with the low magnetic field setting Bf/B; = 0.52. Vertical stripes of constant current
density indicates the entire discharge channel is acting in unison with minimal azimuthal non-
uniformities, as shown clearly iB;/B; = 0.52. The fluctuations are large with the entire discharge
channel at 70 mA/ci(10.6 A) or approximately half of the nominal value at the minima and then
rising to over 300 mA/cr(45 A) during the peak. In 1 ms of the discharge current density surface
shown in Figure 4.9, 8.5 cycles are visible. This corresponds to a frequency of 8.5 kHz, which is
clearly seen as a peak for= 0 in the HIA PSD with corresponding harmonics at 17 and 25.5 kHz.
The m = 1 spoke order peak is just an artifact fram= 0 which McDonald [78] describes as
“smearing.” No spokes are observed to have any significant peakg/Bf = 0.52. The PSD peak
in my is over 10; two orders of magnitude higher than at the transition pdaf B = 0.61) or
higherB, /By values.

At the transition point,B,/B; = 0.61 in Figure 4.9, strong vertical stripes are seen between
0.46 and 0.73 ms as well as 0.9 ms, indicating an oscillation in the entire channel from 110 to
160 mA/cnt. These entire channel oscillations are significantly lower than the global oscillations
seen aB,/B; = 0.52. The three oscillations seen between 0.46 and 0.73 ms correspond to 11 kHz
oscillations. However, diagonal stripes are clearly visible from 0 to 0.4 ms with oscillations be-
tween 120 to 150 mA/chwhich are symmetric about the mean of 133 mA?dur the discharge
current of 20 A. These diagonal stripes represent azimuthal spokes propagating around the channel
counter-clockwise, which is the x B direction for the H6. The spokes extend for 1/4 to 1/2 of
the discharge channel before dissipating and last from 100 tu2®@ duration. The existence
of spokes and global channel oscillations simultaneously indicates the thruster is switching or
“bouncing” between the different oscillatory modes. The PSD shows the magnitude of the global
mode has decreased by 2 orders of magnitude and is now the 11 kHz noted above. Spoke orders
m= 3-6 are present, with 4 and 5 the most dominant at 13 and 18 kHz, respectively.

For the reference magnetic field Bf /B; = 1.00 in Figure 4.9, very few global oscillations
are seen as evidenced by the very filgtin the PSD and only hints of vertical lines in the spoke
surface. Spoke ordera= 3-6 are also present with 4 and 5 still the most dominant, but they
have shifted down to 10 and 15 kHz, respectively. The spokes are stronger as evidenced by the
higher PSD peaks, but the length of the diagonal lines in the spoke surface has also increased.
Spokes typically propagate over 1/2 to sometimes even the entire discharge channel lasting for
several 100'gs. The local oscillations represented by spokes are from 115 to 150 rAAddrich
is about the mean of 133 mA/cnor 20 A.
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For the high magnetic field 0B, /B; = 1.48 in Figure 4.9, the entire discharge channel occa-
sionally oscillates in unison or “flickers” (i.e., 0.35 ms and 0.65 ms), but is not nearly as periodic as
B:/B; = 0.52. The current density during these peaks can be as high as 180 fAlcarefore, the
mp mode is stronger than &, /B; = 1.00, but the PSD peak is much broader thaBatB; = 0.60
or 0.51 since the “flicker” is more sporadic and not at one frequency. The spoke oreets- 8
are nearly the same level, with 4 and 5 shifting down again to 9 and 14 kHz, respectively. The
spoke peaks are an order of magnitude lower BaiB; = 1.00 indicating weaker spokes. As seen
gualitatively in the spoke surface, the spokes are shorter in duration so more spokes are present
(higher spoke order), but propagate for shorter periods (lower PSD peaks).

In a study with data acquired before the present work, but published after the results shown
here, McDonald [100] varied magnetic field strength for the H6 and noted an optimum B-field
where discharge current was minimized. Below this optimum the discharge current oscillation
amplitude increased significantly. Using different metrics for spoke strength, it was noted that
spoke strength was maximized when discharge current oscillation strength was minimized.

In summary, B-fields below the transition thresholds do not support spoke propagation or local
oscillations and the entire discharge channel oscillates in unison. At the transition points, spokes
are able to propagate but the channel occasionally reverts to global oscillation mode. At the ref-
erence B-field strength d,/B; = 1, spokes that are able to propagate over large regions of the
discharge channel dominate and global oscillations are minimized. For higher B-field more spokes
are present (higher m number in plots), but are less stable (occur for less time before disappearing
in spoke surface). As the B-field increases, the peak frequency of each spoke order decreases,
which supports an inverse relation between the spoke frequency (i.e., spoke velocity) and B-field
as noted in Ref. 67, 100.

4.5.2 Probe Response in Local Mode

The value of high speed probes is displayed by the ability to extract oscillatory plasma behavior
through PSD analysis or transient properties through time history analysis. Appendix B shows
maps of plasma plume properties for the H6 at reference conditions, which were acquired with
HDLP-ISR injected into the plume. The plume maps and oscillation content will be reserved for
detailed discussion and analysis in Appendix B, but Figure B.3 shows a sample time history of
plasma properties during probe injection over the discharge channel centerline exhibiting plasma
oscillations. The PSD was calculated for both ion and electron density and compared to discharge
current for the channel centerlinB R, = 1). Approximately 2/3 of the time history signal was
used for the PSD shown in Figure 4.10, which was a majority of the axial extent. However, even
using a small selection of time history yields the same results.
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The distinguishing features in Figure 4.10 are the frequency peaks in both ion and electron den-
sity. The peaks correspond to oscillations at 16, 20, 24 and 28 kHz, which agrees with the rough
observation in Figure B.3. What is also immediately obvious is the lack of corresponding peaks
in the thruster discharge current, which only displays the broad breathing mode peak between ap-
proximately 10-15 kHz. Previous high-speed investigations [74] on different HETs have noted the
electron density oscillations to follow the discharge current (with an appropriate time-of-flight de-
lay), which showed a more distinctly peaked breathing mode. However, those measurements were
farther out in the plume and did not approach the channel exit plane as closely as this investigation.

10 : : : T : : - 10°

Power Spectral Density [Arb. Units/Hz]

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Frequency [kHz] Frequency [kHz]

Figure 4.10: Power Spectral Density for Figure 4.11: Power Spectral Density for
thruster discharge current, ion density and plasma oscillations from HIA showing strong
electron density folR/R;y = 1. Frequency m= 6 spoke order. The spoke order peaks
peaks match those identified with HIA in Fig- match the frequencies observed by probes in
ure 4.11. Figure 4.10.

Density oscillations with peaks in frequencies that differ from the breathing mode are con-
firmed from the HIA PSD shown in Figure 4.11 calculated using the methods described in Sec-
tion 3.5. The frequencies of a 2-D PSD correspond to a local frequency that would be measured
in a fixed location within the thruster. The= 0 order in Figure 4.11 corresponds to the breathing
mode, which is a global brightening and dimming of the entire thruster discharge channel and was
shown to closely correlate to the discharge current in Figure 4.8. The shape matches the discharge
current in Figure 4.10 (note the ordinate axis units are arbitrary) as expected from previous in-
vestigations [78]. The orders fon > 1 correspond to the number of spokes present. As seen in
Figure 4.11 the modes can “smear” into each other due to the turbulent discharge [78] where they
exhibit the same peaks, so the important peak for each spoke order is the value where it dominates:
m=5 peaks at 16 kHan = 6 peaks at 20 kHan= 7 peaks at 23 kHz anth = 8 peaks at 28 kHz.
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As shown in Figure 4.11, the HIA detected the exact same frequency peaks as noted in the
ion and electron density. This exciting result provides confirmation that observed spokes have a
direct correlation to transient plasma properties in the thruster downstream plume. One possible
interpretation is that the spokes (bright regions in the discharge channel) correspond to increased
ionization zones and increased plasma density moving azimuthally in the discharge channel. These
regions of increased density would produce density peaks that would then move axially outward
(downstream) into the plume where probes in a fixed plane would measure them as plasma oscilla-
tions, but could not determine whether they were generated from the global breathing mode (axial
oscillations) or from azimuthally moving spokes (azimuthal oscillations). If the spokes are indeed
azimuthally moving regions of increased ion density, then azimuthally spaced probes should detect
a time of arrival difference in density measurements that would correlate to the spoke velocity.

4.5.3 ISR Probe Response to Mode Transition

The two HDLP-ISRs were positioned in front of the thruster at 6 o’clock for a B-field sweep at
400V, 19.5 mg/s as shown in Figure 3.6 with the results shown in Figure 4.12. The mode transition
occurs atB;/B; = 0.70, below which oscillation amplitude increases greatly. Unlike the 300 V
case, for the high magnetic field setting®f/B; = 1.48 the oscillation amplitudép is also quite
large at 5 A or 25% ofp . The results reported below only use the ion saturation current signals
from the ISR probesi(sR), although high-speed data were also collected from the HDLP and will
be presented in Section 4.5.4. Simply looking at signal correlation and PSDs, the ISR signals
are easier to use with less noise and uncertainty than the high-speed electron density, electron
temperature or plasma potential results. The same scale factoP k@@ later in Figure 4.13
will be applied to thd|srsignal before calculating PSDs in Figure 4.12 for a direct comparison to
discharge current PSDs.

For the global oscillation modds, /B; = 0.61 in Figure 4.12, the discharge current ane- 0
PSDs have a flat peak between 6.6 to 8.5 kHz. This peak is over one order of magnitude larger
than atB,/B; = 0.70 for m= 0 in the HIA PSD and almost two orders of magnitude larger for the
discharge current. Both the HIA PSD and discharge current PSD are over two orders of magnitude
larger than aB,/B; = 1.00. No spokes are present from HIA or the ISR signals. The discharge
current signal peak is larger than the ISR signals, indicating the dominance of the global oscilla-
tions. At the transition pointB,/B; = 0.70, spokes are present with= 4 and 5 dominant at 12
and 17 kHz, respectively. Spoke ordar= 6 is present at 22 kHz ana = 7 order is present at
27 kHz one order of magnitude lower in signal strength timan4 or 5. The discharge current and
m = 0 peaks have shifted to a sharp peak at 9 kHz. The ISR signals show the same peaks as the
HIA spokes at 17, 22 and 27 kHz (the 12-kHz peak is weakly present), but the discharge current
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peak at 9 kHz is entirely absent. This shows local plasma oscillations due to spokes dominate over
the global discharge current oscillations. The HIA spoke signals are an order of magnitude lower
than the discharge current signaBayB; = 0.70.

At the reference magnetic fiel&, /B; = 1.00 in Figure 4.12, the discharge current ane- O
signals have a very broad peak between 15 and 20 kHz. On the HIA PSDs, the dominant spoke
orders aren= 3, 4, 5 and 6 at 4, 10, 15 and 19 kHz, respectively, withrthe 7 order at 24 kHz
andm = 8 order at 28 kHz also weakly present. The ISR signals have strong peaks at 15, 20 and
24 kHz matching then= 5, 6 and 7 spoke orders well. For a higher magnetic fi8ldB; = 1.25,
the discharge current oscillations increase, as evidenced by a large (same magnitude as transition)
and more peaked discharge current amd 0 order at 20 kHz. On the HIA PSDs, the= 4 spoke
order has faded, buh= 5, 6, 7 and 8 have peaks at 15, 19, 24 and 28 kHz, respectively. The
ISR signals show the same peaks with the strongest peaks at 19 and 24 kHz matching 6he
and 7 spoke orders. The peaks have shifted to lower frequencies, but by less than 0.5 kHz and all
frequency peaks are rounded to the nearest kHz.

In summary, the PSDs for ISR 1 and 2 consistently match, indicating that they record the same
plasma oscillations. This is important when doing the correlation later as it is shown they do not
record the plasma oscillations at the same time. The ISR signal PSDs have peaks matching the
HIA PSD peaks for spokes with the strongest peaks corresponding to the higher spoke orders. As
with the 300 V case, the peak spoke ordersicrease with increasinB, /B; but the frequency of
the peaks gradually decreases. No spokes are present in global oscillation mode for ISR signals
or HIA PSDs. This indicates that in local oscillation mode, the plasma density fluctuations are
determined by local oscillations within the discharge channel and not a global phenomenon. In
global oscillation mode, the entire channel is oscillating in unison.

In order to further investigate local and global oscillations, a time history segment of the dis-
charge current and ISR signals is shown in Figure 4.13 for local oscillation nigydB;(= 0.73)
and global oscillation modeB(/B; = 0.61). The ISR currentl{sg which is typically of order
100’s uA has been scaled by 2@vith the mean subtracted (leaving the AC component only) in
order to match the discharge current AC compongpt for B, /By = 0.61. The difference in the
discharge current between the two modes in Figure 4.13(a) and (b) is also apparent with the local
oscillation mode exhibiting lower mean and oscillation amplitude (RMS value) as shown in Ta-
ble 4.3. The peak-to-peak value for the time segment shown in Figure 4.13(a) is less than 6 A for
local mode, while the peak-to-peak value for the time segment shown in Figure 4.13(8%i8
for global mode.

For local oscillation mode, Figure 4.13(a), the linear correlation coefficiefitetween | sr1
and Ip,. is only 0.23, whereas in global oscillation mode, Figure 4.13(8)0.77. This means
lisr1 trackslp,. very well in global oscillation mode, but not in local oscillation mode. In other
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Local Mode| Global Mode
By /By 0.73 0.61
Ip [A] 20.1 23.4
Ip [A] 1.4 11.0

Table 4.3: Summary of discharge current mean and oscillation amplitude for Figure 4.13.

words, the plasma oscillations in local oscillation mode are less dependent on the discharge current
oscillations, but are strongly dependent in global oscillation mode. The time delay calculated by
cross-correlation fronhjsri to ljsr2 is 14.7us, with an estimated uncertainty of u& based on

the width of the correlation function or 10% (148) as discussed in Ref. 34. Figure 4.13(c) shows
l)sr2 shifted to matchlsr1, demonstrating the signals are very well correlated; the correlation
coefficient before the time shift was -0.28 and after was 0.52. This means the ISR2 probe records
the same plasma oscillations as ISR1 probe, but delayed by:$4The ISR2 probe signal delay

is in the spoke propagation directid x B direction) from ISR1 leading to the conclusion that the
plasma oscillations are caused by the passage of azimuthally propagating spokes as discussed in
Chapter 5.
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Figure 4.13: Comparison between the AC component of discharge culigp) (0 ISR current
(Ihsr1 andl sr2) for 400 V, 19.5 mg/s in local and global mode. Note thgrsignals have been

scaled by 1B, the Ip,. signals are true scale. The ISR signals were low-pass filtered at 150 kHz
using a Butterworth 3rd order filter to reduce noise.

For global oscillation mode, Figure 4.13(b), the time delay calculated by cross-correlation from
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l)sr1to ljsr2 was—1.4 us, near the margin of error and the correlation coeffigianitthout time

shifting was 0.75 so effectively there was no delay between ISR signals. However, the time delay
calculated by cross-correlation frolmsr1 to Ip,. Was 9.7us, which can be construed as the

ion time of flight from the discharge channel to the probes. This means the plasma oscillations
occurred uniformly within the discharge channel during surges in discharge current and propagate
downstream to be detected by both probes simultaneously.
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Figure 4.14: B-field sweeps at 19.5 mg/s for 300 V (blue) and 400 V (red) with ISR probes; tran-
sition points are shown as vertical dashed lines. (a) Discharge current mean values with oscillation
amplitude in dotted lines. (b) Correlation coefficient from ISR1 to discharge current. (c) Time
offset from ISR1 to ISR2 calculated from cross-correlation (d) Time offset from ISR1 to discharge
current calculated from cross-correlation.

Key features identified in Figure 4.13 are time offsets from discharge current to ISR probes
with correlation coefficients and time offsets between ISR probes. These quantities are shown
in Figure 4.14 for 300 V and 400 V, 19.5 mg/s during B-field sweeps. Figure 4.14(a) shows the
discharge current mean and oscillation amplitude with transition points during B-field sweeps,
noting that 400 V transitions at a highBy/B;. The correlation coefficienisin Figure 4.14(b) are
between the AC components g r. and Ip,. after time shiftingl;sr1 by the offset times shown
in Figure 4.14(d) calculated from cross-correlation. Figure 4.14(b) clearly shows By /&}
values in local oscillation mode, the ISR signal is not well correlated with the discharge current
signal, as was shown in Figure 4.13. Below the transition valu8foB; the signals become well
correlated in global oscillation mode with> 0.3. The offset time increases below the transition
point for both 300 V and 400 V as shown in Figure 4.14(d) indicating a longer integrated ion time-
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of-flight from the discharge channel to the probes in global mode. It is important to remember that
global oscillations exist in local mode, but they are not dominant. There are still oscillations in
discharge current that will correspond to global fluctuations in plasma density downstream. These
oscillations are not dominant in local mode, but are significant enough for a linear cross-correlation
between|sr and Ip. Figure 4.14(b) shows the correlation coefficient betwiegr and Ip is low
(0.1<p <0.4) in local mode, but the time offset is still an averaged ion time-of-flight with the
same meaning as in global mode.

The time offset from ISR1 to ISR2 calculated from cross-correlation is shown in Figure 4.14(c)
where above the transition point the time delay is between 10 and.1%he time delay is gen-
erally decreasing with increasir8;/B; for 400 V, but is relatively constant for 300 V. For both
discharge voltages, below the transition point the offset time drops to waBis of O us indi-
cating the probes are measuring plasma oscillations nearly simultaneously. Combined with the
high correlation coefficient between ISR1 and the discharge current, this indicates the plasma is
oscillating in unison within the discharge channel and propagating downstream to be detected by
the probes. For 300 V, the offset time does not immediately go near zero indicating some spoke
propagation in the transition region Bf/B; = 0.57 to 0.61.

The specific impulse at the nominal conditior (B; = 1) for the H6 at 300 V discharge is
1950 s, [37] which corresponds to an expected ion velocity of 19.1 km/s. From Figure 4.14(d),
the time offset at 300 V discharge for 08B, /B; < 1.1 is approximately %s. The correspond-
ing ion velocity is 17+ 3 km/s using the fixed probe position 1.5 mean channel radii downstream
and an uncertainty of1.5 us in the time offset. Note that this is an average ion velocity in the
region between the discharge channel exit plane and the probes and not an instantaneous velocity.
In global oscillation mode the time offset is 18 which corresponds to an average ion velocity
of ~ 12 +2 km/s. While both values are lower than expected, the nominal condition is within
uncertainty of the expected ion velocity. As Lobbia points out, using linear cross-correlation to de-
termine ion time-of-flight is less accurate than determining the phase delay from frequency domain
transfer functions. [128] Therefore, the lower than expected average ion velocity may be the result
of experimental uncertainty. It may also be indicative of changes in the plasma properties in global
oscillation mode. The ion time-of flight from creation in the ionization zone to observation by ISR
probes is calculated by integrating the ion position using the equation of motion for a particle in
the axial electric field (assuming the ions are unmagnetized). The instantaneous ion velocity at the
probes may be higher in global mode than the average ion velocity of 12 km/s calculated by simple
ion time-of-flight, but the time for an ion to travel from the ionization zone to the probes may be
longer due to a different plasma potential profile. Assuming conservation of energy, if the plasma
potential at the probes is the same in global mode and local mode and if the ions are created at the
same potential, then they should have the same instantaneous velocity. These subtleties mean that
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using the simple linear cross-correlation time offsets in Figure 4.14(d) to calculate ion velocity can
be misleading.

300
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Figure 4.15: Plasma potential profiles with respect to ground to calculate ion time-of-flight. Local
mode profile is based on measurements from Ref. [37]. Global mode is based on a modified version
of local mode for demonstrative purposes only. The calculated final velocity and time-of-flight are
shown.

An example has been created using a measured plasma potential profile and an altered plasma
potential profile to illustrate this hypothesis. The measured plasma potential profile with respect
to the cathode has be extracted from Figure 15 of Ref. 37 and has been linearly extrapolated to the
probe distance at/r = 1.5 as shown in Figure 4.15. This is for the nominal H6 conditions which
is local mode. A second plasma potential profile has been created by “stretching” the measured
profile downstream, but the plasma potential at the probe location remains the same. This has
been labeled as global mode in Figure 4.15 but does not represent a measured plasma potential
profile. The equation of motion for a singly charged ion has been numerically integrated using
energy conservation with distance increments qQinl to calculate the final velocity and total
time of flight to reach the probes with the results shown in Figure 4.15. The calculated final ion
velocities of 20.3 km/s are reasonable estimates of expected ion velocities from measurements and
both time-of-flights fit with the data shown in Figure 4.14(d). As expected, the final velocities are
the same since they have been accelerated through the same potential, but the time of flight from
z/r =0toz/r = 1.5 has increased by for global mode to 1@s. At present there are no direct
measurements of plasma potential profile changes between local mode and global mode for the
H6 and the global potential profile shown in Figure 4.15 is purely hypothetical. However, it does
guantitatively demonstrate how the downstream probes could measure different time offsets and
yield different average velocities when the ion instantaneous velocities are the same.
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4.5.4 HDLP-ISR Probe Response to Transition
4.5.4.1 Introduction

Time-resolved probe measurements were made using the HDLP-ISR probes shown in Figure 3.6
to quantify changes in plasma properties between modes. This allowed observation of oscillations
in normalized density, plasma potential and electron temperature. The probes are loc&gd 1.5
downstream on channel centerline near the 6 o’clock position. It is important to note that these are
near-field plume measurements and not internal discharge channel measurements. The probe area
decreased during the hours of testing, but not significantly within the less than 1 second of data
acquisition so the density oscillations are normalized and not absolute values. The probes are not
aligned with the plasma flow so the ion density calculations of Appendix A do not apply.

The HDLP-ISR data were processed using the techniques described in Chapter 3.4. The voltage
was swept at 200 kHz and every two traces were averaged together so the plasma properties are
also sampled at 200 kHz or s intervals. For automated I-V trace processing, a threshold value
of 25%dle/d¢|peak Was the start and 40% of the IR) points from there towards,, were selected
to conduct a linear fit to determifig. The time-resolved plasma properties were smoothed with a
7 point wide, third order Savitzky-Golay filter. The raw signal from HDLP 2 exhibited irregularities
in the ion saturation portion of the trace indicating it may have been corrupted by noise or the
Pearson coil was damaged so only the time-resolved results from HDLP-ISR 1 will be shown. Note
that ISR2 was unaffected. The 400V, 19.5 mg/s case was tested first and the HDLPs failed during
the magnetic field sweep for the 300 V, 19.5 mg/s condition so only the results from the 400 V
case are shown. Time averaged plasma property values are calculated using the same automated
I-V processing scripts on an |-V trace trace that is the average of multiple other I-V traces.

The difference between average of time-resolved results and time-averaged results needs to be
addressed, which will be discussed in more detail in Appendix B. The average of time-resolved re-
sults is the mean value of a time-history trace for a time-resolved plasma property. Time-averaged
results are obtained when many |-V traces (enough to be much more than one oscillation period)
have been averaged together and the resulting plasma properties calculated from that averaged I-V
trace using the processing techniques discussed in Section 3.4. For example, in this section 10,000
I-V traces acquired at 400 kHz are averaged together (25 ms of plasma data) to create one |-V
trace, whereas the typical plasma oscillations of interest here 3dekHz or~ 100us. As will be
shown, the average of time-resolved results and time-averaged results match well when the oscil-
lations are sinusoidal in nature, but do not match as well when the oscillations take on a different
functional form.

The plasma oscillations are qualitatively and quantitatively different in both modes. In lo-
cal mode, the plasma properties oscillate in a sinusoidal fashion as shown in Figure 4.13(a,c).
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The mean of a sinusoidal function is the DC or offset value. Therefore, the average of the time-
resolved plasma proprieties corresponds well to time-averaged results calculated from an averaged
I-V trace. However, in global mode the discharge current oscillations are not sinusoidal as shown
in Figure 4.13(b,d), but are closer to a periodic or repeating narrow, Gaussian function. The os-
cillation frequency in global mode is typically 8 kHz so an oscillation period is 125us. Even

though the cycle may be 126, the rapid rise and decay of the peak lasts less thas 58 shown

in Figure 4.13. A time step of less than 25 is necessary to capture the oscillations accurately.
Without the brief peaks, the time-averaged results from an |-V trace that has been averaged over
many cycles will tend towards the lower value of the signal. This shows the benefit of time-resolved
probes, because time-averaging misses important details.

4.5.4.2 Cathode-to-Ground Voltage

All plasma potential values presented are with respect to cathode potential as determined from
a time-averaged cathode-to-ground measurement. The time-resolved plasma potential is initially
calculated with respect to ground and then adjusted with a DC offset to account for the measured
time-averaged cathode-to-ground potential shown in Figure 4.16. By convention, the cathode po-
tential is below ground whe¥igg < 0 and above ground whevig > 0. The time-averaged cathode-
to-ground potential is measured as a single value simultaneous to HDLP-ISR data acquisition.
During later testing at 300 V and 19.5 mg/s without the HDLP-ISR, time-resolved cathode-to-
ground measurements were acquired with a high-speed voltage probe using the same DAQ as
the HDLP-ISR and it was observed thé{y oscillations also change significantly during mode
transition as shown in Figure 4.17. These results will be discussed to highlight how the lack of
time-resolved cathode-to-ground measurements for the 400-V case creates significant uncertainty
in global mode, but not local mode.

Figure 4.17 shows the discharge current and oscillation amplitude (RMS) in the upper left plot
with the transition region identified by dashed vertical black lines. The cathode-to-ground voltage
is shown in the upper right where the blue line is the time-avera_ggd/alue recorded by the
1-Hz telemetry and has an uncertainty+#f.1 V. The red line shows the mean value of the time-
resolved cathode-to-ground volta@&yg(t)) and the dashed red lines are the RMS value calculated
using Equation 3.2. Other than~a0.25 V vertical offset forVy(t)), the two results from these
independent measurements agree well. Three magnetic field settings have been d%ld8ted,
= 0.54, 0.60 and 0.73, to show 508 segments o¥/y(t) and Ip(t) in global mode, transition
and local mode, respectively. Als wide moving average window has been applieddgtt) to
smooth the data.

In global mode aB; /B; = 0.54, the peak cathode-to-ground voltage during an oscillation cycle
is ~ 9 V aboveground, while the mean value is 6. 70élowground, a~ 16 V difference. The 4.1V
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Figure 4.16: Cathode-to-ground voltage during a B-field sweep for 400 V and 19.5 mg/s with the
HDLP-ISR. Negative values indicate the cathode potential is below ground. Black vertical lines
identify the transition region.

RMS value bounds the most negative value in the oscillation cyclel#t V below ground, but

does not capture the high-amplitude peak approximately 4 times the RMS value above the mean.
The peak-to-peak value in global mode-i20 V or +16/-4 VV about the mean, so the error in plasma
potential when converting from ground to cathode potential reference can be significant. As shown
in Figure 4.17, the cathode-to-ground voltage follows the discharge current breathing mode cycle
with a ~ 15 us delay calculated from linear cross-correlation. Figure 4.14(d) shows the plasma
density oscillations in global mode are offseflO us from the discharge current oscillations due

to ion time-of-flight. Assuming the plasma potential is correlated to the plasma density (supported
later in Figure 4.20), the cathode-to-ground voltagE) us after a discharge current peakif V,

so using the -6.7 V mean value will overestimate the plasma potential by 6.7 V in this example. It
is uncertain how large the error will be for the plasma potential results at 400 V presented in this
section, but the plasma potential in global mode could be in error by up to 10’s of V.

Inlocal mode aB,/B; =0.73, Figure 4.17 shows the RMS value of 2.1 V reasonably represents
the oscillation amplitude and the -8.4 V mean value is a very representative cathode-to-ground volt-
age. The transition condition & /B; = 0.60 shows occasional breathing mode oscillations mixed
with lower amplitude oscillations associated with local mode. Aside from the occasional large
amplitude breathing mode oscillations, the 2.3 V RMS value reasonably represents the oscillation
amplitude and the -7.8 V mean value is a representative cathode-to-ground voltage. In summary,
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Figure 4.17: Cathode-to-ground voltage at 300 V and 19.5 mg/s. Upper left: discharge current and
RMS values with the mode transition region identified by vertical lines. Upper right: cathode-to-
ground voltage from time-averaged valu¥g, in blue and the average of time resolvédg(t)),

in red bounded by RMS values. 506 segments o¥cg(t) and Ip(t) are shown forB, /By = 0.54,

0.60 and 0.73 corresponding to global mode, transition and local mode, respectivelyglthe
signal has been smoothed by a §ywide moving average window.
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converting the time-resolved plasma potential reference from ground to cathode can be accom-
plished with minimal error in local mode using a DC measurement for cathode-to-ground voltage,
but cannot in global mode. Time-resolved cathode-to-ground measurements synchronized to the
discharge current and HDLP-ISR measurements are necessary for accurate, time-resolved plasma
potential calculations in global mode. Future tests will record time-resolved, cathode-to-ground
potential to correctly calculate the time-resolved plasma potential with respect to cathode.

45.4.3 Plasma Potential

Figure 4.18 shows the plasma potential with respect to cathode for the 400 V, 19.5 mg/s condition
throughout a B-field sweep. The time-resolved plasma potential is initially calculated with respect
to ground and a single, time-averaged cathode-to-ground voltage is measured at each B-field set-
ting. Combining these measurements for each point yields the plasma potential with respect to
cathode. As discussed in Section 4.5.4.2, this approach is accurate in local mode, but can induce
10’s of V error in global mode. Adding further error to the plasma potential results for global
mode in Figure 4.18, the time-resolved plasma potential signal in global mode exhibits the same
shape as the plasma density and discharge current signals in Figure 4BL3Bpr 0.61 and the
cathode-to-ground voltage in Figure 4.17 &/ B; = 0.54. Therefore, the mean plasma potential
value in global mode for Figure 4.18 will significantly underestimate the plasma potential peaks as
discussed in Section 4.17 for the cathode-to-ground voltage.

For B, /B; > 0.9 in Figure 4.18 the plasma potential is 40-43 V, andBpfB; < 0.9 decreases
with decreasind3,/B;. The plasma potential is 33-35 V in the transition region and drops below
30 V in global modeB, /B; < 0.66. The oscillation amplitude is the RMS value calculated from
the 200 kHz data and is shown above and below the 200 kHz results. The oscillation amplitude is
3-4V inlocal mode and increasestd 6 V in global mode. The difference between the average of
time-resolved and time-averaged calculations is apparent in global mode, where the time-averaged
results calculated by combining 10,000 I-V curves yield&ahat is 5 V too low. As discussed
above, this is because the time-averaged results miss the high-amplitude, short-duration peaks in
potential.

Decreasing plasma potential in local mode with decreaBin@; indicates the acceleration
zone is moving further into the channel or is becoming more compressed near the exit plane. The
~ 4 decrease in mean plasma potential after the transition to global mode is likely an artifact of
how the mean is not a reliable metric for global mode oscillations due to the shape of the signal.
The fact that the RMS value approximately doubles in global mode (where it underestimates the
peak value) compared to local mode (where it is representative of oscillation amplitude) indicates
the plasma potential has large amplitude peaks downstream. During these peaks the acceleration
zone extends far outside of the discharge channel. In summary, the acceleration zone recedes into
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the channel with decreasing magnetic field in local mode until the mode transition point where the
acceleration zone (and possibly the ionization zone) will have large amplitude peaks that extend
out of the discharge channel into the near-field plume. These bursts may be responsible for the
increased brightness discussed in Section 4.7 and should be further investigated.
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Figure 4.18: Plasma potential with respect to cathode for 400 V, 19.5 mg/s measured by probes
1.5 Rehnt downstream. The plasma potential has been calculated at 200 kHz, 67 kHz, 40 kHz,
27 kHz, 20 kHz and 40 Hz by averaging a different number of |-V traces together indicated by
the parenthetical numbers. The transition region is shown with the oscillations in global mode
(Br/Bf < 0.66) average of time-resolved differs from time-averaged calculations.

4.5.4.4 Electron Temperature

Figure 4.19 shows the electron temperature for the 400 V, 19.5 mg/s condition throughout a B-
field sweep. The temperature is between 4.5 and 5.5 eV for all local oscillation mode conditions.
There is a general decreasing trend where the highest temperatures are observed at the highest
B:/B; and decreasing until transition with a slight dip Bt/B; = 1.00 and 1.05. The electron
temperature in global mode is between 4 and 4.75 eV, although that is mean value is likely not a
representative metric as discussed in Sections 4.5.4.2 and 4.5.4.3. As with the plasma potential, the
time-averaged results miss the high-amplitude, short-duration bursts in electron temperature. The
oscillation amplitude (RMS) is- 1 eV in local mode and increases+@.5 eV in global mode.

As with the plasma potential measurements, further work is needed to characterize the electron

temperature oscillations in global mode.
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Figure 4.19: Electron temperature for 400 V, 19.5 mg/s calculated at 200 kHz, 67 kHz, 40 kHz,
27 kHz, 20 kHz and 40 Hz by averaging a different number of |-V traces together indicated by
the parenthetical numbers. The transition region is shown with the oscillations in global mode
(Br/B; < 0.66) average of time-resolved differs from time-averaged calculations. Measured by
probes 1.Rn downstream.

4.5.4.5 Correlation of Plasma Properties

Linear correlation analysis is performed with the time-resolved plasma properties to look for trends
in oscillatory parameters. Figure 4.20 shows the correlation between discharge current, ion den-
sity, electron density, plasma potential, and electron temperature during a B-field sweep for 400V,
19.5 mg/s from HDLP-ISR measurements. Compare Figure 4.20(left) with Figure 4.14(b), with
the inclusion of electron density correlation in addition to ion density. The same trends are shown
where the density oscillations are not well correlated in local mode but they are well correlated
in global mode. In Figure 4.20(right) the ion density and electron density are closely correlated,
p > 0.4, for all settings indicating quasi-neutral plasma, as expected. The electron density and
plasma potential are also closely correlated, 0.6 showing that the high density plasma bursts
that emanate from the thruster are also higher potential. Note the correlations with plasma potential
are calculated with the time resolved plasma potential-to-ground measurement since time-resolved
cathode-to-ground measurements were not taken. The cross-correlation from ion density to elec-
tron temperature and electron density to electron temperature shows no correlation in local mode,
lol < 0.2. However, in global mode both are negatively correlated indicating that bursts of plasma
density have lower electron temperatures.
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Figure 4.20: Correlation between discharge current, ion density, and electron density (left) and
ion density, electron density, plasma potential, and electron temperature (right) during a B-field
sweep for 400 V, 19.5 mg/s from HDLP-ISR measurements.

In summary, for local mode, oscillations in plasma density are quasi-neutral with increased
density associated with increase plasma potential; density oscillations are not well correlated with
discharge current oscillations and are not correlated with electron temperature. In global mode,
oscillations in plasma density are quasi-neutral with increased density associated with increase
plasma potential and decreased electron temperature; density oscillations are well correlated with
discharge current oscillations.

4.6 Spoke Correlation to Probes

In this section the time-resolved correlation between azimuthal spokes in the discharge channel and
downstream probe measurements are shown. It will be shown that the passage of a bright region
called a “spoke” in front of the probe produces an increase in plasma density measured by the probe
after ion time-of-flight is accounted for. In local mode, the density oscillations are correlated to the
discharge channel region upstream from the probe while in global mode the density oscillations
are correlated to the entire discharge channel with no localized effects.

The linear cross-correlatiop, is calculated between the normalized plasma density signals,
f; (t) and rig(t), from each probe and each of the 180 azimuthal bins using Equation 3.9. The HIA
process described in Chapter 3.5 discusses how the discharge channel is divided into 180 two-
degree wide azimuthal bins where the light is averaged over that bin for each FastCam frame. This
creates 180 time-resolved light intensity signals for the discharge channel; examples of which are
shown later in Figure 5.4 when describing the spoke velocity correlation method in Chapter 5.5.2.
Peaks in the cross-correlation (©}indicate when the plasma density correlates well with bright-
ness fluctuations at a particular angular location in the discharge channel. A yake@)(in
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the cross-correlation will indicate that the plasma density correlates well but ioLi80f-phase

with a particular angular location in the discharge channel. WherD then no correlation ex-

ists between the density measured by that probe and a particular angular location in the discharge
channel.

The light from the discharge channel travels to the FastCam and is recorded nearly instanta-
neously on the timescales of interest heze L us). The plasma produced in the discharge channel,
however, requires time to travel from the discharge channel to the probe to be measured. This time
of flight, tror, for eachB; /By is calculated from the peak cross-correlation between the discharge
current and the ISR probe signal as discussed in Section 4.5.3 and shown in Figure 4.14(d). The
typical time offset fromp to fi is 6 to 11us.

While the plasma is traveling downstream to the probes, the spoke that generated the plasma is
continuing to propagate around the discharge channel at the spoke velggcifyhe spoke velocity
for eachB, /By is calculated in Chapter 5.5.2 using the correlation technique and is between 1500
and 2000 m/s for the cases considered here. In the tigpe that is required for the plasma to
travel from the discharge channel to the probe, the spoke will have ratatddgrees around the

discharge channel according to
_ tof fVSp18O

7Rehn
For example, Probe 1 is located 10Glockwise (CW) from the 6 o’clock position of the discharge
channel as shown in Figure 3.6. If the time of flightigr = 8 usand the spoke velocity isgy =

Ad (4.11)

1800 m/s, then according to Equation 4.11 the spoke that produced the plasma being measured
at timet will have moved Counter Clockwise (CCW) by 10,2r almost exactly to 6 o’clock

of the discharge channel by the time the signal arrives at the probe. However, if the spokes are
an angularly periodic structure (a regular series of bright and dim regions) propagating around the
discharge channel at the spoke velocity, ¥hen the probe signal will be correlated to other regions
around the discharge channel that are integer wavelengths away from the probe location.

A typical global mode oscillation frequency+s8 kHz as shown previously, which corresponds
to a period of 12%s. From Figure 4.14(d) the typical ion time-of-flight in global mode %0 us.
Therefore, the probe signal will be delayed by10% of the period from the plasma oscillations
observed in the FastCam, but the correlation coefficient is still expected to be greater than 0.3 even
without accounting fottor. The correlation coefficient foip to fi; in global mode i > 0.3 in
Figure 4.14(b) which does account tepr by shifting fi(t) in time ton(t — ttor).

Figure 4.21 shows,/B; = 0.46, 0.86 and 1.12 settings for the 300 V, 19.5 mg/s condition.
Figure 4.22 shows, /B; = 0.61, 0.93 and 1.12 settings for the 400 V, 19.5 mg/s condition. Time-
resolved electron densitye(t), is not shown from HDLP 2 for 300 or 400 V due to signal corrup-
tion. HDLP 1 failed halfway through the the 300 V testingrgt) is only shown for the 400 V
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locations and dashed vertical lines are offset locations.
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Figure 4.22: Probe to FastCam correlation at 400 V, 19.5 mg/Bfd8; = 0.61, 0.93, and 1.12.
Probe 1 is in blue and Probe 2 is in red. Ordinate is correlation coeffigiefdy n; or Ne to each

of the 180 azimuthal bins from the FastCam videos spoke surfaces. Solid vertical lines are probe
locations and dashed vertical lines are offset locations.



case in Figure 4.22, which was completed first. The spokes propagatekixiBalirection which

is CCW in the H6. In Figures 4.21 and 4.22, the discharge channel has been "unwrapped” onto the
abscissa with the discharge channel 6 o’clock position in the center and the 12 o’clock position at
the extrema. The CCW d£ x B direction is from left to right as shown on the plots. The probe
locations are denoted by solid vertical lines in Figures 4.21 and 4.22 and the offset locations
from the probes calculated from Equation 4.11 are denoted by dashed vertical lines. As discussed
above, the spoke will continue to propagate in Ehe B direction byAd degrees in the time re-
quired for the plasma to travel to the probe. Therefore,nthand rie signals are more strongly
correlated to locations in the discharge channel offset from the probe locations (offset to the right
in Figures 4.21 and 4.22).

The lowestB; /B; settings in Figures 4.21 and 4.22 are in global mode where the entire dis-
charge channel is oscillating in unison. The downstream density oscillaticamgl T are well
correlated ap > 0.7 and 0.5, respectively, to the discharge current and the FastCam signal at all
azimuthal locations. Therefore, the correlation coefficient is nearly constant and shows no prefer-
ence for the discharge channel region in front of the probe. This characteristic is what motivated
the nomenclature of “global mode” for this type of oscillation.

In Figures 4.21 and 4.22, the higher settingsByfB; = 0.86 and 1.12 for 300 V and
Br/B; =0.93 and 1.12 for 400 V are in local oscillation mode. They are correlated to the region of
the discharge channel immediately upstream of the probes or the region upstream and slightly CW
by ~ 45-60°. The plasma density; and fi¢ is not correlated (o 0) in the rest of the discharge
channel. A peak im is observed near the probe location (solid lines) or offset from the probe
(dashed lines). The uncertainty in the azimuthal locatiors5s and the typical shift isAd ~ 10°
so an exact matching of correlation peaks to probe or offset location is not within the uncertainty,
however, the trends are clear. The consistent result igptpatks at the probe or offset location
indicates that a peak in brightness in the discharge channel at piroduces an increase in plasma
density that propagates downstream to be measured by the probe at-tifag-. This trend was
observed for all magnetic field settings in local mode except for those near the transition region to
global mode. Close to the transition the correlation peaks do not line up with the probe locations
or offset locations, which is another indicator that the plasma oscillations begin to fundamentally
change in mode transition. This observation requires further study to quantify and determine the
physical meaning.

In local mode the signal is not as well correlated<(0.3) as the global mode ¢ 0.7), which
is likely related to the turbulent nature of the plasma plume. In global mode only one dominant
oscillation exists, but in local mode many different oscillations likely exist in addition to the az-
imuthal spokes. Figures 4.21 and 4.22 showsithand e are well correlated to light intensity in
the discharge channel one wavelength of the dominant spoke order in the ER&dB direction.
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This could be indicative of the ions being slightly magnetization so that the plasma spirals out of
the thruster in a helical pattern and could be the source of the so-called “swirl torque” observed by
flight systems. [35]
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Figure 4.23: Dominant spoke order from the peak in PSD of the correlation betwdesnd 2

to FastCam for 400 V, 19.5 mg/s. The dominant spoke order=s for the higher magnetic field

in local mode anain= 5 before the transition region. The dominant spoke order decreases through
the transition region 0.6< B, /B; < 0.73 and is not applicable in global mod8,(B; < 0.67).

The distance between peaksgdrobserved for local mode in Figures 4.21 and 4.22 indicate
the dominant spoke wavelength or spoke order for ByaB;. The wavelength for a given spoke
order,An, must be an integer factor of the discharge channel mean circumfergne@aR:n/m.
Calculating the PSD op using Equation 3.40 will yield the relative strength of easland the
peak in PSD will be the dominant spoke order. Figure 4.23 shows the donmm@ntthe 400 V
condition for eaclB, /B;. It was previously shown in Figures 4.9 and 4.12 that higher spoke orders
are dominant at higheB, /B;. Figure 4.23 confirms this finding whera = 6 is dominant for
Br/Bf > 1.25 andm =5 is dominant for 0.73% B /B; < 1.06. The spoke order decreases in the
transition region and is not applicable for global mdj¢B; < 0.67.

In conclusion, the correlation betwegnand e and the FastCam generated spoke surface has
shown that peaks in light intensity in the discharge channel create increases in plasma density
that propagate downstream. The plasma density is also correlated to the discharge channel one
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wavelength in the-E x B direction. ldentifying the most significant sine wave by calculating the
PSD ofp(0) yields dominant spoke order and is typicaths= 5 or 6.

4.7 Plume Brightness Response to Mode Transition

4.7.1 Plume Shape and Brightness Contours

Digital photographs of the plume were taken from a view port at a neaflya®@le with respect

to thruster centerline. Photographs at differBatB; settings in Figure 4.24 qualitatively show

the plasma plume evolution during mode transitions. The viewing angle was slightly upstream
so the discharge channel was visible very obliquely. The photos with accompanying contours
were modeled after Figure 1 of Brown [41] which also qualitatively showed plume shape changes
between modes. The contours show relative light intensity calculated from a grayscale version of
the image where 1 is the brightest and O is dark. Note the probes can be seen as vertical lines of
intensity ~ 0.2 in the plume at 1.5 channel radii downstream near the bottom of the picture and
should be disregarded. Visible brightness is important because it indicates excited energy states
caused by collisions. So although qualitative, the brightness of the plume is representative of the
plasma physics occurring in the near-field region. Here we define the near-field plume region as
the plasma directly downstream from the discharge channel to a few channel widths; the far-field
plasma is the plasma outside of the near-field region.

In global oscillation mode wherB; /B; = 0.46 in Figure 4.24, the discharge channel is very
bright with relative intensity 1 and the center spike of plasma extending along thruster centerline.
The spike extends downstream over 1 channel diameter and dominates the plumBg.BAss
increased to 0.61 at the transition point, the center spike recedes, but the discharge channel is still
very bright at 1. At the reference magnetic field settiBg/B; = 1.0, where the thruster is in
localized oscillation mode, the center spike is not present although the plasma from the cathode
is still visible on centerline. The relative light intensity visible in the channel is only 0.6 to 0.7,
which means the near-field plasma is less collisional and the collisions are likely occurring deeper
within the channel where they are not visible to the camerd,AB; = 1.48, the discharge current
oscillation amplitude is greater and the plume is again brighter downstream, but the channel relative
brightness is still only 0.6 to 0.7. In general, the plume recedeB, A3; is increased and the
transition from global oscillation mode to local oscillation mode occurs. This may indicate fewer
collisions and other processes are occurring in the near-field plume and are more confined to within
the discharge channel. These observations seem to contradict the results in Figure 4.18 where
plasma potential measurements indicate the acceleration zone is moving farther into the channel or
compressing more in global mode where one would expect the brightness to decrease. However,
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as discussed in Section 4.5.4.3, there are large amplitude plasma potential peaks that coincide with
the discharge current peaks so during a burst of plasma in global mode the acceleration zone is
stretched further downstream and may be responsible for the increased brightness.

The same B-field sweep was conducted with the cathode mounted externally, as shown in
Figure 4.25. The cathode was mounted above the thruster at the 12 o’clock position with cathode
centerline 32 mm above the outer pole radius. For the low magnetic field segtifgf, = 0.48,
the plume brightness extends downstream with the central spike dominating the plume structure.
As By /By is increased to 0.57, the plume recedes towards the channel with some vestige of the
center spike remaining. Both settings are in the global oscillation mode and the discharge channel
relative brightness is 1. Increasifgy/B; above the transition point into local oscillation mode
the center spike disappears and the discharge channel relative brightness is only 0.6 to 0.7. The
transition point for the external cathode case is highéB; = 0.65 (not shown in Figure 4.25) than
the internal case, wherg /B; = 0.61. The plume now extends out primarily along the channel
indicating the plasma is well focused from the discharge channel downstream. Note the probes
are present at the bottom and a reflection from the LVTF viewport sacrificial glass is visible as
a vertical perturbation 1 channel radii downstream; both should be disregarded. For the external
cathode case at 300 V, 19.5 mdBg/B; was first swept from 1.48 to minimum and then increased
again showing repeatability; the photos shown in Figure 4.25 are during the down sweep portion.

4.7.2 Optical Spectroscopy

Despite differences between the A53 thruster discussed in Section 2.4 and the H6 or SPT-100, the
changes in plume shape shown in Figure 4.25 from global mode to local mode are remarkably sim-
ilar to the “spike” mode and "swallow tail” mode, respectively, shown in Figure 4.26 reproduced
from Ref. 133. Two different operating conditions were tested for the A53 and the mode transition
from swallow tail to spike mode caused a 16% increase in mean discharge current for both con-
ditions, which also agrees with the local to global mode transitions discussed in Section 4.4. In
swallow tail mode, the ionization zone is deeper in the channel with fewer neutrals observed by the
channel exit. Spike mode is noted to be visibly brighter similar to global mode here. Images with
different filters in Figure 4.26 show that the increased brightness on thruster centerline in spike
mode is primarily due to excited Xe ion states and the increased brightness by the thruster exit
plane is associated with both excited neutrals and ions. The plume has larger divergence in spike
mode so the point where ion trajectories converge on thruster centerline is closer to the channel
exit (75 mm instead of 125 mm) and creates the bright central region (i.e. spike). Using optical
spectroscopy and Abel inversion, Roche [133] was able to quantify the light intensity increase of
the center spike for Xe +1 ions using the 529.2 nm line as shown in Figure 4.27.
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Figure 4.26: A53 plume images with three different filters (450, 525 nm: Xe ion excited states;
825 nm: Xe neutral excited states) in swallow tail mode (top) and spike mode (bottom). Repro-
duced from Figure 9 of Ref. 133
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Figure 4.27: A53 plume light intensity for Xe+1 529.2 nm in the plume obtained from Abel
inversion for (a) spike mode and (b) swallow tail mode. The scale is logarithmic. Reproduced
from Figure 10 of Ref. 133
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The photographs of Figures 4.24 and 4.25 clearly show a change in light intensity in the near-
field plume region after mode transition. Referencing optical emission characteristics for xenon in
arbitrary units, [134] neutral xenon dominates in the light blue to cyan portion of the visible spec-
trum (approximately 470 to 500 nm) with lines of 500+ intensity at 473, 481 and 492 nm. Xenon
+1 ions dominate in the violet to blue portion of the spectrum (approximately 430 to 470 nm) with
lines of 1000 intensity at 433 and 446 nm. Xenon +1 ions also have a strong 1000 intensity line at
508 nm in the cyan to green portion of the spectrum. Xenon +2 ions do not have any lines greater
than 100 intensity in the 430 to 520 nm bandwidth. Neither the human eye nor a standard digital
camera are a calibrated optical spectrograph, but the plume is clearly blue in hue showing the com-
bination of xenon neutral and +1 ions wavelengths. The blue hue of the plume extends outward
(farther downstream) after the transition to global mode indicating that increased collisionality is
occurring outside of the discharge channel. The luminosity is determined by collision rates (here
we assume electron to neutral or electron to ion), which are functions of the particle densities (neu-
tral, electron or ions) and collision cross-sections (determined by electron temperature). Therefore,
increased brightness after mode transition may indicate increased densities outside the channel or
a change in electron temperature (increase or decrease depending on how cross section varies with
electron temperature). However, the results in Figure 4.19 show that electron temperatures de-
crease after mode transition, so increased density is likely the cause. If the increased luminosity is
neutral lines (light blue to cyan), this may result from more neutral atoms escaping the discharge
channel, indicating the ionization zone is pushed out from the channel. If the ionization zone and
plasma potential are pushed outside of the channel in global mode then the possibility exists that
ions could be accelerated at nearly the discharge potential to very large incidence angles (up to
~ 90° degrees) from thruster centerline.

4.7.3 Differential Brightness

The change in light intensity with respect to magnetic field streamlines can yield qualitative in-
formation about the plume change between transitions. Photographs of the thruster in the external
cathode configuration are shown in local moBe/B; = 1.00) and global modeR; /B; = 0.47) in
Figure 4.28(a) and (b), respectively. Magnetic field streamlines are shown overlaid in Figure 4.28
for reference. Figure 4.28(a) shows the plasma in local mode is well columnated on discharge chan-
nel centerline with negligible brightness on thruster centerline. Figure 4.28(b) shows the plasma in
global mode where the bright centerline spike appears with additional brightness extending radially
out from the discharge channel along the outer-pole.

To accentuate the differences in plume brightness between modes, the images are loaded into
Matlab, converted to gray scale values, and subtracted. The resulting relative brightness difference
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(a) Local Mode:B; /B; =

(b) Global Mode:B;/B; = 0.47

(c) Difference in light intensity.

Figure 4.28: Light intensity for 300 V, 19.5 mg/s with an external cathode in global and local
mode. Magnetic field stream lines shown for reference.
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is shown in Figure 4.28(c) with magnetic field streamlines overlaid. The brightness contour values
are percent difference between modes where the red region indicates the global mode is 20%
brighter than local mode. The anomalous vertical distortion is from light reflection on the LVTF
view port and should be disregarded. Figure 4.28(c) clearly shows the spike on thruster centerline
that appears approximatetyRqnn ~ 1 downstream and extends2¢R:nn ~ 3. The upstream shape

of the spike (the end pointing towards the thruster) is approximately defined by the magnetic field
stream lines emanating from thruster centerline. There is very little change in plume brightness
on discharge channel centerline more than one channel width downstream from the exit plane.
“Wings” of brightness emanate from the discharge channel radially outward. This likely represents
plasma that is exiting the channel with large divergence or a significant velocity component in
the radial direction. This increased divergence would represent a decrease in thruster efficiency.
Increased divergence between modes for low-voltage operation of the H6 was noted in Table 2 of
Ref. 41 where the plume half-angle increased by as littl€ & 4s much asSfrom “low-current”

(local) to “high-current” (global) mode.

The center spike could possibly be explained by far-field electrons on thruster centerline enter-
ing the near field plasma realm. Consider far field electrari®n > 5) that are trapped on the
magnetic field lines from the center of thruster, which extend far downstream and meet back up
at the separatrixr(Rehn > 1). As the electron approaches the thruster, the magnetic field strength
increases very similar to a magnetic mirror. If on average the electrons are reflected before any
significant collisional processes can occur, then no light will be emitted on thruster centerline.
However, as the magnetic field is decreased, the strength of the magnetic mirror decreases and
electrons on average will be reflected closer to the thruster. If the electrons do encounter signifi-
cant collisions due to increased neutral or plasma density closer to the thruster, then light will be
emitted and a center spike will be visible. Therefore, this could be evidence of electrons “bounc-
ing” on magnetic field lines far downstream, but further investigation is required and suggested in
Section 7.2.

4.8 Performance Response to Mode Transition

Thrust was measured during B-field sweeps at 300 V for anode mass flow rates of 14.7, 19.5 and
25.2 mg/s. Thrust-to-power and anode efficiency are calculated with Equations 2.23 and 2.24,
respectively. For the 14.7 mg/s case shown in Figure 4.29, the mean value for the thrust is 281 mN
with a standard deviation of 3 mN, which is within the uncertainty of 7 mN or 2.5% of the mean
value. Therefore, the thrust was constant within experimental error during the B-field sweep at this
condition. The discharge current, however, increased below the transition p&mEit= 0.54

from 14 A to 19 A atB;/B; = 0.39. With a constant discharge voltage of 300 V, the increase
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in discharge current indicates an increase in power to the thruster so the thrust-to-pawer,
decreases significantly in global oscillation mode. The pEAR of 67 mN/kW occurs between
B:/B; = 0.64 and 0.79 and decreases to 50 mN/kW at the minimum magnetic field, representing a
25% decrease if/P.

Since thrust is constant or nearly constant, the increased discharge current is almost entirely
excess electron current to the anode. This is supported by low-voltage H6 operation in Table 2 of
Ref. 41 where the current utilization efficiency decreased by as little as 0.04 to as much as 0.1 from
“low-current” (local) to “high-current” (global) mode. As the B-field is decreased, the cross field
resistivity decreases, therefore increased current across the magnetic field lines is expected. How-
ever, the mode transition marks a percentage of discharge current increase that is disproportionate
to the B-field decrease. While the discharge current increase as B-field decreases is expected,
the difference in plasma oscillations may be responsible for the significant increase in discharge
current i.e. increased electron transport across magnetic field lines.
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Figure 4.29: Thrust and /P for 300 V, 14.7 mg/s during B-field sweep. The thrust is constant
at 281 mN within experimental error, but tlieP decreases below the transition point as the
discharge current increases.

Figure 4.30 shows all flow conditions for 300 V with transition regions as shaded areas on all
plots. Figure 4.30(b) shows the mean thrust was 281, 379 and 507 mN for 14.5, 19.5 and 25.2 mg/s,
respectively. Figure 4.30(c) shows the peak thrust-to-power was 67, 64 and 61 mN/kKW for 14.5,
19.5 and 25.2 mg/s, respectively. Figure 4.30(d) shows the peak anode efficiency was 65%, 63%
and 63% for 14.5, 19.5 and 25.2 mg/s, respectively. The uncertainty on the thrust measurements
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shown as error bars in Figure 4.30(b) for the 14.7 and 25.2 mg/s case is conservatively estimated
to be 7 and 10 mN, respectively. Unfortunately, for the 19.5 mg/s case a zero point was not
acquired after the thruster reached equilibrium and before data acquisition, but a zero was acquired
immediately after data acquisition. This condition was a down and back B-field sweep where the
B /B was decreased from 1.48 through mode transition and then increased back to 1.48. The
discharge current tracked during the down sweep and up sweep with a less than 4% difference
at any one point in global mode and less than 1% difference at any one point in local mode as
shown in Figure 4.30(a). Therefore, the zero before data acquisition was estimated using the
post data acquisition zero and the assumption that the thrust was the same for the down sweep
and up sweep (similar to discharge current), with a conservatively estimated 20 mN uncertainty.
As shown in Figure 4.30(b), this yielded a constant thrust throughout the sweeps (in local and
global mode) to within 3% which is very similar to the 14.7 mg/s condition. The thrust for the
25.2 mg/s condition increased with decreasing magnetic field from 482 to 518 mN, which is a
~7% change. Figure 4.30(b) shows that the thrust was not affected by mode transition. Zero points
were appropriately taken before and after the B-field sweeps so the increase in thrust is likely not
a thermal drift.

Figure 4.30(d) shows that froB /B {0, the anode efficiency for 14.7 mg/s decreases from
64% to 48%, for 19.5 mg/s decreases from 62% to 50% and for 25.2 mg/s decreases from 62%
to 53%. While significant, these numbers are a worst case because the percentage decrease is
related to how deep into global mode the thruster is operated. The most important aspect of this
analysis is the observation in Figure 4.30(c) and (d) that the peak in thrust-to-power and anode
efficiency typically occurs aB,/B; just larger tharB, /B[ ke and not the reference magnetic
field setting ofB, /B; = 1. Therefore, thruster performance is typically maximum near the transition
point, but once the thruster transitions from local mode to global mode the performance decreases
significantly with a further decrease B /B;.

4.9 Definition of Modes

Here we define the modes by their plasma oscillation characteristics, where most conditions should
be satisfied to represent either mode. An attempt is made to quantify the mode metrics, but the cri-
teria values are meant only as a guide and not rigid discriminators. These criteria are based on the
above observations of the H6 and are likely different for other HETS, but since mode transitions

have been observed in other thrusters a subset of the criteria below should apply. These definitions
delineate the thruster behavior when in either mode, but a less well-defined transition region exists

from By /B;IO%e to By /Bl bhe - In this transition region, the thruster does not meet all of the cri-
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Figure 4.30: (@) Discharge current, (b) thrust, (c) thrust-to-power, and (d) anode efficiency for
300 V discharge and anode flow rates of 25.2 (blue), 19.5 (green) and 14.7 (red) mg/s. The shaded
regions are the transition regions for a particular anode mass flow rate. The error bars on the thrust
measurements in (b) are estimated uncertainties.

teria for either mode and the HIA clearly shows the thruster jumping between modes as evidenced
from B, /B; = 0.61 in Figure 4.9. The criteria for identifying modes are given in Table 4.2.

49.1 Global Mode

The discharge current density in the entire channel is oscillating in unison with peak values of
order 100% of the mean value and azimuthally propagating perturbations are either entirely absent
or of negligible magnitude with respect to the discharge current density peaksrglinede of

the HIA PSD has a clearly defined peak value and spoke orderd do not have peaks more

than an order of magnitude above the general noise floor. Azimuthally spaced probes do not
observe delays in plasma property oscillations indicative of the entire channel luminosity or current
density oscillating in unison, and are well correlated to the discharge currenpwith3. The
discharge current oscillation amplitudes (RMS) are well above 10% of the mean discharge current
value and the mean discharge current is over 15% higher than the minimum discharge current
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value obtained in a sweep. The discharge channel and near-field plume regions are observed to
be brighter, indicative of increased collisions in the plume; a spike of bright plasma is visible on
thruster centerline.

4.9.2 Local Mode

The discharge current density oscillations are dominated by localized perturbations that are less
than 25% of the mean value and propagate inEheB direction. Oscillations may be present
where the entire channel luminosity or discharge current increases or decreases in unison, but they
are sporadic and do not dominate the azimuthal propagationsmd h@de of the HIA PSD has

a very broad peak value and spoke orders 1 have peaks more than an order of magnitude
above the general noise floor. Azimuthally spaced probes observe clear delays in plasma prop-
erty oscillations indicating localized regions of increased ionization within the discharge channel
propagating downstream. The probe signals are not well correlated to the discharge current with
p < 0.3. The discharge current oscillation amplitudes (RMS) are less than approximately 10% of
the mean discharge current value and the mean discharge current is within 15% of the minimum
discharge current value obtained in a sweep. The discharge channel and near-field plume regions
are observed to be dimmer, indicative of decreased collisions in the plume and collisional processes
more confined to within the discharge channel. The plasma is well focused on discharge channel
centerline and the center spike of plasma is absent for an external cathode or greatly diminished for
an internal cathode. Note that an internal cathode will always produce a spike on thruster centerline
because it is a plasma source.

4.9.3 High B-field Mode

The plasma oscillations in the discharge channel show different characteristics for high magnetic
fields that may be indicative of yet another operational mode. Previous simulations and experi-
ments have observed changes in oscillations at high magnetic fields. In recent hybrid direct-kinetic
simulations on an SPT-100, increasing the magnetic field oscillation above a threshold induced
oscillations that Hara called the strong ionization mode. [34] In the first classification of modes,
Tilinin [61] also noted larger oscillations in discharge current at high magnetic field settings that he
called macroscopic instability or magnetic saturation regimes. It should be noted the device used
in Tilinin’s study pre-dated the SPT-100 and these results may have limited applicability.

Figure 4.9 shows that as the magnetic field is increased, the spoke order increases, the spoke
duration decreases and low-amplitude oscillations occur throughout the channel. Additionally,
Figures 4.2 and 4.3 show the discharge current RMS increases at high magnetic field settings for
all conditions except 300 V, 25.2 mg/s. Finally, as will be shown later in Figure 5.11, the spoke
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velocity becomes independent of magnetic fieldBpfB; = 1. The transition to this mode is not

as sharp as the distinct transition between global and local mode. A qualitative explanation can
be offered if collisional drift waves are responsible for azimuthal spokes. In discussing collisional
drift waves, Bellan notes [135] “plasmas with strong magnetic fields tend to have turbulent, short
perpendicular wavelength drift waves, whereas plasmas with weak magnetic fields have coherent,
long perpendicular wavelength drift waves.” However, the differences in magnetic field strength
we are considering are factors of 2 or less and not orders of magnitude different. Regardless, this
could indicate that the high magnetic field settings are a turbulence dominated oscillation mode.

4.9.4 Magnetically Shielded Thrusters

The modes described in this section and criteria listed in Table 4.2 apply to hon-magnetically
shielded thrusters. Using HIA techniques only, a similar investigation to the one detailed in this
chapter was performed on two magnetically shielded thrusters with the results presented in Ap-
pendix C. Detailed analysis and discussion is reserved for that section where the oscillatory modes
of magnetically shielded thrusters show similar mode transition to global mode, but no spokes are
observed in the equivalent local mode. Spokes do not appear until the equivalent of the high B-field
mode for non-shielded thrusters. The cathode oscillation that is identified in Appendix B and is
barely perceptible in non-shielded thrusters is dominant in magnetically shielded thrusters.

4.10 Impactto Thruster Characterization

4.10.1 Thruster Characterization Testing

The 25% decrease in thrust-to-power during mode transition for the 14.7 mg/s case was similar to
the results of the low voltage investigation of Brown. [41] The minimum mean discharge current
typically occurred in local mode right before the transition region as shown in Figures 4.2 and 4.3.
Similarly, the peak /P and anode efficiency occurs near the transition point in Figure 4.30 where
the thruster is on the verge of entering global oscillation mode. If one were to choose magnetic field
settings for flight operation based on maximiziiP or minimizinglp, then the thruster would be
operating near the transition point where any perturbation in magnetic field (due to pole piece B-H
properties changing over time, magnetic coils degrading, etc.) or changes in wall geometry and
properties (due to erosion, coating from sputtered material, etc.) during the mission could cause the
thruster to be more sensitive to transitioning from local oscillation mode to global oscillation mode.
The B-field sweeps shown in Figures 4.2 and 4.3 were constant and repeatable across several pump
downs, but will likely change during the life of the thruster. This is more likely to be true if the
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transitions are related to wall effects where the plasma properties near the wall (i.e., susceptibility
to space charge saturation) may change as the wall erodes. Therefore, discharge current versus
B-field curves, while very repeatable during this test campaign, are likely only snapshots and may
change after thousands of hours of operation. The mostimportant take-away from this investigation
IS a new perspective on performance mapping of thrusters. Figure 4.4 shows that the transition
point occurs at higher B-field for increased anode flow rate or discharge voltage. Discharge current
versus discharge voltage mapping € Vp) are commonly performed on thrusters at beginning of

life or after thousands of hours of operation. However, more insight into thruster performance and
stability margins is gained by also mapping B-field to generatie,erVp — B maps for different

flow rates and possibly even different facility background pressures over the entire rdpgadf

Vp. Using these results it can be assured that thrusters are not operated near a transition point where
the thruster unintentionally enters global oscillation mode and decreases thruster performance.
In general, the thruster is more sensitive to mode transitions caused by magnetic field changes
for higher mass flow rate ohigher discharge voltage. As discussed in Section 2.4, there can

be many causes for mode transition besides magnetic field variations used in this investigation,
including CFF variations. Based on Brown’s work for low-voltage operation, [41] the thruster

is more senstitve to mode transitions caused by CFF changésafer mass flow rate otower
discharge voltage.

The body of research presented here underscores the importance of knowing where transition
points are and how to control the mode of operation. It also highlights that optimal thruster opera-
tion is obtained when the ionization front is stabilized in the discharge channel (i.e. breathing mode
is damped), which will be discussed in Chapter 6. Below is a list of recommended improvements
for thruster design and for more comprehensive thruster characterization to compare ground test
performance to in-flight performance.

1. New thruster designs should have magnetic circuits with more capability and not be designed
near saturation for the pole pieces. This will allow a wide range of variation in the magnetic
field magnitude without altering the shape.

2. A transition surface should be empirically determined similar to Figure 4.6 for a range of
expected operating conditions. This should be performed at beginning-of-life and at regular
intervals.

3. Ip — Vp — B surfaces should be calculated for each flow rate similar to Figure 4.31. This
should be performed at beginning-of-life and at regular intervals. Determine the values of
Ip and1p/Ip that are representative of stable regions that can be used as metrics for thruster
operation.
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4. Each condition should be characterized on the ground by high speed probes and ultra-fast
imaging to comprehensively understand the oscillatory characteristics. This will provide
a large parameter space for thruster operation where the oscillations are characterized and
correlated to discharge current (and any other diagnostics that are anticipated to be available
in flight).

5. High-speed diagnostics will likely not be available on a flight systems, but thruster oscilla-
tory mode can be determined from time-resolved discharge current measurements in-flight.
Build capability into the Power Processing Unit (PPU) to burst sample discharge current at
> 200 kHz for periods 10 ms. This will allow PSD calculations to quantify and characterize
discharge current oscillations and compare with the detailed ground measurements.

4.10.2 Flight System Design Recommendations

Typical operating parameters for laboratory HETs include: propellant gas, discharge voltage, an-
ode mass flow rate, cathode mass flow rate, separate magnet coil currents (inner magnet, outer
magnet and trim coil), and facility background pressure. Typical operating parameters for flight
HETSs only include: discharge voltage, power level and magnet settings. A closed-loop, automated
control system varies mass flow rate to maintain constant power for a set discharge voltage and a
proportional flow controller regulates CFF. [24] Note the BPT-4000 xenon flow controller varies
CFF from 5-9% depending on operating condition. [136] Flight systems typically power the in-
ner and outer electromagnets with one power supply with the magnetic coils connected in series,
therefore only the magnet currdit can be varied. The magnetic field should be the symmetrical,
lens topology described in Ref. 42 or magnetically shielded [4] where the shape and symmetry
are maintained to within a few percent from Qb < Im < 1.5I\m0 and Iy is the reference design
setting. This will provide significant dynamic range to adjust the magnitud@without chang-
ing the shape for optimal performance. This range has been suggested based on the investigation
presented here without comparison to other HETs and may impose impractical requirements on a
flight system. It is likely that a smaller range such as Ow5< Im < 1.251p would also provide
adequate range, which can be determined during testing since no first-principles based models can
predict HET performance let alone mode transitions.

A flight system such as the BPT-4000 will communicate State-of-Health (SOH) information
in the telemetry to the flight computer at a rate of 10 Hz or less [137], so at best ground stations
will receive SOH information at a sample rate of only a few samples per second during standard
operation. New flight system designs should build in capabilities to capture short segments of time-
resolved discharge current (and voltage if not regulated). Real-time, time-resolved data do NOT
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Figure 4.31: Examplép — Vp — B surface forlp (top) andlp/Ip (bottom) generated from the
data in Figure 4.2(a) fovp = 300, 400 and 450 V. This graphic is meant to illustrate the utility of
anlp —Vp — B plot to identify minimum discharge current, but is not intended for operational use
since the data has been linearly interpolated between only three discharge voltages tested.
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need to be streamed to ground control stations. The critical values of interest are discharge current
mean valud, RMS and peak-to-peak values (sometimes called “swing currénéid the PSD

form 0-100 kHz. These can be calculated on-board and transmitted to ground stations or a segment
of a discharge current time-histopy10 ms long sampled at 200 kHz can be transmitted to the
ground, from whicH, T and the PSD can be calculated in post-processing. Time-averaged values
for mass flow rate, discharge voltage and magnet current measured simultaneously with the time-
resolved discharge current should also be provided by the system. The time-resolved discharge
current needs measured downstream from any filters in the PPU so the actual current to the anode
is measured.

The mass flow rates in flight systems may be varied to maintain constant power, [24] while in
laboratory systems the flow rates are held constant. Although this parameter varies in time, the
time-scales for gas flow response are much slower than the expected 10’s kHz oscillations in the
discharge current. The response time from when a command is sent to the mass flow controller in
the gas feed system to when increased neutral density is observed in the discharge channel needs
to be measured and characterized (which is likely a function of temperature). It can be assumed
that this response time is likely to be in the seconds, solaHz SOH measurement is likely
accurate enough for characterization purposes, especially within the 10 ms of sample duration for
the time-resolved discharge current.

Similar to the examples in Figure 4.31, it is recommended to maké — Iy plots at different
power levelsP where the variable could bel, I, m, T, T/Por n. A detailed thruster characteri-
zation should be performed with the techniques developed in this work. Create a parameter space
volume of P, Vp and |y (or whatever independent variables are inherent in the system) where
the thruster is characterized over the parameter space with time-resgiMdtA, and probes in
the plume. This characterization should include time-averaged discharge current, thrust, thrust-to-
power and efficiency as well as time-resolved discharge current oscillation amplitude obtained with
commercial high-speed current monitors, peak plasma oscillation frequencies in the plume from
HDLP-ISR, and discharge current density oscillation characteristics in the discharge channel deter-
mined from HIA. This will provide identification of operational mode and mode transition regions
within the expected thruster operational parameter space. This parameter space characterization
should be done during qualification life testing in a ground test facility at the beginning-of-life and
then middle (~5,000 hrs) to end-of-life (10,000 hrs) to note changes due to erosion or material
aging. In flight, when a ground operator sets the discharge voltage, power level and magnet current,
a single burst sample of time-resolved discharge currerit, foand PSD from 0-100 kHz) from
the flight system combined with this extensive characterization data set will most likely allow the
thruster operational mode on-orbit to be determined. Part of initial checkout for the spacecraft and
propulsion system after launch should include a re-characterization of the parameter space volume
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as best as possible to quantify the differences between operation in a ground-test facility (which
has higher background pressure) and on-orbit.

4.11 Conclusions

Previous researchers have identified mode transitions in HETs where a small change in a thruster
operating parameter such as discharge voltage, magnetic field or mass flow rates causes the thruster
discharge current mean and oscillation amplitude to increase significantly. Mode transitions in
the H6 were induced by varying the magnetic field intensity while holding all other operating
parameters constant and measurements were acquired with ion saturation probes and ultra-fast
imaging.

The modes are described here as global oscillation mode and local oscillation mode. In global
mode the entire discharge channel is oscillating in unison and spokes are either absent or negligible
with discharge current oscillation amplitude (RMS) greater than 10% of the mean value and can
even be as high as 100%. Downstream azimuthally spaced probes show no signal delay between
each other and are very well correlated to the discharge current signal. In local oscillation mode
perturbations in the discharge current density are seen to propagate EnxtBedirection with
clear spokes shown in a HIA PSD. Spokes are localized oscillations that are typically 10-20% of
the mean discharge current density value. The discharge current oscillation amplitude and mean
values are significantly lower than global mode. Downstream azimuthally spaced probes show a
clear signal delay between each other indicating the passage of spokes but are not well correlated
to the discharge current indicating localized plasma oscillations within the discharge channel. The
mode transitions were consistent across different tests and showed no hysteresis, but did change
at different operating conditions. The transition between global mode and local mode occurred
at higher relative B-field strengths for higher mass flow rate or higher discharge voltage. The
thrust was approximately constant through the mode transition, but the thrust-to-power ratio and
anode efficiency decreased significantly in global mode. The peaks in thrust-to-power and anode
efficiency typically occurs near the transition point. Plume images showed marked differences
between modes with the global mode was brighter in the channel and the near-field plasma as well
as exhibiting a plasma spike on thruster centerline. For the external cathode case the plasma spike
disappeared in local oscillation mode.

This investigation describes techniques for identifying thruster operational mode using dis-
charge current monitoring, high-speed probes and ultra-fast imaging. Based on the research pre-
sented here, the H6 and likely any similar thruster should be operated in local oscillation mode
to minimize discharge current and maximize performance. Thruster performance maps should in-
clude variation in discharge current, discharge voltage, magnetic field, kno\yr-84% — B maps,
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at different flow rates to identify transition regions throughout the life of a thruster. These results
are used to calculate a transition surface for use by operators to keep the thruster operating in an
optimal mode. New thruster designs should have magnetic circuits with more capability and not
be designed near saturation. These techniques are naturally extendable to comparing ground-test
operation with on-orbit operation.
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CHAPTER 5

L ocal Mode and Azimuthal Spokes

“The journey from ignorance to wisdom demands not only curiosity, but the ability to
change one’s mind.”

— Elbert Hubbard

5.1 Introduction

This chapter summarizes findings on the characterization of azimuthal oscillations known as
spokes that are observed in local oscillation mode and discusses mechanisms for their propaga-
tion. The mode transitions investigated in Chapter 4 showed the presence of spokes is associated
with improved thruster performance without determining causality, which motivates an investiga-
tion into the underlying fundamental physics. Section 5.2 discusses the possible mechanisms for
spoke formation. Section 5.3 discusses the relation between spokes and electron transport and
Section 5.4 discusses spoke location within the discharge channel and plume. Section 5.5 devel-
ops and compares multiple techniques for calculating spoke velocity and describes an empirical
dispersion relation for spoke propagation. The results are shown for spoke velocity variation with
magnetic field strength, discharge voltage and mass flow rate. These measurements identify im-
portant characteristics of spoke propagation and develop a set of observations that any theory for
spoke propagation must explain. Section 5.6 investigates plasma waves as a possible spoke for-
mation mechanism using time-averaged plasma measurements inside the H6 discharge channel
at B,/B; = 0.86 from a previous investigation [44]. Section 5.7 discusses spokes as a sequential
breathing mode and Section 5.8 considers wall effects.

5.2 Spoke Mechanisms

A coherent theory with supporting experimental evidence for spoke propagation has yet to emerge,
[73] and the location in the plasma of their formation and mechanism for propagation are unknown.
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In searching for the origin for spokes, we will consider the plasma in three different regions similar
to that used in simulations [3]: near-anode region, the ionization/acceleration region near the chan-
nel exit, and near-field plasma plume. HETs have steep gradients in all relevant plasma parameters:
density, electron temperature, electric field and magnetic field. However, the largest gradients oc-
cur near the channel exit where the magnetic field peaks, the ionization rate is highest, and most of
the ion acceleration occurs. We will begin our discussion of the origin and mechanism for spokes
by broadly considering these different mechanisms:

1. Plasma WavesThe values for the magnetic field, plasma density, neutral density, plasma
potential and electron temperature vary in space throughout the discharge channel as will
be shown later in Figures 5.13 and 5.14 and . However, if they are constant in time, slowly
varying on time-scales longer than spoke propagation time-scales or have a small oscilla-
tion amplitude, then any number of plasma waves can propagate that can be described by
a dispersion relation. Chapter 6 discusses the implications of this in more detail where the
presence of spokes could be an indicator of breathing-mode damping. We can subdivide the
plasma wave mechanisms into three categories:

(&) (Nearly) Homogeneous Plasma WavesThe gradients in the near-anode region or
near-field plasma plume may be sufficiently small such that elementary, homogenous
plasma waves may exist. These are discussed and analyzed in Section 5.6.3.

(b) Drift Waves Driven by Gradients in the Plasma The ionization and acceleration
region near the discharge channel exit has steep gradients in all plasma parameters and
provides fertile ground for drift waves without considering ionization effects or neutral
densities. A preliminary investigation for this is conducted in Section 5.6.4 and a more
comprehensive analysis of the plethora of drift dispersion relations, including shear
driven instabilities, is reserved for future work as discussed in Section 7.2.5.

(c) Azimuthal lonization Instability. The spokes are bright regions moving azimuthally

in the discharge channel as seen in high-speed imaging analysis, which would indi-
cate spokes are regions of increased collisionality leading to more excited states that
decay to release photons. From downstream ISR probes in the plume the spokes are
observed as increased regions of plasma density. Together this may indicate that spokes
are related to ionization processes. Chesta’s [104] and Escobar’s [98] linear analyses
showed oscillations due to ionization and the work presented here suggests that spokes
represent increased ion production zones. These waves are dependent on ionization
frequencies and neutral density, which in general are not captured in the dispersion
relations analyzed in Section 5.6. Analysis and discussion of these important mecha-
nisms are reserved for future work as discussed in Section 7.2.5.
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2. Localized Breathing Mode. The same fundamental mechanism may exist between the
spokes and breathing mode, where the breathing mode (global mode in Chapter 4) exhibits
a uniform channel discharge and replenishment process while the spoke mode (local mode
in Chapter 4) exhibits an azimuthally local discharge and replenishment process. The ion-
ization zone could propagate around the channel\at,gvme/m from ambipolar effects.
Discussed in Section 5.7.

3. Wall Effects. Spokes propagate in ttiex B direction and electron interaction with the walls
may be necessary for azimuthal propagation as discussed in Section 2.3.7.3, so spokes may
be related to sheaths or interactions with the discharge channel walls. Additionally, previous
research suggests that plasma contact with the wall [65, 66] or potentially wall heating could
be related to spoke propagation and mode transition. Finally, spokes are generally not ob-
served in magnetically shielded thrusters where plasma-wall contact is reduced. Discussed
in Section 5.8.

5.3 Spokes and Electron Transport

Spokes have been thought of as possible current carrying mechanisms to explain anomalous elec-
tron transport. Janes and Lowder [47] suggested that azimuthal electric fields from spokes could
produceE x B drift in the axial direction and could account for anomalous electron transport.
Recent work on a Cylindrical Hall Thruster (CHT) [80, 82] has demonstrated that 50% of the dis-
charge current is carried through a spoke (only one spoke is observed in the CHT). While CHT
results have questionable relevance due to the significant difference in geometry (no inner chan-
nel wall) and magnetic field topology versus the H6, SPT-100 or any traditional annular discharge
channel, they do reinforce the idea that significant current can pass through a spoke. Unfortunately,
it was also reported that the CHT performance (measured by discharge current) increased when the
spoke was not present, [81] which is opposite of what has been clearly shown in this work. Here
electron transport decreases when spokes are present; based on these results, thrusters should be
operated in local oscillation mode. Spokes cannot be the sole cause for anomalous electron trans-
port because they are not present in global mode where electron transport is higher. Spokes are
localized oscillations that are typically 10-20% of the mean discharge current density value while
the global oscillation mode can be 100% of the mean value as shown in Figure 4.9. It is difficult
to explain how a 10-20% oscillation can cause the order of magnitude higher electron transport
than predicted by classical theory or Bohm diffusion [138]. A one-size fits all description for
causes of anomalous electron transport is improbable and likely several different mechanisms are
at work. [3]
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As shown in Figure 4.29, thrust is constant bytincreases, so extrapolating from Brown’s
work [41] the electron transport and electron current to the anode increases during transitions from
local mode to global mode. The implication is that the presence of spokes indicates decreased elec-
tron transport to the anode. This raises an interesting causality question of whether the presence
and mechanics of propagating spokes reduces electron transport to the anode or the plasma condi-
tions that decrease electron transport also allow spokes to propagate. Regardless, the presence or
disappearance of spokes is related to electron transport through the discharge channel to the anode
and strong spoke behavior is a symptom of higher efficiency operation and should be sought after.
Caution should be used when discussing electron transport as a global parameter when in actuality
it will vary in different regions of the plasma with different effects on performance. As discussed
in Ref. 3, electron transport in numerical models is often considered separately in different regions:
near-plume, acceleration and near-anode. The near-field region mobility describes the ability for
electrons to traverse through the plume from the cathode to supply electrons to the ionization zone,
which is critical for HET operation. The acceleration region mobility describes how well electrons
are retained to undergo ionization collisions. The near-anode mobility describes the ability for
electrons to reach the anode once they have escaped the acceleration/ionization region and influ-
ences the formation of the acceleration region. The combination of different electron mobilities
through the regions play a complex role in defining thruster stability and performance.

5.4 Spoke Locations

The location within the discharge channel where spokes originate is unknown and previous ex-
periments have detected azimuthal oscillations throughout the plasma from the anode out into the
plume. The original work by Janes and Lowder [47] detected azimuthal oscillations with probes
in the discharge channel where they even noted a spoke angle with respect to the walls. How-
ever, significant differences exist between their experimental apparatus in 1966 and the modern
H6 including a longer discharge channel lengthl/2 discharge voltage than nominal H6 val-

ues, chamber pressure two orders of magnitude higher, use of flament cathode, radially inward
magnetic field with over 2¥arger peak value, and quartz walls instead of boron nitride.

In a more recent investigation, Chesta [75] used probes downstream of the discharge channel
exit plane to observe spokes propagating at least one channel diameter downstream, similar to the
results described in Section 4.5. Figures B.9 and B.10 of Section B.4 in Appendix B shows that
oscillations related to azimuthal spokes are observed and dominant in some regions of the plume,
particularly on discharge channel centerline.

Work by McDonald [78] with a segmented anode discussed in Section 3.5.3.1 showed PSD
frequency peaks for the discharge current from individual anode segments matched spoke frequen-
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cies from HIA PSDs. In a time history trace (Figure 9 from Ref. 78) local discharge current peaks
are observed propagating from segment to segment at a velocity between 1700 and 2500 m/s. In
addition, Ellison [82] observed a 1200-2800 m/s spoke propagating in a cylindrical Hall thruster
with a segmented anode. This shows direct detection of the spokes at the anode itself, and by
association the near-anode region.

High-speed imaging of the discharge channel along thruster centerline is a line-integration of
all light emitted in the plume and discharge channel from the camera to the anode. Qualitatively,
most light will be emitted in the region of highest collision frequency, which will be the ionization
and acceleration region. This is substantiated by the profile photographs shown in Figures 4.24 and
4.25 of Section 4.7 where the channel is significantly brighter than the plume when viewed from
the side. One can reasonably assume that the HIA techniques described in Section 3.5 are primarily
imaging the ionization and acceleration region. Since spokes are readily observed with HIA, the
assumption can be made that spokes exist in the ionization and acceleration region, however time-
resolved internal measurements are needed for verification.

Spokes have been directly detected in the near-anode (segmented anode) and near-field plume
(downstream probes), and are strongly suspected to exist in the ionization and acceleration region
from HIA. Therefore, the presence and propagation of azimuthal oscillations are detectable from
the anode out into the plasma plume of HETs with no agreement on where they originate. Time-
resolved internal measurements as discussed in Section 7.2.1 will be critical to answering the
guestion of spoke origin.

5.5 Spoke Velocity

The spoke velocity can be calculated from either the high-speed imaging or the azimuthally spaced
probes using several different methods. Spokes are observed to propagate at a range of velocities,
so there is a distribution associated with the speed akin to a distribution function. The methods
below will identify one representative velocity for spoke propagation. McDonald has previously
proposed a simpler method for calculating spoke velocity [67, 1§04 2r fyRchni/m, that yielded

similar results and trends to the far more rigorous approach and analysis provided here.

As stated in Section 3.5, spokes are visible to even the casual observer. Figure 5.1 shows three
false-colored frames 45u& apart from HIA where red are the bright regions (spokes) and blue are
the dim regions. FastCam frames are every L%.4%ith the frame rate of 87.5 kHz, so there are 2
frames between each of the frames shown. The spoke can be seen to move approxidttaty
~ 45 us, which corresponds to an approximately spoke velocity ®400 m/s.
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Figure 5.1: Three false-colored FastCam frames 45.Z&part from a seven frame series showing
azimuthal spoke propagation. Red are bright regions (spokes) and blue are dim regions of the
discharge channel.

55.1 Manual Method

Spokes are unambiguously observed in the FastCam videos and are obvious even to the casual
observer as bright regions rotating azimuthally around the discharge channel. Using the techniques
described in Section 3.5 to create a spoke surface, the spokes appear as diagonal stripes in the spoke
surface as shown in Figure 3.13. This technique divides the discharge channel into 180 two-degree
bins of averaged light intensity and a video consistin§lgfframes will yield a 18& N¢, spokes

surface.

The most obvious technique to calculate spoke velocity is to fit lines to the diagonal stripes on
the spoke surface; the slope of which represent spoke angular veélgpiitydeg/s. In the FastCam
videos and subsequent video enhancement (c.f. Figure 5.1 and Figures 2 and 3 from Ref. 79),
spokes are observed to fill the entire channel width. Therefore, spoke angular velocity is converted
to a linear velocity using the mean channel radRigy

Vsp = (27Rchni/360) é7sp (5.1)

In order to determine an average spoke angular velocity, 45 to 50 lines are manually fitted to a
normalized spoke surface as shown in Figure 5.2BgB; = 1.00, 300 V and 19.5 mg/s. A
normalized spoke surface shows the spokes more clearly without altering their characteristic slope.
To normalize a spoke surface, each frame (vertical line) has its mean value subtracted and is divided
by its RMS value. In order to test the uncertainty due to human error and repeatability, 50 lines
were fitted to the same propagating spoke with a standard deviation of 39 m/s; this will be shown
to be within the standard deviation of a typical velocity distribution. The velocity distribution
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for the spoke surface example of Figure 5.2 is shown in Figure 5.3 where the spoke velocity is
1530 + 180 m/s and the uncertainty is the standard deviation of the distribution.
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Figure 5.2: One millisecond segment of Figure 5.3: Velocity distribution for the
a normalized spoke surface showing 14 manually fitted lines in Figure 5.2. The
of 47 manually fitted lines foB,/B; = black dashed line is the mean of the 47
1.00. Values in a normalized spoke sur- measurements.

face range from -1 (blue) to 1 (red).

More sophisticated techniques will be introduced in later sections, but those results should be
within the range of this straightforward, yet labor-intensive approach. Representative uncertainties
for the manual method are the mean uncertainties in Figure 5.9 of 190 m/s and 180 m/s for 300 V
and 400 V, respectively.

5.5.2 Correlation Method

The correlation method uses linear cross-correlation to determine the time delay between oscilla-
tions in light intensity at different azimuthal locations in the discharge channel. The time delay
represents transit time for a spoke to travel from one azimuthal location to another and is used to
calculate angular and linear velocity. By comparing a large quantity of azimuthal locaftdg)(
arepresentative spoke velocity can be calculated.

Starting with the normalized spoke surface as discussed above, the time-history signal of light
intensity for each bin is a t N, vector representing light fluctuations at that azimuthal location
for the duration of the video, which is typically 150 to 250 nids(~ 13x 10° to 22x 10°). A
1 ms segment of four normalized light intensity traces are shown in Figure 5.4 for reference. A
linear cross-correlation analysis of the signals between two bjrasd by, at different azimuthal
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locations with an angular difference 86 x degrees will yield the timety, it took on average for
a spoke to propagate around the channel foprio bx. The cross-correlation function is [126]

T
Ry = lim if b (t) by (t + 7)dt (5.2)
Tooo T 0

Signal delays for non-frequency dispersive propagation can be identified by peBksviere

the highest peak is the time offsefx. Figure 5.4 shows an example of the time offset for three
azimuthal locations (30 50° and 7C) referenced to 12 o’clock on the thruster face calculated
from linear cross-correlation. Five peaks in light intensity (spokes) are selected and shown how
they propagate around the thruster in Figure 5.4. The spoke velogjty, from bj to by is

Vspik = (27Rehni/360)A0; /K (5.3)

The spoke velocity for the correlation method is the mean spoke velocity calculated bé&tyygen

compared
1
= Nome Ej Ek spik (5.4)

I T | T |
— 0’ (12 oclock)
—30 CCW, ¢

et 229 us \
— 50 CCW, taﬁm: 457 ps

— 70 CCW, ¢ =686 s

offee

Normalized Light Intentsity

Figure 5.4: Light intensity traces for 4 azimuthal locations from the normalized spoke surface in
Figure 5.2. Selected locations are thruster 12 o’clock as the reference grid3and 70 CCW

from 12 o’clock. The offset times are calculated via linear cross-correlation from 12 o’clock to the
other locations. Five peaks have been selected to demonstrate how spokes propagate CCW around
the thruster using the calculated offset times.

In principle, the spoke velocity can be calculated from the average time delay using every
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combination of the 180 bins, which would be over 32,000. However, practical considerations
limit the range of bins that can be compared. The camera frame rate is 87,500 fps so each frame
represents 11.4s. A spoke traveling at 2000 m/s will travel °L6r 8 bins in the time span of

one frame. Therefore, a practical lower limitA8jx > 20° or 10 bins. A single spoke typically
propagates one-quarter of the discharge channel circumference for most B-field settings. In strong
spoke regimes, a single spoke will propagate one-half to even the entire channel circumference.
A reliable upper limit for automated processing is to only compare bins wh@e< 70° or 35

bins. In Figure 5.4, 6 cycles can be identified~i8.55 ms, which corresponds tdl1 kHz or a

spoke period otsp ~ 90 us. Due to signal noise, the cross-correlation peak occasionally matches
to a spoke ahead or behind the correct spoke so the calculated offset time is in error by one or
two 7gp. Although this occurs more often whed;j > 90°, it occasionally occurs foAg;x < 70°.

These points are easy to identify via manual inspection, but reject criteria are set for automated
data processing so any spoke velocity outside of 500 to 3500 m/s is rejected. In order to reduce
computational time, only 90 bins (every other bin) are used for reference start points. All bins from
bin 10 to 35 CCW from the reference bin are used for comparison. Thergferg, 3, 5, ... to 180

andk is 10 to 35 in Equation 5.4 which yields a maximumNyi,s = 2430 possible points. The
spoke velocities for smallekdjx will have larger uncertainty because half of the camera frame
period (5.7us) represents a large fraction of the spoke travel timé4 us to travel 20). The
standard deviation can be reduced by choosing a larger value for the lower lind pfnstead

of 20°, but the number of points used in the calculatidigy,s, will also be reduced, so a balance
must be reached.

Using the correlation method on the spoke surface in Figure 5.2 yields a spoke velocity of
Vsp = 1470 £ 270 m/s where the uncertainty is the standard deviation of the velocities used in
Equation 5.4. This is within 4% of the manual technique described above. For this data point
Npins = 2266 of the possible 2430 points are used fot 20\0jx < 70°. The manual method and
correlation method produce very similar results as shown later in Figs. 5.7 and 5.9. Representative
uncertainties for the correlation method are the mean uncertainties in Fig. 5.9 of 280 m/s and
260 m/s for 300 V and 400 V, respectively. The correlation method is important since it is an
automated and reliable procedure of providing the same results as the laborious manual method.

5.5.3 Dispersion Relation Method

Dispersion relations are common place in plasma physics to describe the relationship between
oscillation frequency and wave number. This method determines the spoke velocity from the
phase velocity of an empirically determined dispersion relation. The 2-D PSD identifies a peak
frequency for each spoke order, which is equivalent to wave number, and thus yields a dispersion
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plot from high-speed imaging results. An assumed functional form is fit to the data in order to
calculate the numerical values for the dispersion relation.

The HIA method developed by McDonald [6] and described in detail in Section 3.5 generates
PSD from the 2-dimensional spoke surface. Figure 5.5. shows examples for the 300 V, 19.5 mg/s
test case where peaks are clearly visible for each spoke andeis described by McDonald in
his original derivation [78]mis analogous to number of wave lengths per channel circumference.
Hencem = 0 or mp is no wave in the channel (the entire channel is dark or brighg),1 means
one wave in the channel (one half bright, the other dark}; 2 is two waves per channel (two
bright regions, two dark regions)) = 3 is three waves per channel (three bright regions, three dark
regions), etc. In the literatumais often called the wave mode, but we call it spoke order to avoid
nomenclature confusion with the HET operational modes discussed in Chapter 4. The azimuthal
wave numberky, is calculated from the spoke order ky= m/r. Figure 5.5 shows each spoke
order has a unique peak frequency that is typically 3-5 kHz higher than the prewioliserefore,
the HIA PSDs can be used to generate dispersion plots of peak frequwerergus wave number

Ko.
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Figure 5.5: HIA PSDs foB,/B; = 1.25, 1.00 and 0.73 for 300 V and 19.5 mg/s with=- 0— 10

shown. A 500 Hz moving average window has been applied to each PSD trace to reduce noise.
Bottom right: the peak frequencies are identified and plotted versus wave number for correspond-
ing dispersion relations.

The HIA PSDs are a powerful tool for understanding the plasma oscillations associated with
HET operation. Figures 4.10 and 4.11 showed that ion saturation reference probes identified the
same peak frequencies as the HIA PSDs indicating that spoke related oscillations extended out
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into the plume. The same spoke surface that generated the normalized spoke surface in Figure 5.2
was used to generate the HIA PSD #/B; = 1.00 in Figure 5.5. Note the most dominant peak

for B;/B; =1.00 ism=4 at 10.4 kHz, which is close to the crudely estimated frequency from
Figure 5.4 of~11 kHz.

In order to automatically identify the peak frequencies for each spoke order, the PSDs are first
smoothed with a 250 Hz moving average filter and the maximum value identified. Due to noise
from the DFT the maximum value is not always the frequency at the center of the peaks seen in
Figure 5.5 so a Lorentzian [100] of the form

1
PSD(f) = 22 pal 5
(- fo)?+(31)

(5.5)

is fitted to a segment of the PSD around the maximum value. The fit variables in Equation 5.5
are the full-width at half maximurl, amplitudeAg, and center frequencfp. This identifies the
frequencyfp or wo a the center of the primary peak for each Example dispersion plots using

this technique for the three HIA PSDs are also shown in Figure 5.5.

For high magnetic field strengtig, /B; = 1.25, the higher spoke orders are most prominent
with m= 10 showing a peak near the same heighhas5. At the reference settin@, /B; = 1.00,
the spoke ordem = 3-5 are an order of magnitude higher tharx 6, although peaks are visible
up tom= 10. At the lowest magnetic field settinB,/B; = 0.73, spoke ordersn= 3-5 are still
dominant but lower in magnitude thd)/B; = 1.00. Although very weak, peaks are still visible
form=6-9. As magnetic field is increased, the frequency of each spoke order decreases as shown
in the PSDs and dispersion plot in Figure 5.5.

Dispersion relations can be of any functional form and can be quite complicated as will be
discussed extensively in Section 5.6. It is important to remember that the dispersion relations
analyzed in Section 5.6 are derived from linearized, first-principles based plasma physics equations
and represent a physical process for a given oscillation. Unfortunately, the empirical relationship
betweenw andky shown in Figure 5.5 does not offer any physical explanation for the cause of
the azimuthal oscillations. In order to gain insight into the physical mechanisms behind azimuthal
spokes, we will choose a functional form to fit the data and compare the coefficients calculated
in the least-squared fit with the coefficients from physics based dispersion relations. The chosen
empirical dispersion relation functional form most likely will not exactly replicate a first-principles
derived dispersion relation, but similarities between them may be insightful. This comparison
may show which physical properties are important or which region of the discharge channel or
near-field plume is the likely origin for spokes. A first-principles derived dispersion relation that
explains spokes should reduce to a form similar to the empirical relation using a set of assumptions
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or approximations. With the above discussion in mind, we list several functional forms that can
represent the data shown in Figure 5.5

w® =C1ky +Cp (5.6)
w= C3kg+C4kg+C5 (5.7)
w? = Cgky +C7 (5.8)

where Equation 5.6 is a power law relation ané 1 recovers a simple linear relationship, Equa-

tion 5.7 is a second order polynomial, and Equation 5.8 is a parabola. These functional forms do
not constitute an exhaustive list of all possible functional forms, but they all share an important
characteristic thab is monotonically increasing witky, which is required to fit the empirical re-

sults in Figure 5.5. The coefficients — c; are linear fit coefficients from a least-squares curve fit

to the dispersion plots for each functional form. In the spirit of the many elementary plasma waves
found in homogenous plasmas, Equations 5.6-5.8 can be written as dispersion relations of the form

w® = Vg Ky — wg, (5.9)
w= _Vghzkg +Vch1Kg — weh (5.10)
w= \/wch(Vchke — Wch) (5.11)

where vy, is a characteristic velocity such as ion acoustic speed oreAlspeed andyg, is a
characteristic frequency such as the ion cyclotron frequency or plasma frequency. The negative
signs in Equations 5.9-5.11 are the result of least-squares fits and will be discussed in more detail
later for the power law.

Figure 5.6 shows the results fitting Equations 5.6-5.8 to the empirical dispersion results at the
reference magnetic field setting Bf/B; = 1 with « = 1, 2 and 3 in the power law. The numerical
values for the characteristic velocities and frequencies are shown in Equations 5.12-5.16.

w = (2170)k — (4.40x 10%) (5.12)

w? = (1820¥k? - (6.05x 10%)? (5.13)

w® = (1760¢k3 - (7.11x 10%)3 (5.14)

w = —(2.87Fk> +(3410)k — (8.52x 10%) (5.15)
w= \/(1.43>< 105)((3500)k — 1.43 x 10P) (5.16)

Only data form= 3—9 are used in the fits shown in Figure 5.6. The power law relation of Equa-
tion 5.9 displays the smallest deviations for all values including those outside the range3sf9.
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The parabolic relation from Equation 5.11 has the largest deviations from the data. Except for the
second order coefficient of Equation 5.15 at 2.87 m/s, the characteristic velocities for each func-
tional form were the same order of magnitude in the range of 1760-3500 m/s. It is interesting to
note this velocity range corresponds to ion acoustic speeds with 4-17 eV electrons (commonly ob-
served in HET discharge channels and plumes), as will be discussed in more detail in Section 5.6.
The characteristic frequencies showed excellent similarities with a range of 248x 10* rad/s.

The power law relation in Equation 5.9 wigth= 1 and 2 will be used for further analysis due to its
simplicity and because it provides the best fit for the largest rangganfd w.
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Figure 5.6: Empirical dispersion data f& /B; = 1.00 at 300 V and 19.5 mg/s with the least-
squares fit for Equations 5.6-5.8 used to represent the dispersion relation. Data in the range of
m=3-9 are used in the fits.

The characteristic quantities for the power law form in Equation 5.9 gre a}/“ and weh =

Icol/®, with the unexpected minus sign resulting from the fact thain Equation 5.6 is always

less than zero for all fits. This can be seen from the example dispersion plots in Figures 5.5 and
5.6 where the ordinate interceptds< 0 when extrapolating backwards for< 2 using the points

from 3<m< 12. The physical implications af, < 0 is a limit of v} ki > wg, for w to be real,
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otherwise it will have a growing imaginary component and thus be unstable. This implies the only
spoke orders that can exist are

W,
M> Ren—=2 = Myrin (5.17)
Vch

In practice,mmn is typically 3 or 4. The phase velocityg and group velocity, §, from the
dispersion relation in Equation 5.9 are

al/a
Vph = % = [Vgh_(%) ] (518)
0 )"

Equation 5.18 shows that the phase velocity will always be less than the characteristic velocity and
Equation 5.19 shows the group velocity will always be greater than the phase velocity. In the limit
of (wen/(Kgven))® < 1 that follows from Equation 5.17, a binomial expansion of Equation 5.18
yields a simplified phase velocity

Vph = Vch [1— % (kc:\(/::h) ] = Vch [1— g (mr:;n )a] (5.20)

With the FastCam frame rate at 87,500 fps the Nyquist limit is 43.8 kHz 2T rad/s)
which is the asymptotic peak value for> 12 observed in the dispersion plots of Figure 5.5. In
fitting the simple dispersion relation of Equation 5.9 to the data in Figure 5.5, a parametric study
was done to determine the limits on. Three different ranges were selected for spoke orders:
3<m<8,9,10. In general the results were not sensitive to the upper linmteéed, but then=8
case had more variation in characteristic velocity. For all future comparison plots the ramge of
used for curve fitting will ban= 3-9 anda = 1,2 in Equation 5.6.

The manual and correlation methods described above both identify a single, dominant spoke
velocity for a given magnetic field setting and operating condition. However, the phase velocity
from Equation 5.18, which is assumed to be the spoke velocity, is a function of wave number.
Figure 5.7 shows y, as a function of spoke ordam as a proxy forks for 300 V and 400 V and
a=1,2 (a=3isvery similar tax = 2 and is not shown). A single, representative spoke velocity can
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be calculated from a weighted average spoke velocity using the PSD value at the peak frequency
f as the weighting factor w for eachm. The spoke velocity and weighting factors are

9
m=5
PSD(f
= QA (5.22)
2. PSD(fm)
m=5

The HIA PSDs shown in Figure 5.5 show that certain spoke orders are dominant at different mag-
netic field settings, with spoke ordars= 4 and 5 are dominant fd, /B; < 1.0. Figure 5.7 shows
for 300 V the phase velocities for m = 3 are far too low and for 400 V the the phase velocities for
m = 3 and 4 are too low. The higher spoke orders are either dominant or the same magnitude as
m= 4,5 for the higher magnetic field settings. The weighting method of Equation 5.22 accounts for
the higher spoke order dominance at higBefB; values and causes the upward shift abevig
which tracks very well with the spoke velocities calculated via the manual and correlation method
and builds confidence in the dispersion method. The minimum spoke oreeb was chosen
in Equations (5.21) and (5.22) such that Equation 5.17 is satisfied for all conditions. Figure 5.7
shows the velocity from the correlation method typically follows the phase velocitnteb or 6
closely forBy /B lirans < Br/B; < 1.0 and for B, /B; = 1.0 the correlation velocity followsn > 6.
Therefore using the phase velocities fok 5n < 9 to calculate a representative spoke velocity is
reasonable. Figure 4.23 from Chapter 4 shows the dominant spoke order is 5 foBlgBgiand
6 for higherB, /By, which justifies the use ah > 5 in Equation 5.21. Using 4 m< 12 yields the
same shape, but shifted lower by 100-200 m/s. Figure 5.7 shows for 300 \Wothand 2 yield
spoke velocities from the dispersion method that match the manual and correlation methads, but
= 2 is better correlated for 400 V.

The standard errarc, ando, for fit coefficientsc; andc; in a linear, least-squared fit are easily
calculated according to Ref. 139. Using the error propagation equation [130], the uncertainty in
phase velocity from Equation 5.18 for wave numkers

oo Ven[(aa ) (Ve (| (Wen/ke\*

e e ) \vp Co Vph
The coefficients; and ¢, are correlated so using the error propagation equation so Equation 5.23
will conservatively over estimate the error in the phase velocity. The total uncertainty in spoke

velocity is calculated using the weighted average technique of Equations (5.21) and (5.22). For
the same example used in Figure 5.BpfB; = 1.00, 300 V and 19.5 mg/s, the spoke velocity is

1/2

(5.23)
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Figure 5.7: Comparison of phase velocities and spoke velocities for (a,c) 300 V and (b,d) 400 V,
19.5 mg/s fora = 1 (a,b) and 2 (c,d). Colored lines represent the phase velocity for each spoke
order m calculated with Equation 5.18. Red lines with squares are spoke velocities calculated
with the dispersion method and Equation 5.21. Solid black lines with circles are spoke velocities
calculated using the correlation method. Dashed black lines with triangles are spoke velocities
calculated using the manual method.

1510 + 140 m/s fora = 1 and 1570+ 60 m/s fora = 2. This is within 4% of the spoke velocity
calculated with the manual method. Representative uncertainties for the dispersion relation method
are the mean uncertainties in Figure 5.9 of 120 and 47 m/s fof. and 2 at 300 V, and 157 and

41 m/s fora = 1 and 2 at 400 V.

5.5.4 Probe Delay Method

A final method to calculate spoke velocity is to calculate the time delay with linear cross-
correlation of a signal passing from one azimuthally spaced probe to another. The downstream
probes are azimuthally separated on channel centerline and observe the same plasma oscillations
with a time delay. This time offset is converted to linear velocity based on the probe azimuthal
spacing. ISR probes are used to measure plasma oscillations in the plume that correlate to light
intensity oscillations in the discharge channel. As discussed at length in Section 4.5, both ISR
probes observed the same plasma oscillations, but in local mode the signal was delayed whereas
in global mode the oscillations occurred nearly simultaneously at each probe. The timdglelay,
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was determined from a linear cross-correlation and Figure 4.13 shows the time delay in local mode
was between 10 and 1.

The spoke velocity can be calculated from the linear, azimuthal distance between each probe,
Lpr = (27Rchni/360)A61 », divided by the time delay

The uncertainty in_p is calculated from the probe spacing uncertainty of &l the uncertainty

of ty is assumed to be 10% of the value [128]. These uncertainties are used to calculate the maxi-
mum and minimum values for spoke velocity at a given settigfi§* = (L,or + o-Lpr) / (tq F otq).

For the sample data point used in the previous methods; 0B; = 1.00, 300 V and 19.5 mg/s

the spoke velocity is 209@ 380 m/s, which is 38% higher than the spoke velocity calculated

via the manual method. Representative uncertainties for the probe delay method are the mean
uncertainties in Figure 5.9 of 390 m/s and 420 m/s for 300 V and 400 V, respectively.

5.5.5 Probe Dispersion Plot Comparison

This section compares dispersion plots calculated from azimuthally spaced probes with dispersion
plots described in the previous section. Azimuthally spaced probes can be used to determine the
azimuthal wave number at a given frequency based on the phase delay between probe signals
calculated from frequency domain transfer functions. The purpose of this calculation is to build
confidence in the dispersion method by demonstrating a similarity in dispersion plots from two
completely separate diagnostics measuring different locations: HIA observes the discharge channel
and ISR probes observe the plume.

Lobbia initially showed that light intensity oscillations in the discharge channel were linearly
related to electron density oscillations from 3 to 11 discharge channel radii downstream in a BHT-
600 [128]. McDonald conducted research on a segmented anode H6 where frequency oscillations
in discharge current to the segmented anode correlated to oscillations observed with high-speed
imaging [78]. Chapter 4 showed that downstream probes observe the same frequencies in plasma
oscillations as the FastCam observes with light intensity oscillations in the channel. Therefore,
plasma oscillations in the channel are related to oscillations observed downstream. In order to
justify using a dispersion relation for the HIA results, a dispersion plot for downstream probes
should be related to HIA dispersion plots.

Lobbia developed a frequency domain transfer function technique in order to calculate aggre-
gate maps of electron density oscillations [5]. The same technique is used to calculate a frequency
domain transfer function between the ISR probes that yields gain and phase lag as a function of
frequency. Note that we have employed set averaging as discussed by Lobbia [97], which increases
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Figure 5.8: Probe dispersion plots 8r/B; = 1.25, 1.00 and 0.73 at 300V, 19.5 mg/s &dB; =

1.00 for 400 V, 19.5 mg/s. The points are the dispersion plots from the phase lag between probes
positioned 1.9 downstream as a function of frequency and the red lines are the dispersion
plots from HIA described in Section 5.5.3 and shown in Figure 5.5.

the signal-to-noise ratio and helps smooth out turbulent uncertainties. Unfortunately, this reduces
the number of points for the Fourier transform by the number of sets averaged, which ultimately
decreases the frequency resolution. For this analysis, the number of sets averaged is 75. The local
azimuthal wave number at the probes is calculated from the phasgglagsing the probe gapyy,

by Ko = ¢pr/Lpr [140]. Figure 5.8 plots frequency versus azimuthal wave number for three condi-
tions at 300 V (same conditions shown in Figure 5.5) and one condition at 400 V for a 19.5 mg/s
anode flow rate. Remarkably, the dispersion plots from probeR:,pdownstream show striking
similarities to the dispersion plots calculated from HIA analysis described in Section 5.5.3; the
correlation appears strongest /By = 1.25 and 1.00. Note there appears to be an small offset
where the probe dispersion plots are a slightly higher frequency By 10* rad/s or~ 3 kHz.

This indicates similar oscillations observed in the discharge channel with high-speed imaging are
also detected in the plume as shown by PSD analysis in Figures 4.10 and 4.11. This qualitatively
builds confidence in the use of a dispersion relation to represent plasma oscillations from HIA.
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5.5.6 Comparison and Discussion of Spoke Velocities

Figure 5.9 shows the spoke velocity calculated via all four methods discussed above with error
bars for 300 V and 400 V at 19.5 mg/s flow rate. The manual, correlation and dispersion methods
are all very well correlated. The spoke velocity from probe delay is consistently higheBBY6

for both conditions with the 400 V condition showing an unusual riséfgB; > 0.9. The reason

for this divergence is unknown. The spoke velocity is initially inversely dependeBt @j until

Br/Bf ~ 1 then levels out for higher magnetic field strength. The inverse dependengg arf v

Br /By is stronger for the 300 V condition than 400 V.
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Figure 5.9: Comparison of spoke velocity Figure 5.10: Comparison of the (a) char-
calculation methods: manual, correlation, acteristic velocity v, and (b) minimum
dispersion relation witlhr = 1,2 and probe  spoke order from Equation 5.17 for 300 V
delay method for (a) 300 V and (b) 400 and 400V, 19.5 mg/s. Power dependence
V. Not all error bars are shown for clar- @ =1 and 2 are considered.

ity. For the dispersion relations)> 5 has

been used in Equations (5.21) and (5.22).

Figure 5.10 shows the characteristic velocity ad my, for the dispersion method for 300 V,
400 V anda = 1 and 2. The characteristic velocity for the 300 V and 400 V cases w2
in Figure 5.10(a) are between 1800 and 2200 m/s. The characteristic velocities are higher for the
a =1 and fora = 2 they show the same inverse dependenc&gi; until ~ 1, after which they
become level at the same value. The minimum spoke order in Figure 5.10(b) appears to be linearly
dependent orB,/B; with o = 2 higher. Although not shown in Figure 5.10, the characteristic
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frequencywe, for all conditions atr = 2 is in the range of 5 8x 10 rad/s at the low magnetic
field strength near mode transition and in the range-e8 % 10* rad/s at the highest magnetic field
strengths.

Figure 5.11 shows a comparison of spoke velocities calculated from the correlation method
for all five conditions tested. The 300 V, 19.5 mg/s condition is the average of four sweeps and
the 400 V, 19.5 mg/s condition is the average of two sweeps. All conditions show the same trend
of spoke velocity inversely dependent &p/B; until B;/B; ~ 1. Power dependencies ofp/«
(Br/B;)™%-° and vsp o< (Br/B;)~%% are shown in Figure 5.11 for reference purposes only and were
not generated from curve fits. The 300 V, 19.5 mg/s and 14.7 mg/s conditions show the strongest
inverse dependence closer to the -0.5 reference, all others are closer to the -0.25 reference. For
B /B = 1,the 300V, 14.7 mg/s condition still decreases, but not as steeply and 300 V, 19.5 mg/s
actually increases velocity before stabilizing. All other conditions are essentially constant for the
higher magnetic field settings. With the exception of 300 V, 14.7 mg/s, all conditions asymptote
between 1600 and 1700 m/s for the maximum magnetic field settings. The trend of decreasing
spoke velocity with increasin®,/B; for B;/B; < 1 is clear, but the velocity change is small,
typically less than 25%. The variation in spoke velocity during a magnetic field sweep is on the
order of the uncertainty, reinforcing that the dependence on magnetic field magnitude is not strong.

. ; . ; .
=@==300 V, 25.2 mg/s (1) H
== 300V, 19.5mg/s (4) H
=0—300 V, 147 mg/s (1) n
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Figure 5.11: Spoke velocity calculated with the correlation method for all conditions tested. Paren-
thetical numbers are the number of B-field sweeps averaged together. Reference lines for possible
functional forms of ¥, dependence oB; /B are shown for discussion purposes only.

The manual method, correlation method and dispersion method all yield very similar results
for the spoke velocity, building confidence in all three techniques. The manual and correlation
methods do not require a selection of which spoke orders to consider, so they are more objective
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at determining a single, representative spoke velocity. The correlation method is preferred over
the manual method due to ease of automation. In the future, spoke velocities from the correlation
method will be reported routinely as an additional metric with high-speed imaging data.

The inverse relation of spoke velocity to magnetic field is an interesting trend that should help
identify the spoke mechanism even though the spoke velocity is only weakly dependent on mag-
netic field (wp o« B where 0.25< 8 < 0.5). A previous study [67] showed similar results, but
the spoke velocity for each spoke ordarwas calculated fronwy,/kg (which effectively gives
the characteristic velocity) instead of the more rigorous techniques used here. The results in Fig-
ure 5.7(a) can be compared with Figure 5 from Ref. 67, which shows the same trend of decreasing
spoke velocity up to point. However, the same H6 thruster was used and lower spoke orders were
seen to dominate in that study for unexplained reasons. In contrast, the early work of Lomas [99]
found that spoke velocity increased with magnetic field, which is contrary to what was observed
by McDonald [67] and in this investigation.

The E x B drift velocity also appears to have a simple 1/B dependence at first glance. However,
noting thatk is related tdB from E = n(1+ Qg) j wheren is the plasma resistivity, is the discharge
current density an@c is the Hall parameter. According to the discussion in Section 2.3.6, the
E x B drift velocity scales aspip < B. Spokes propagate in thiex B direction, so they may be
related to electron or possibly even i&x B drift. The Larmor radius for electrons is less than
0.05 Lenny using their thermal velocity so they are magnetized as expected. The ion Larmor radius
for +1 ions using the ion velocity calculated from plasma potential and energy conservation is
greater than 1Q¢n for most of the discharge channel except for the ionization region before they
are accelerated by the large electric field. Note the Larmor radius for ions decreases for higher
charge states, which are known to exist. If the ionization region is sufficiently offset upstream
from the acceleration region, then a region of large ion density with relatively low ion velocity
may exist & 5x 10°> m/s which is same order as spoke velocity). In this region, the ions may be
able to undergo some azimuthal motion before being accelerated downstream, although unlikely
completing a full cyclotron orbit. This motion could contribute to azimuthal spokes.

If the spokes are related to tlex B drift, then the results of Figure 5.11 could provide insight
into the electric field variations with magnetic field. FBr/B; < 1, the electric field may be
approximately constant and the increase in magnetic field causes the spoke velocity to decrease.
For B;/B;f = 1, the ratio ofE/B may be approximately constant causing the spoke velocities to
asymptote indicating the electric field is increasing with magnetic field.

For B, /By = 0.86, the spoke velocity is 1540 m/s from Figure 5.11 and the characteristic veloc-
ities are 2190 and 1850 m/s far= 1 and 2 from Figure 5.10(a). Figure 5.12 shows a comparison
of those velocities with the channel centerline ion acoustic velocity from Figure 5.13(h) and the
critical ionization velocity. Janes and Lowder suggested that the spokes may be related to the crit-
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Figure 5.12: lon acoustic speed on channel center lineBfgB; = 0.86 from Figure 5.13(h)
smoothed by a 0.038/Lnn moving average filter. The critical ionization velocity, spoke velocity
and characteristic velocities far= 1,2 are shown for comparison.

ical ionization velocity [47] first proposed by Alén, and Ref. 67 contains a good discussion of
the phenomenon and the implication to HETs. The critical ionization velocity for xenon shown in
Figure 5.12 is 4200 m/s, which is the same order of magnitude as the spoke velocity, but is still over
twice the value. The ion acoustic speed matches the characteristic speedZdretter thamr = 1,
particularly forz/Lenn < 0.7. The observation that ion acoustic speed matches the characteristic
speed from the dispersion method is encouraging becausemmonly appears in waves such as

the electrostatic ion cyclotron wave and arises prominently in drift waves. In Escobar’s simplified
model that includes ionization, [98] the wave speed was found to be of order the ion acoustic speed
and Cavalier recently found modes that resemble ion acoustic waves. [49] The spoke velocity is
lower than the ion acoustic speed in the near-anode region, but is similar for the near field plume
region. The similarity between ion acoustic speed and spoke velocity or characteristic velocity will
be further investigated with the more detailed dispersion relations discussed in Section 5.6.

5.5.7 Spoke Criteria

Combining the above discussion, we can state the following observations regarding spoke veloci-
ties; any theory on spoke mechanisms and propagation should account for these results.
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1. Propagation is in th& x B direction. Reversal of the magnet field direction will cause the
spokes to propagate in the opposite directfon.

2. Spoke velocity is 1500-2200 m/s in the H6; spoke velocity dependence on thruster radius
or channel width are unknown although likely weak as noted by McDonald [67]. Spoke
velocities are not dependent on discharge voltage or mass flow rate to within experimental
error.

3. The dispersion relation can be approximated by a functional form whenenotonically
increases witlky such as a power law dependena®~ v{, ki — wg, wherea > 1. The charac-
teristic velocity is the same order of magnitude as the spoke velocity and can be represented
by the ion acoustic speed for 4-17 eV electrons commonly measured in HETs. The spoke
velocity vgp is less than the characteristic velocity, \and is dependent on the dominant
spoke orders, typicallgn > 4. In general, the dominant spoke order increase with increasing
magnetic field strength.

4. Spoke velocity is weakly, inversely dependent on magnetic fielB §8; |irans < Br /Bf < 1.
An example dependence ofpwc B where 0.255 8 < 0.5 is shown in Figure 5.11, but
other functional forms are possible. A8t/B; = 1 the spoke velocity nearly asymptotes to
a constant value.

5. Spokes are not observed in magnetically shielded thrusters except for very high magnetic
field strengths as discussed in Appendix C.

5.6 Plasma Wave Dispersion Analysis

5.6.1 H6 Internal Data

Internal measurements were made by Reid [44] on the H6 at 300 V with 20 mg/s anode flow
rate after less than 300 hours of total thruster operation. The magnet settings usdgwere

3.00 A andlpm = 2.68 A, which corresponds tB,/B; = 0.86. Table 5.1 shows the source of
internal data used for calculations in the following sections. These figures have been reproduced
in Figure 5.13(a)-(e) for reference. Fig. 5.14 shows the centerline plasma properties normalized
by the maximum values. The electric field and electron temperature are nearly constant until
Z/Lennt ~ 0.8, while the plasma density begins a significant increagglahn ~ 0.5 and the region

Lpersonal correspondence with M. McDonald. During a test in July 2009, he reversed the polarity of the H6
magnets while the thruster was runningvgt= 300 V, Ip = 10 A andB;/B; = 0.70, and observed the spokes change
directions using the FastCam. Videos of 1/4 of the discharge channel were acquired at 54,000 fps.
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of peaked electron temperaturead_.n,y = 0.8—1.0. The region of peaked electric field is
Z/Lennt = 1.0—1.2,which constitutes the approximate acceleration zone.

The data in Figure 5.13 correspondsBg B; = 0.86 and referring to Figure 5.5 fd8, /B; =
0.73 and 1.00, the peak spoke ordemis- 4 at f ~ 11 kHz. Referring to Figure 5.11, the cor-
responding spoke velocity fds,/B; = 0.86 is 1550 m/s. These will be used as the comparison
frequency and velocity for the dispersion wave analysis.

Variable Source Notes
n; Reid [44] Figure 7-10, 20 Blended solution from OML and thin sheath
mg/s Langmuir probe measurements

Te Reid [44] Figure 7-5, 20 mg/s Langmuir Probe, compare with Figure 15
from Hofer [37]
Vp Reid [44] Figure 7-18, 20 Emissive probe corrected with from Lang-
mg/s muir probe, compare with Figure 15 from
Hofer [37], referenced to cathode
= Reid [44] Figure 7-21, 20 Computed from derivative of plasma poten-

mg/s tial
Nn Reid [44] Figure 8-9, 20 mg/s Computed from 1-D heavy patrticle continuity
analysis

Table 5.1: Reference and notes for plasma measurements of H6 discharge channel (internal). Data
are shown in Figure 5.13(a)-(e).

5.6.2 Frequencies

The frequencies of interest for this investigation are 5-15 kHz for breathing mode and 5-35 kHz
for spokes. For comparison, the cyclotron frequeneyds = |g B/m; e and the plasma frequency
is wpie = vNG%/(eomie), Where subscript is for ions ande is for electrons. Variables includg
for the elementary charg®,for the magnitude of the magnetic fielth ¢ are the ion and electron
massh for the plasma density where quasi-neutrality has been assumed sugh-tmat~ n, and
€0 is the permittivity of free space. The lower hybrid frequency [43)is=~ v/wciwce for wpi >
wq. Table 5.2 shows these characteristic frequencies at three different locations in the discharge
channelz= 0.25, 1.00 and 1.5 based on the data in Figure 5.13, but can be summarized as:
we S w < Wih < wpi < Wee < Wpe.

Now consider the empirically identified, approximate dispersion relation of Equation 5.9. The
characteristic velocity, ¢ is shown in Figure 5.10 to be between 2200 and 2800 m/s& forl
and between 1800 and 2200 tor 2. In addition, Figure 5.11 shows the spoke velocity or phase
velocity is between 1500 and 2200 m/s for all tested operating conditions. The characteristic
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Figure 5.13: Internal measurements of the H6 discharge channel from Reid [44] as discussed in
Table 5.1 for (a) ion density, (b) neutral density, (c) electron temperature (d) plasma potential, and
(e) axial electric field. Calculated velocities include &)X B drift velocity, (g) electron thermal
velocity, (h) ion acoustic velocity and (j) magnetosonic velocity, (k) density gradient drift velocity
and (l) collisional drift velocity. (i) is eIectros{aGt(iSc ion cyclotron frequency.
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Figure 5.14: Measured discharge channel centerline plasma properties of the H6 showing plasma
density, neutral density, electric field and electron temperature based on the data in Figure 5.13
from Reid [44]. All values have been normalized to the maximum value. A OLQg%H moving
average window is applied 6, and T, and 0.050L ¢ Window applied tan; for smoothing. The
multi-peaked structure of plasma density is likely experimental error and the values for neutral
density are calculated.

frequency,wqn, is typically a few times larger than the peak ion cyclotron frequeasgy, but is

within the same order of magnitude. We can now attempt to identify any frequencies in the 10’s of
kHz range and characteristic velocities or phase velocities that are in the ran@®0® m/s. The
following analysis and discussion assumes +1 ions, but multiply charged ions are known to exist
in HETs. E x B probe measurements in the plume of the H6 showed probe currents foroke

20% and Xé&* of 10%, respectively, normalized to the maximumXeurrent. [37]

Oscillation Units 0.2Bchn 1.00Lchni 1.50Lchni
lon cyclotron kHz 0.25 1.7 1.3
Lower hybrid kHz 120 810 650
lon plasma MHz 9.4 27 20

Electron cyclotron MHz 61 400 320
Electron plasma GHz 4.6 13 9.6

Table 5.2: Representative frequencies on channel centerline for Region I, Il and Il at 0.25, 1.00
and 1.50Lchn), respectively. lon cyclotron and ion plasma frequencies are fét Xe
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5.6.3 (Nearly) Homogeneous Waves

Here we consider some simple drifts and homogeneous plasma waves that propagate perpendicular
to magnetic fields such d&x B drift, electrostatic ion cyclotron waves and magnetosonic waves.
Other waves summarized by the Clemmow-Mullaly-Allis diagram [141] that can propagate per-
pendicular to magnetic fields such as ordinary waves (O wave), extra ordinary waves (X waves)
and upper-hybrid resonance are of higher frequency than the 10’s kHz spoke oscillations.

5.6.3.1 E x B Dirift

The E x B drift velocity and the) component are given by [135]

_E> x B
ExB = (5.25)
Iz
~ E/;B—E/B;

Spokes are observed to propagate inEheB direction and one could reasonably assume they are
related to the azimuthal Hall current, = gnevexg. However, it will be shown that spokes are not
the azimuthal Hall current for the following reasons:

1. The typicalkE x B drift velocity is two to three times the typical spoke velocity.

2. TheE x B drift velocity should scale aB as shown in Equation 2.44 of Section 2.3.6 (con-
trary to the expected 1/B scaling) whereas the spoke velocity scaleg, aslyB%? to
Vgp o 1/B%S for B;/B; < 1.

A more complete theory will be needed that accounts for the observation that spokes propagate in
the E x B direction, yet do not have the same characteristics as the Hall current.

The calculatedE x B drift velocity distribution in the discharge channel is shown in Fig-
ure 5.13(f) where the maximum value is ovex 40° m/s at the peak electric field and of order
10° m/s within +0.2Leni. These velocities are two to three orders of magnitude higher than the
typical spoke velocity of 1500 to 2200 m/s. Figure 5.15 shows the channel centerline values for
VExg and wn, Where the electron thermal velocity is the average of an assumed Maxwellian distri-
bution [43] n, = 1/80Te/(7Me) With Te in eV. The region from 0.16< z/Lehn < 0.94 is upstream
from the ionization and acceleration zones with a mean value ok119* m/s and standard devi-
ation of 8.4 x 10* m/s. Although the mean value is an order of magnitude larger than the spoke
velocity, the large standard deviation (over 4 times the mean) is indicative of the experimental error
and theE x B drift velocity could be of the same order as the spoke velocity in this region. Fig-
ure 5.18 uses representative values for the electric field to calculaEexiBedrift velocity along
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Figure 5.15: Left axis: Comparison & x B drift velocity to electron thermal velocity on channel
centerline from Figure 5.13(f) and (g). A moving average window of 0102& has been applied
to smooth the data. Right axis: The ratio is shown to indicatdtkd drift velocity is faster than
the thermal velocity in the acceleration regi@l(chn ~ 1.08). The sonic point iS g = Vin,-

channel centerline and everywhere it is orders of magnitude higher than the spoke velocity. The
electric field would have to be smalt; ~ 0.01 V/imm, for Viexg ~ Vgp and is considered unlikely.
Assuming the electrons follow a circular path on channel centerline, they would circle the thruster
in 0.13us (8 MHz) at the peak w«g and 26us (38 kHz) upstream from the ionization region.

The electron thermal velocity shown in Figures 5.13(g) and 5.15 is the same order of magnitude
as thek x B drift velocity near the channel exit. THex B drift velocity is greater than the thermal
velocity for 1.0< z/L¢nn < 1.1 which is within the acceleration region. Outside of €.9/Lchn <
1.4, VExB/Vth, < 0.1 20 the electron thermal velocity is an order of magnitude or larger than the
E x B drift velocity throughout most of the channel and plume.

5.6.3.2 Electrostatic lon Cyclotron Waves

Similar to sound waves in air, ion acoustic waves follow a simple dispersion relation

where \ is the ion acoustic speed with electrons of temperalyia eV

»
Vs = /% (5.28)
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As shown in Figure 5.13(c) the electron temperature in most of the channel and the near field
plume is~ 5 eV, except for near the exit plane G n < 1.1 where the electron temperature
peaks at- 35 eV. The ion acoustic speed fog =5 eV is 2000 m/s and folfe = 35 eV is 5000 m/s.
Figure 5.13(h) shows the acoustic speed, which is close the characteristic spe@0@3 m/s
for most of the discharge channel. Unfortunately, ion acoustic waves propagate parallel to the
magnetic field while spokes propagate perpendicularly.

An electrostatic ion cyclotron wave [141] is similar to an ion acoustic oscillation except the
Lorentz force provides a restoring force [43] which yields a modification to Equation 5.27

w® = kVZ+ Wi (5.29)

Electrostatic ion cyclotron waves can propagate nearly perpendicular to B and have a phase velocity

of
Vph = 1/vgmg/kz (5.30)

Except for the difference in sign inside the radical, note the similarity to Equation 5.1&with

the ion acoustic speed as the characteristic velocity and the ion cyclotron frequency as the charac-
teristic frequency. Since the spoke location is unknown, spokes could be related to electrostatic ion
cyclotron waves in the channel near the anode or in the near field plume regionTghebe eVv.

A map of the electrostatic ion cyclotron frequencies is shown in Figure 5.13(K) favrrespond-

ing to m= 5 where the frequencies are within the expected range for spokes. Unfortunately, this
mechanism only implies that waves are perpendicular to the magnetic field (axial, CW azimuthal
or CCW azimuthal) and does not force spokes to propagate i i direction (CCW azimuthal

for the H6). Figure 5.16 shows the frequencies are within the expected 5-25 kHz range for spokes
upstream (2/chni < 0.7) and downstreamz(L,n > 1.0) from the ionization region. Figure 5.18
shows the velocity is within the 1500-2000 m/s range expected for spoked fgn < 0.5.

5.6.3.3 Collisional lon Acoustic Wave with Sheaths

Smolyakov [105] recently derived a dispersion relation for an unstable ion acoustic wave that

develops a positive feedback loop between the sheaths formed on parallel walls. Considering a
plasma within a crossed electric and magnetic field with the magnetic field directed between the
walls (i.e. an annular HET), the long wavelength limit of the dispersion relation is

|k9|VSCU%i

W (w+ive) = (w—wo+iven) (5.31)

wherevg, = vs/(2W) andwg = Kyvexp. Figure 5.16 shows that the two roots for the dispersion
relation in Equation 5.31 have frequencies that afe-1TD’ Hz, which are several orders of mag-
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nitude too large for spokes. Figure 5.17 shows unstable modes throughout the entire channel with
10*— 107 Hz growth rates. Not surprisingly, the velocities in Figure 5.18 for one root are close to
the E x B from 10° — 10° m/s. The velocities for the other root are exactlyk, so they are not
shown.

5.6.3.4 Magnetosonic Waves

Magnetosonic waves are low frequency, electromagnetic waves propagating across the magnetic
field. They are similar to acoustic waves, but the oscillations are producédxi® drifts across
E. [43] The phase velocity is

V3+va

c?+v4
where \ = B/+/ugmn is the Alfven speed andp is the permeability of free space. Figure 5.13())
shows the magnetosonic phase velocity (which is very close to théiEpeed so it is not shown

in Figure 5.13), both of which are an order of magnitude too large to be azimuthal spokes. Fig-
ure 5.16 and Figure 5.18 shows the frequencies and velocities, respectively, are too high to be
spokes.

5.6.4 Gradient Drift Waves

Drift waves are common when spatial gradients exist in plasma properties because they provide
free energy from which an instability can grow and a wave can propagate. Figures 5.13(a)-(e)
clearly shows the plasma in the discharge channel and near-field plume are not uniform therefore
spatial gradients exist, predominantly near the channel exit. There are many forms of drift waves
that have been studied from fusion research. Here we start with the most common form of the drift
wave that arises from a gradient in plasma density and proceed with increasing complexity. Also
important is the definition of gradient length scale for parameter

_(1do -1
-1 65

5.6.4.1 Density Gradient Drift Waves

The most fundamental gradient driven wave is the density gradient which assumes no steady state
electric field and constant magnetic field, neither of which are fundamentally true in a HET dis-
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charge channel. The dispersion relation for density gradient drift waves and the diamagnetic drift
velocity are [141]

w = KoVprift (5.34)
Te 1 dne Te
_f-Te_ 5.35
Bnedz Blyn, (5-39)

VDrift =

Drift waves are caused by density perturbations from kox B drift where ions “slosh” back
and forth in the gradient (axial) direction, with the phase velocity inthgx B direction. [135]
Therefore, no particles or energy are moving indfirection. In the H6YVng is in the+zdirection

from the anode td. < 0.8Lcnn and is in the—z direction forL > L¢yn from Figure 5.13(a). Drift
waves would be in th& x B for L < 0.8Lchn and in the—E x B for L > Lepn. Spokes always
propagate in th& x B direction, so we focus on the density gradient upstream from the ionization
zone for density gradient waves to be the source of spoke motion.

The measured temperature in the discharge channel varies from 5 to 35 eV as shown in Fig-
ure 5.13(c). Although the magnetic field magnitude and profile cannot be shown, it is of order
100’s of G similar to the SPT-100. Therefore, thg/B term in Equation 5.35 is of order 30
which is the same as the spoke velocity. The density length scald_tggrmust be of order unity
for vprift to be in the spoke velocity range of 1500-2200 m/s. The experimental data from Reid in
Figure 5.13(a) for ion density on channel centerline shows an unexpected multi-peaked feature that
is likely experimental error so the axial derivative of density is smoothed with 4 g§&noving
average filter. The density gradient length scale is of okggr ~ 1072 causing the drift velocity
to be approximately two orders of magnitude too large. Discounting the unusual multi-peaked ion
density yields a similar result where the density increases frarh®® to 4x 10 m3in 0.2
which corresponds to ddz= 3.6x 10%°° m~3/mand vpyitt ~ 10° m/s. The drift velocity is shown
in Figure 5.13(k) for the entire discharge channel and is larger than the spoke or characteristic
velocities we are seeking. It is interesting to note that this velocity is of the same order or lower
than E x B drift velocity. Figure 5.16 and Figure 5.18 show that the frequencies and velocities,
respectively, are too high to be spokes. NoteZthrnn > 0.6 the density gradient reverses sign so
the waves propagate in the other direction and are not shown.

5.6.4.2 Collisional Density Gradient Drift Waves

The next step is to include collisional drift waves assuming long wavelengths along the magnetic
field (smallky) for a simple slab (cartesian coordinates) is [135]

KoVprift

w=———— (5.36)
1+kav3/w?
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The phase velocity for Equation 5.36 is shown in Figure 5.13(I)kfocorresponding ton =5,

which yields results lower than the expected spoke velocity by as little as 50% to as much as an
order of magnitude. Noting thiifv3/w?2 > 1, Equation 5.36 reduces o~ wi/(KgLvn,), Which is

not the same functional form as Equation 5.9. Therefore, the spokes are unlikely caused by density
gradient drift waves or collisional drift waves. Figure 5.16 and Figure 5.18 shows the frequencies
and velocities, respectively, are too low to be spokes. Note Aag, > 0.6 the density gradient
reverses sign so the waves propagate in the other direction and are not shown.

5.6.4.3 Density and Magnetic Field Gradient Drift Waves

Esipchuk and Tilnin [91] derived a dispersion relation for small amplitude planar waves using an
ideal, two-fluid, collisionless formulation of an unbounded plasma [73] without an energy equa-
tion. However, the formulation is not truly collisionless because the Hall parameter is used in
the mobility and diffusion coefficients in order to calculate axial electron motion. It accounts for
gradients in the magnetic field, but assumes the length scale gradient defined by Equation 5.35 is
less than the channel length, which is not always true near the ionization and acceleration region.
Furthermore, it assumes thaf, < wpi, which is justified from Table 5.2. Choueiri [73], used the
dispersion relation to identify 55 kHz azimuthal oscillations immediately downstream from the

exit plane of an SPT-100. The dispersion relation is

2K9(VeJ_ - VB) B 2(VeJ_ - VB) kH kQVi V-2 (537)

2,,2 2 2
w= ki — KLV N KLy, J + (ﬁ) B 4ky(Ve L — VB) + 4ve,(Ver—Va)

wherek, =, /kg +k2 is wave number perpendicular to the magnetic fiejdatid k, are azimuthal
and axial components, respectively)jvthe ion velocity, ¥, is defined by Equation 2.34 and the
magnetic drift velocity is

2

\V;
|

Vg = (5.38)
weilvp

Figure 5.16(We, VB) shows the frequencies are within the expected range for spokes (5-
25 kHz) forz/Lenn < 0.7, which is upstream of the ionization and acceleration regions. Figure 5.18
shows the velocity is close to that expected for spokes as well. However, Figure 5.17 shows there
is no imaginary component upstream of the ionization and acceleration zones, so this mode is not
unstable in this region. At the exit plane there is a growth rate ®Hkand the frequency is within
the rage expected for spokes. This is similar to what Choueiri [73] observed for the SPT-100, that
the only region this instability was excited was near the exit plane. Further outside the discharge
channel the frequency becomes too low. In the ionization and acceleration regions the frequencies
and velocities are too large to be spokes.
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Frias [102, 103] derived a similar dispersion relation to Equation 5.37 which also accounts for
electron flow incompressibility and does not neglect incompressibility of the electron diamagnetic
flow. The dispersion relation is

k2 v2 k2 v2 kaVi kS
kv — Vs LVs 1+4-2 (0, — — 49 2A 5.39
w = ki o —on) + o wD)\/ + 2 (ws —wp) kips (5.39)

where \is the ion acoustic speed from Equation 5.28 @ané —kyvpyift. The remaining variables
in Equation 5.39 are

—2kgTe
= 5.40
@D = gr - (5.40)

Tem

2 _ e

= (5.41)

2 Ez)( 1 2 )
(LVB Te/\Lvn LyB ( )

Figures 5.16 and 5.18(e, VB (Frias)) show that this is similar to the dispersion relation from
Esipchuk and Tilinin forz/Lehn < 0.7, but the frequencies and velocities, although the correct
order of magnitude, are slightly higher than those of spokes. Figure 5.17 shows some points in
the ionization/acceleration zone and downstream have growth retesl@®® Hz, in these regions
the frequencies are typically an order of magnitude higher than spoke frequencies, with a notable
exception atz/Lqn = 0.9 where the frequency is within the range for spokes.

5.6.4.4 Density, Magnetic Field, and Temperature Gradient Drift Waves

Frias [102, 103] expanded on the dispersion relation in Equation 5.39 by including the electron
energy equation and considered gradients in the electron temperature, which yielded the cubic

dispersion relation
awz+bw?+cw+d=0 (5.43)

5
b= —k§v§ — WsWQ — §w*wD + wowp + ész + WsTWD
10
c = 2kviwo + 3 2v20wp

10 5
2,2, 2 2\,2 2\,2, 2
d=-kjvswg— 3 Vswpwo — 3 Vswp
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wherew.t = —kgTe/(BLyT,) andwo = —kgvVexs. Two of the three roots for Equation 5.43 are shown

in Figure 5.16(We, VB, VTe) with one closely tracking the dispersion relation from Equation 5.39
and the other much higher at®.010” MHz. Figure 5.18 shows the phase velocity for the high
frequency oscillation tracks tHex B drift velocity. Figure 5.17 shows this oscillation has a growth
rate of 1& Hz near the exit plane and immediately downstream. Everywhere else in the discharge
channel the growth rate is zero.

5.6.5 Summary and Comparison

In order to compare the dispersion relations detailed in this section, channel centerline plasma
properties were used from the measurements in Figure 5.13 at 9 different axial locations. The real
part of the frequency in Hertz (not rad/s) is shown in Figure 5.16, the growth rate for instabilities
(i.e. the imaginary part of the frequency) in Hertz is shown in Figure 5.17, and the phase velocity
Vph = w/kg is shown in Figure 5.18. Negative frequencies are not shown as they are-& thB
direction, e.g. the drift waves change directiorz Atcnn = 0.6. Spoke ordem = 4 has been used

so kg = 50 rad/m and largely azimuthal propagation is desired;ss 0.1k similar to Ref. 73.

The reference spoke orderns= 4 with a solid black line shown at 11 kHz in Figure 5.16 for

the frequency peak and a line at 1550 m/s in Figure 5.18 for the spoke velocity. The empirical
dispersion relation from Equation 5.9 with= 2 is plotted as a dashed black line in Figure 5.16.
The characteristic velocity is assumed to be the ion acoustic spge€yy, and the characteristic
frequency is approximated agy ~ 2nw¢. Note that by the coordinate system convention used in
the derivation—ky in Equations 5.37, 5.39, 5.43 and 5.31 correspond tdetkdB direction and

has been accounted for when comparing the dispersion relations.

Figure 5.17 shows the electrostatic ion cyclotron frequency is a close match for the empiri-
cal dispersion relation, which is not surprising given the similarities between Equation 5.9 and
Equation 5.29. Electrostatic ion cyclotron oscillations are also similar to different gradient driven
oscillations outside of the ionization and acceleration zone. The density gradient drift wave and
collisional drift wave cannot be responsible for spokes because their directions are not tied to the
E x B direction. The ion acoustic and sheath driven oscillation theoretically showed significant
promise because it is the only dispersion relation to consider walls and sheaths, but the frequen-
cies are too high to be responsible for spokes. However, this does not mean they are not present
in HETs. Figure 5.17 shows that the gradient driven oscillations are only excited near the exit
of the discharge channel or in the very near field plume, which agrees with previous work. [73]
Figure 5.18 shows how much larger tBe< B velocity and electron thermal velocity are than the
spoke velocities. The gradient driven waves that account for spatial variations in density, magnetic
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Figure 5.16: Real component of the frequency for the dispersion relations discussed in Section 5.6.
Shaded area is the typical spoke frequency range from 5-25 kHz. Solid black line is the 11 kHz
peak frequency for am= 4 spoke. The empirical dispersion relation in Equation 5.9 is the dashed
black line that coincides with electrostatic ion cyclotron blue line. Parenthetical numbers indicates
different roots of a cubic dispersion relation.
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Figure 5.17: Imaginary component of the frequency for the dispersion relations discussed in Sec-
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relation.
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field, and/or electron temperature have phase velocities that most closely match the observed spoke
velocities.

m = 4 spoke
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Figure 5.18: Phase velocities for the dispersion relations discussed in Section 5.6. Shaded area
is the typical spoke velocity range from 1500-2000 m/s. Parenthetical numbers indicates different
roots of a cubic dispersion relation.

It is very important to emphasize that this analysis is not complete without considering the
other dispersion relations discussed in Section 7.2.5. Of particular interest are ionization wave or
other collisional dispersion relations which have not been considered in this work.

5.7 Sequential Breathing Mode

Bellan [135] provides an excellent overview of the general linearization process to calculate dis-
persion relations such as those found in Section 5.6. The process of linearizing a system of par-
tial differential equations begins with assuming a perturbatioafpfto the dependent variable

f such that it become$ = fp+ €f; and e < 1. If there is a variablg that is dependent of
through the system of equations such that g(f) = g(fo + €f1), then a Taylor expansion yields

0= go+ €01 + €202 + €303 + ... Assuminge < 1 justifies discarding all terms of ordet and higher

to linearize the equations to first order perturbations. Even if we relax our initial assumption of
f1/fo < 1, we must still have the oscillation amplitude be less than the steady-state ffdliges 1,

to justify using linearized wave theory. However, as discussed in Sections 2.5.2 and 6.5 and shown
in Figures 2.21, 6.5, 6.6, and 6.12 for breathing mode oscillations, the oscillation amplitudes are
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in the rangen;/ng ~ 2 - 10, so the underlying premise of linear analysis is invalid. In addition,
Adam [50] points out from 2-D fully kinetic simulations that plasma density varies by a factor of
5-10 during a breathing mode cycle. Therefore we treat this mechanism separately with a mostly
qualitative argument, but that does not preclude the possibility of a dispersion relation description.
Detailed, time-resolved, internal plasma measurements of an HET discharge channel do not ex-
ist to verify the simulations. We can postulate that the same fundamental mechanism may exist
between the spokes and breathing mode, where the breathing mode (global mode in Chapter 4) ex-
hibits a uniform channel discharge and replenishment process while the spoke mode (local mode
in Chapter 4) exhibits an azimuthally local discharge and replenishment process.

As shown by several numerical simulations [33, 76, 77] and in Figure 6.6, the breathing mode
is a slow progression of the neutral front down the channel leading up to a rapid ionization event
that Barral [95] calls avalanche ionization. During the neutral replenishment period within the
discharge channel, slight perturbations or azimuthal non-uniformities in electron density, electron
temperature and/or neutral density (all related to ionization rate), cause a local region in the dis-
charge channel to reach the avalanche ionization point before adjacent regions, thus causing a local-
ized increase in plasma density. The localized electron density enhancement travels azimuthally
in the E x B direction initiating avalanche ionization in an adjacent region thus propagating the
perturbation in a cascade like event. Extensive numerical and experimental characterization of
the neutral flow and plasma within the discharge channel was performed on the H6 [44] where a
primary ionization region of25% of the discharge channel length and neutral flow velocity of
250 m/s can be reasonably inferred. These assumptions yield a neutral refill time of the ionization
region of~40-50us, corresponding to a 20-25 kHz oscillation, which is in line with the oscillation
frequencies observed. Breathing mode is typically lower frequency than spokes, so in breathing
mode the neutral front could be receding deeper into the channel. Neutral velocity is constant so
the rate of progression for the ionization front (which recedes upstream after avalanche ioniza-
tion) to move down the discharge channel towards the exit plane is constant. Therefore, a lower
frequency indicates a longer refill time for neutrals so the ionization has receded deeper into the
channel.

Consider the discharge channel region upstream of the acceleration zone where the electric
field is small and the ions are essentially stationary with respect to the electron velocity. The ion
velocity after the acceleration zone~<sl0* m/s, but before the acceleration zone it is close to the
neutral thermal velocity of 10? m/s. The azimuthal electron velocity is 10* — 10° m/s from
E x B drift. The kinetic energy per unit volume for electrons in a quasineutral plasma of dansity
propagating around the discharge channel through nearly stationary ighgase = %nmevéxB.
A local perturbation in the plasma density caused by a local avalanche ionization event will create
a perturbation in the ionization front in the- 6 plane as shown in Figure 5.19. As discussed
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Figure 5.19: Diagram af—6 plane of discharge channel showing exaggerated ionization front de-
formation due to localized avalanche ionizations. Electrons propagattag Bidirection through
guasi neutral plasma of density will encounter region of lower plasma densityand be slowed

by ambipolar forces.

in Section 6.2, the ionization front recession rate from simulations 16® m/s after avalanche
ionization. The ions are moving axially in tzelirection, but the electrons are moving azimuthally

in the § direction. When the electrons of densitytry to enter the region with lower density,
ambipolar forces will retard their motion because of the charge imbalance and the electric field
formed from Gauss’ Law. As a result of this electric field, the electrons will try to drag sufficient
ions (An = ng —Ny) to create a quasineutral plasma in a form of ambipolar diffusion. An energy
balance will require this new system of electrons and some ions to move at a slower azimuthal

velocity v
1 2 1 2
€= 5NMeVE,g = 5 (Anm; + nme) vy (5.44)
As shown by the breathing mode simulations,~ n/2, so it can be assumed thatm > nme.

Solving Equation 5.44 for the new azimuthal velocity yields

/ n me
Vgr  |——V 5.45
0 AN m ExB ( )

Noting thatyn/Anis O(1), then y ~ Vme/mivexg ~ 0.002ve«g, SO the ambipolar velocity is three
orders of magnitude lower than tiex B velocity. As discussed in Section 5.6.3.1 and shown in
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Figure 5.18, theE x B drift velocity in the ionization zone can bel(®, so y ~ 102 is the correct
order of magnitude for spokes.

It is interesting to note that if &g is replaced in Equation 5.45 with the electron thermal
velocity and the plasma expands into vacuummf =~ 1), the resulting velocity is the ion acoustic
speed ¥= \/m This is the approximate net velocity of a plasma expanding into vacuum from
ambipolar diffusion. As discussed in Section 5.6.3.2, the spoke velocity is close to the ion acoustic
speed for~ 5 eV electrons and in Figure 5.15 of Section 5.6.3.1 EheB drift velocity is the
same order of magnitude as the electron thermal velocity for part of the channel. Unfortunately,
the electron thermal velocity is not a directed velocity like EveB drift velocity in the azimuthal
direction, so it alone cannot explain spoke propagation.

Probe 2

Probe 1

Direction

Figure 5.20: lllustration of spokes as regions of increased ion density producing helical structures
of increased plasma density within the plume and how that would be measured by vertically spaced
probes.

The results from azimuthally spaced probes supports the idea that rotating azimuthal non-
uniformities (spokes) are azimuthally propagating regions of increased ionization producing a he-
lical structure within the plasma. The regions of increased ionization propagating i
direction would cause a delay between probe signals as illustrated in Figure 5.20. As the spoke ro-
tates, this ion production zone moves azimuthally but the ions produced always move axially once
created thereby creating a helical structure within the plume of increased ion density. Note there
are always ions being produced in the discharge channel, regardless of spoke location, so there
is a constant axial stream of plasma emanating from everywhere in the discharge channel. This
possible helical structure would exist in addition to the plume generated globally in the discharge
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channel. With a spoke velocity of 1800 m/s and an approximate axial ion velocity of 18,000 m/s,
the helix angle or pitch angle would be approximatélfr®@m a line normal to the thruster face.

5.8 Wall Effects

This section presents and discusses observations that wall-effects or wall sheaths must play a role
in spoke propagation. The evidence includes spoke direction with the Hall current and azimuthal
electron propagation, the absence of spokes in magnetically shielded thrusters, wall material stud-
ies, and wall temperature.

5.8.1 Azimuthal Electron Propagation

Spokes are observed to propagate inEeB direction and reversing the magnetic field direction
reverses the spoke direction. When the magnetic field direction is reversed, plasma properties in
the channel and their respective gradients are not changed. Therefore, spokes must be related to
the azimuthal Hall current and cannot be the result of gradient-driven waves alone. Note this does
not prohibit gradient-driven instabilities from playing a role in spoke mechanics.

A HET does not naturally have a radial restoring force like a magnetron so the electrons likely
interact with the wall in some way (magnetic mirror or radial electric field) to propagate their
motion to make HETSs “closed-drift” devices. Section 2.3.7 discussed in detail the different ideas
for how electrons propagate azimuthally around the channel, whether the path is circular or they
“bounce” between the channel walls. Regardless, a mechanism is required to reflect electrons back
into the channel or to keep electrons in a circular motion around the discharge channel. If this field
cannot be established or becomes perturbed, then the electron motion around the discharge channel
could be disrupted, which could disrupt spoke propagation assuming they are related. From this
discussion we can conclude that spokes must be related to azimuthal electron motion, which are
reliant on plasma-wall interactions, B-field topology, and/or sheaths to propagate.

5.8.2 Magnetically Shielded Thrusters

Spokes in unshielded thrusters are observed to propagate Etligdirection, so they are likely
linked to azimuthal electron motion. Net azimuthal electron motion iritkeB direction forming

the Hall current in HETs will be different in magnetically shielded thrusters as discussed qualita-
tively in Section 2.3.8. This difference results from the reduced plasma interaction with the walls
where radial electric fields will be different. A mode transition study was conducted in magneti-
cally shielded thrusters similar to Chapter 4 where the magnetic field magnitude was varied to in-
duce mode transitions with the results and detailed discussion provided in Appendix C. This study
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showed a global to local mode transition similar to those detailed in Chapter 4 at low magnetic
field magnitudes, except that spokes are not observed in the local mode. A second mode transition
is observed in magnetically shielded thrusters at higher magnetic field magnitudes where spokes
are observed simultaneously with cathode oscillations and breathing mode type oscillations. Ad-
ditionally, Jorns [60] did not observe spokes while investigating a single operating point of the
magnetically shielded H6, which showed similar performance to the unshielded H6 [37]. All of
this suggests that spokes are only prominent in non-magnetically shielded thrusters, which have in-
creased plasma-wall interactions. Therefore, it can be inferred that spokes are caused by or related
to sheaths at the walls.

5.8.3 Wall Material

While investigating different wall materials in the SPT-100, Gascon [65] observed mode transitions
similar to those observed in Chapter 4. Gascon did not have the ability to observe spokes in that
investigation so we cannot confirm that spokes were present in the low discharge current mode. The
accompanying theory provided by Barral [66] suggested Space Charge Saturation, when the wall
secondary electron emission coefficient approaches unity, was responsible for the mode transition.
If this is correct, it implies a wall related phenomenon for mode transition and hence the onset or
disappearance of spokes.

5.8.4 Wall Temperature

The mode transition investigation of Chapter 4 revealed that the transition point varied if the
thruster was not run long enough to be at thermal equilibrium or to complete out-gassing. Thruster
operation is also known to be highly oscillatory during start-up or after the thruster has been ex-
posed to atmosphere (i.e. the discharge channel absorbs moisture) for an extended period of time.
In addition, the transition between modes was noted to be affected by time at the given operating
condition, which could be related to wall heating and thermal equilibrium, although wall tempera-
tures were not measured in this investigation. These observations are only qualitative in nature and
circumstantially link wall conditions to mode transitions, but combined with the above arguments
reinforce the idea that wall effects play a role in mode transition and spoke propagation.

5.9 Conclusions

The investigation of mode transitions showed the presence of spokes is associated with improved
thruster performance without determining causality, which motivates this investigation into the un-
derlying fundamental physics. Plasma oscillations in the channel and plume have been extensively
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characterized in local mode with azimuthal spokes present using time-resolved diagnostics. The
spoke velocity is determined using three methods with similar results: manual fitting of diagonal
lines on the spoke surface, linear cross-correlation between azimuthal locations, and an approxi-
mated dispersion relation. The spoke velocity for three discharge voltages (300, 400 and 450 V)
and three anode mass flow rates (14.7, 19.5 and 25.2 mg/s) yields spoke velocities between 1500
and 2200 m/s across a range of normalized magnetic field settings. These detailed observations are
distilled into a list of five criteria any theory for spoke mechanics must explain: 1. Propagate in
the E x B direction, 2. The spoke velocity is 1500-2200 m/s in the H6, 3. The dispersion relation
has a functional form where monotonically increases witky similar to w® ~ vghkg -, 4.

Spoke velocity is weakly, inversely dependent on magnetic fiel@8foB;|irans < Br/Bf < 1,and

5. Spokes are typically not observed in magnetically shielded thrusters.

A coherent theory with supporting experimental evidence for spoke propagation has yet to
emerge, but the first inclusive list of possible mechanisms is presented including: 1. Linearized
plasma waves (homogeneous, gradient driven and ionization related), 2. Localized breathing
mode, and 3. Wall effects. It is unknown whether spokes originate in the near-anode, ioniza-
tion/acceleration region or the near-field plume, so the plasma properties along channel centerline
from previous internal measurementsBay By = 0.86 are used to investigate various dispersion
relations for linearized plasma waves. The 10’s of kHz oscillations associated with spokes are
compared to standard plasma oscillations showiggS w < wih < wpi < Wee < wpe. The homoge-
neous plasma waves investigated Bre B drift, electrostatic ion cyclotron waves, collisional ion
acoustic waves with sheaths, and magnetosonic waves. The gradient driven dispersion relations
investigated consider spatial variations in plasma density, magnetic field and electron temperature.
lonization related waves have been reserved for future work.

The E x B drift is two to three orders of magnitude larger than the spoke velocity and is of
the same magnitude as the electron thermal velocity, in agreement with previous results. Electro-
static ion cyclotron waves are of the same frequency as spokes and the dispersion relation has a
similar functional form to the empirically approximated dispersion relationd vg, ki — wg,
with @ = 2. The ion acoustic speed is the characteristic velocity in the electrostatic ion cyclotron
dispersion relation while the characteristic velocity in the empirical dispersion relation approxima-
tion matches the ion acoustic speed4ds eV electrons that exist in the near-anode and near-field
plume regions of the discharge channel. The other homogeneous plasma waves do not have fre-
guencies or velocities that coincide with spokes, but dispersion relations that account for gradients
in density, magnetic field and electron temperature do near the anode and exit plane. The sequen-
tial breathing mode mechanism may produce an ambipolar type drift due to azimuthal variations
in plasma density with a velocity that scales asgn/me/m; and can be within the range expected
for spokes. Results with magnetically shielded thrusters where spokes are only observed at high
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magnetic field settings suggest that plasma contact with the discharge channel walls plays a role in
spoke formation. Both of these ideas require further investigation.

No definitive mechanism for spoke formation and propagation can be determined until all pos-
sible mechanisms have been analyzed and compared. The work presented here does not include
ionization instabilities, shearing instabilities or a more detailed theory with wall sheaths, so con-
cluding a spoke mechanism is premature. However, the electrostatic ion cyclotron wave and gra-
dient driven wavesYne, VB and Vne, VB, VT,) fall within the expected range for spoke frequencies
and velocities at some locations along discharge channel centerline and should be considered fur-
ther.
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CHAPTER 6
Global Mode and Breathing Mode Oscillations

“Research is to see what everybody else has seen, and to think what nobody else has
thought”
— Albert Szent-Ggrgi

6.1 Introduction

This chapter characterizes the oscillations observed in global oscillation mode and proposes they
are the ubiquitous breathing mode oscillation that has been well studied in literature and discussed
in Section 2.5.2. The mode transitions investigated in Chapter 4 showed the oscillations associated
with global mode decreased thruster performance, which motivates an investigation to understand
their mechanisms so they can be avoided. Section 6.3 characterizes the global mode frequency as
a function of operating parameters and compares it to the classic breathing mode frequency model
developed by Fife. [77] Section 6.4 discusses triggers for breathing mode oscillations. Section 6.5
investigates global mode oscillations as breathing mode oscillations using two different numerical
models. The fluid model developed by Barral [33] for breathing mode oscillations in an SPT-100
is used to re-create mode transitions by varying magnetic field strength. Further hybrid direct
kinetic simulations by Hara [34] also re-create mode transitions. Both of these simulations support
the postulate that mode transition to global mode indicates de-stabilization of the ionization zone
location in the discharge channel akin to breathing mode oscillations.

6.2 Breathing Mode Oscillations and Global Mode

A postulate is proposed here that the global oscillation mode is the well-studied breathing mode
and the transition to local oscillation mode represents a damping or cessation of the breathing mode
mechanism allowing the azimuthal spokes to propagate. This implies the transition from global
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mode to local mode indicates the ionization region has been stabilized axially in the discharge
channel. The breathing mode has been numerically modeled by Fife [77], Boeuf [76], Barral [33],
Hara [86], and Szabo [51]. However, Choueri [73] pointed out in 2001 that stability criteria have
yet to be theoretically developed. Barral [142] recently published the first known stability analysis
for the breathing mode using linear and non-linear techniques, but further validation is necessary
to confirm the criteria.
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0 50 100 150 200 0 50 100 150 200
t [ps] t [us]

Figure 6.1: Neutral density (left) and plasma density (right) from 1-D fluid simulation of an SPT-
100 on channel centerline witip = 220 V. X direction is axial distance on channel centerline
(labeledz in the present investigation) with the anodexat 0. Reproduced from Figure 3(b) and
4(b) of Ref. 33.

The analysis in Section 5.6 on spoke propagation and dispersion relations assumes the plasma
properties are constant in time within the discharge channel allowing spokes to propagate and
Figure 5.11 shows the spoke velocities are 1500-2000 m/s. In the H6, a typical spoke will require
~ 300 us to travel around the entire discharge channel. However, a single spoke typically does
not propagate around the entire channel, but will fade out and a new spoke will form as shown
in Figure 4.9. At the reference magnetic field setting they can propagate for over half of the
channel circumference, but at high magnetic field settings the spoke duration is shorter so they
may propagate for less than a quarter of the channel. Therefore, the typical spoke lifetime is
~ 75—150us, which is the same timescale-a40 kHz breathing mode oscillations. The 1-D fluid
simulation of an SPT-100 developed by Barral [33] with results reproduced in Figure 6.1 shows
that during a~ 100 us breathing mode cycle the plasma properties can change significantly. For
the plasma properties on discharge channel centerline Figure 6.1 shows that neutral density can
change by a factor of 2-3, plasma density can change up to an order of magnitude, and electron
temperature can change by a factor of 2 (from Figure 5 of Ref. 33, not reproduced here). The
simulation calculated a slow progression of the neutral front down the discharge channel building
up to avalanche ionization. Figure 6.1 shows that once avalanche ionization oceus® ats
and again at 150 us, the plasma density peaks and the neutral front recedes with a velocity in
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the range of 0.5 5x 10° m/s. Assuming global mode oscillations are breathing mode oscillations,
spokes may not be able to propagate since the breathing mode period is of the same order or smaller
than the time required for spoke propagation and the recession rate can be greater than the spoke
velocity of ~ 1700 m/s.

The assumption is made that global mode oscillations observed in Chapter 4 are the same
mechanism as breathing mode oscillations occurring everywhere in the channel simultaneously.
Therefore, the term breathing mode and global mode will be used interchangeably throughout this
chapter. Significant evidence exists to support this assumption as will be shown in this chapter, but
experimental validation is still required and is discussed in Section 7.2.1.

Section 4.4.3 discusses highly oscillatory behavior versus unstable operation fora HET. Global
mode is highly oscillatory with large amplitude fluctuations in discharge current, but the mean
discharge current and oscillation amplitude remain constant so the thruster is stable. Unstable
thruster operation is defined by discharge current “run-away” as shown in Figure 4.7. This use of
“stable” and “unstable” contrasts the nomenclature used in plasma oscillation literature where the
term “unstable” indicates oscillations are present and “stable” indicates they are absent. In this
chapter, when we refer to excitation of the breathing mode as unstable to follow the convention
used in literature, this indicates the highly oscillatory behavior in global mode and not a “run-
away” discharge current.

6.3 Global/Breathing Mode Frequency

6.3.1 Empirical Characterization

This section seeks to characterize the global mode oscillation frequency as a function of operating
conditions and compare it with the breathing mode frequencies observed by other investigations.
Here the global mode frequency is determined by the peak imgleame as peak imy PSD)
which is clearly visible in Figures 4.12. The peak is identified using the Lorentzian fit method
described in Chapter 5.5.3. The pdakfrequencies for all of the conditions shown in Table 4.1
are shown in Figure 6.2 vers@/B; for global modeB,/B; < By/B;[ioWer,

The data from Figure 6.2 can be used to dlatersusVp and m, at constantB,/B; as shown
in Figure 6.3(a) and (b), respectively. Figure 6.2 can be used to infgiB; /B;)* wherea > 0.5.
Figure 6.3(a) can be used to infékx VBﬁ where 1< 8 < 1.5 and Figure 6.3(b) implie§ o« m;”

where 0.5< v < 1. Therefore the frequency can be written as

BB

f
Ve,

(6.1)

187



12

10+ -

8 —9—300V, 14.7 mg/s 7
| & 300V, 19.5 mg/s 1
| A 300V, 19.5 mg/s 1
| =300V, 19.5 mg/s 1
| —¢—300 V, 19.5 mg/s 1
6 300 V, 25.2 mg/s 7
i 300 V, 25.2 mg/s 1
i 400 V, 19.5 mg/s 1
i 400 V, 19.5 mg/s 1
| —*450V.195mgls | | | | | | | 1

4
0.3 0.35 0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8

B,/ B}

£, kHz

Figure 6.2: Peak global mode frequency variation v8tliB; for all conditions. Note there are 4
sweeps for 300 V, 19.5 mg/s, two for 300 V, 25.2 mg/s and 400 V, 19.5 mg/s. The values shown
are up toB /B;[lower,
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Figure 6.3: Global mode frequency variation with (a) discharge voltage at constant flow rate and (b)
anode flow rate at constant discharge voltage. For conditions with multiple sweeps, the frequency
is the average of all sweeps. Lines for V51 and f o V51-5 are shown in (a) and o« m;* and

f oc ;9 are shown in (b) for reference only and are not calculated from least-squares fit.
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where C is an unknown constant coefficient to ensure correct units. Equation 6.1 can be written
in matrix form with the discharge voltage and anode mass flow rate normalized by the nominal
values,Vj = 300 V andni; = 19.5 mg/s

log(C)

og(f)=| ¢ [1 jog(&) |og(§—0) Iog(%)] 6.2)

O #

e
The unknowns in Equation 6.2 can be solved by inverting the matrix

log(C)

:Iog(f)[l log(E) |og(§g) log(M) ]_1 6.3)

-y

Equation 6.3 can be solved using the data shown in Figure 6.2 and yields many more equations
than unknowns. The Moore-Penrose pseudoinverse matrix is used to solve Equation 6.3 which is
the least-squares solution to the over-determined problem. The resulting power law relation shown
in Figure 6.4 is

(Br/B:)O88
flkHz] = 16.29 ——
Ikhz] (Vb /V5)1-32(rmg/rrg)0-70

(6.4)

6.3.2 Frequency Comparison with Theory

The frequency variation must be related to other plasma properties such as ion velocity and neutral
density in order to compare with existing theories. The ion velocity can be related to the discharge
potential using conservation of energy

mv?
- 2qiv
where the voltage utilization efficienayy, is the fraction of the discharge potential the average ion
is accelerated through (Equation 2.12). The mass flux of particles through a the discharge channel

of areaAchn| IS

Vb (6.5)

M= AchnINNMNVihy, (6.6)

whereny is the neutral particle density aneghy= v8kgTn/(rmy) is the thermal velocity for
neutrals of temperatuiBy and massny. A flow rate ofm, = 20 mg/s and y,, = 220 m/s for 300 K
Xe atoms in Equation 6.6 yields a density of . Z0'° m=3, which is in approximate agreement
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Figure 6.4: Power law fit for global mode frequency oscillations in kHz for all data shown in
Figure 6.2 using Equation 6.4. A line with slope of 1 is shown for reference.

with Figure 5.13(b) for most of the discharge channel. Writing the frequency in Equation 6.4 as a
function of magnetic field, discharge potential, and anode mass flow rate

By
Ve,

f=C (6.7)

and then using the definition of electron cyclotron frequency, Equation 6.5, and Equation 6.6, the
frequency from Equation 6.7 can be written as

me\% a
fo Cloa) i 1 [o(me)(5,aY (1Y 6.8)
B mv2\? o NN q nmi Achimy .
(z—qn) (AnNmMViny)” N T ity
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Using Equation 6.4, the fit coefficient in Equation 6.70s= 5.65x 10° with the correct units
to yield frequency in Hz for Equation 6.4. Assume~ y (justified from Equation 6.4), noting
my = my, and using the ionization rate, = kj(Te)ny, Equation 6.8 can be written as

T (O \"
f=—|— 6.9
Vizﬂ(vthN) (6.9)

whereQ; = wee/vj is the ionization rate Hall parameter and the coefficierd

e |

Achmiq m

Note the coefficien defined in Equation 6.10 is a function ©f because of the ionization rate,
ki. From the empirical fit in Figure 6.4 and Equation G4y 3/4 andB ~ 4/3.
The simple model for breathing mode frequency first proposed by Fife [77] and given in Equa-

tion 2.51 of Section 2.5.2 is .

VVihy Vi

f= oL (6.11)

where v is the velocity of ions leaving the ionization zone of lengith However, Fife admits
thatL; is a function of ionization rate, which is dependent on neutral velocity and thermal velocity
so Equation 6.11 is more complicated than it initially appears. For frequency to increase as B-
field increases, the ionization length would have to decrease, assuming the ion velocity and neutral
velocity are unaffected by the change in B-field. This would mean neutral ionization is more
confined to a region closer to the channel exit and less ionization occurs upstream towards the
anode. therefore, the ionization region decreases with incre&singil it eventually reaches a
constant value when the breathing mode is no longer excited.

The form of Equation 6.9 and 6.11 are significantly different, albeit the explicit dependence
of Lj on By, vin,, and v is unknown and could account for the discrepancies. For the models
to match, the ionization length would have to scald_as vﬁl/zvizﬁ”/zgi“’. More rigorously,
equating Equations 6.8 and 6.11 yields the ionization length

26+1/2. y+1/2 vy 3.14,,1.2 0.7
V- vV n V> ven
L=t ™ Noogpml T 6.12
B b
%) ) ()
Ci=2aC|—| (2n— 6.13
! ( q ) nm Achmy ( )

Assuming v and wn, are not functions ofB, then Equation 6.12 shows that ~ 1/B*, which
supports the idea that ionization length decreases with increasing B-field. Several simplifying
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assumptions have been made to derive Equation 6.9 from empirical results and Equation 6.11
from first principles, but they both generally support the same qualitative argument. Increasing
Li means that more ionization is occurring deeper in the discharge channel closer to the anode.
Once the ionization length is larger than a critical value, too much ionization occurs deep in the
discharge channel and the neutral supply is depleted before reaching the exit plane. The depleted
neutral supply forces oscillations to maintain continuity and current conduction in the plasma to
sustain the discharge.

6.3.3 Excitation Criterion from Frequency Measurements

A properly designed HET will ionize most of the propellant gas injected from the anode, [11] so
an approximate ionization length;, can be determined assuming full ionization

NaNe(TiVe) AchniLi & NnViny Achnl (6.14)

where(oiVe) is the ionization rate coefficient for Maxwellian electrons. Therefore, the ionization

length is approximately
VthN

i ~ —
Ne(TiVe)

(6.15)

Figure 5.14 shows that the plasma density begins a sharp increageqsai ~ 1/2 and Fig-

ure 5.13(a) shows that, ~ 10'® m™3 from 0.5< z/Lehn < 1. The significantly higher plasma
density for the outer half of the discharge channel indicates the ionization region length should
be Lj/Lchnt ~ 1/2. Although the electron temperature in the discharge channel peaks over 30 eV,
Figure 5.13(c) shows that the electron temperature-id®eV in most of the channel except near
the exit. Using these value ranges with the ionization rate coefficients from Appendix E of Ref. 11
in Equation 6.15, the ionization lengthlis/Lqyn ~ 0.1—0.6. This is admittedly a large range, but
corroborates our previous observation of expected ionization length.

Armed with this idea of the approximate ionization region length as half of the discharge chan-
nel, the empirical transition criterion can be combined with the empirical and theoretical breathing
mode frequency relations to determine the ionization length criterion. Equations 4.9 and 4.10 in
Section 4.4.2 relate the transition magnetic field strenBtiE; [%0'e") to ion velocity, neutral ve-
locity and neutral density from empirical observations (the ‘transition surface’). This provides a
criterion to remain in local mod&; /B |iocal > Br/B;‘I'tﬁg‘}g where the breathing mode is not ex-
cited. In Section 6.3.2, Equation 6.8 relates global mode oscillation frequency to magnetic field
strength, ion velocity, neutral velocity and neutral density from empirical observations. Equa-

tion 6.11 relates breathing mode oscillation frequency, ion velocity and ionization length from
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a simple, first-principles model. Combining these equations to eliminate the magnetic field and
oscillation frequency yields the ionization length criterion to stabilize breathing mode oscillations
2B-a+1/2  y-a/2+1/2 y-a/2
Li < 9.06x 10729 yZ#mart/z ypalze/z el (6.16)

wherea, B andy are the empirically determined power dependencies in Equation 6.1. From
Equation 6.4¢ = 0.88,8 = 1.32, andy = 0.70, so Equation 6.16 can be written as

Li < gq vZ2 v To ng % (6.17)
Using v = 2x 10* m/s from a 300 V discharge with 90% voltage utilization efficiency,, =

220 m/s from 300 K neutrals, ana, = 2 x 101° m3 from Table 3.1, the stability criterion for

the ionization length in Equation 6.17li$/Lcyn < 0.75. This means that if the ionization region
becomes larger than 3/4 the discharge channel, then the breathing mode instability will be trig-
gered. A significant number of approximations were used to distill the ionization length criterion

in Equation 6.17, but the qualitative idea is valid that if the ionization rate is too high deep in the
channel close to the anode, such that the neutrals are consumed too quickly after exiting the anode,
then the breathing mode oscillation will occur.

Close inspection of the magnetic field lines inside the discharge channel of the H6 in Figure 3.2
reveals that the first magnetic field lines to intersect the anode originatezfitog ~ 1/2 on the
discharge channel walls. Therefore, electrons approximately half way down the discharge channel
colliding with the wall can have a guiding center about a field line that will take them directly
to the anode. This magnetic field topology may play a role in mode transitions if the ionization
length extends too far upstream where it is easier for electrons to become trapped on field lines
intersecting the anode.

Barral [94] pointed out Equation 6.11 is fundamentally flawed in that the influx of neutrals is
dependent on a priori knowledge of neutrals inside the chamber, however more detailed analysis
by Barral [142] with a modified Lotka-Volterra model determined that Fife’s model [77] is still rel-
evant. The only stability analysis for the breathing mode was by Barral [142] where he conducted
a linearized analysis of the modified predator-prey model. An excitation threshold was found from
the time-delay incurred by neutral transit time through what he called the ‘pre-ionization region.’
In principle this agrees with the above discussion, where the critical time=ik;/vin, = 135 us
from the above example for a neutral to trarisit This would corresponds with a frequency of
f =1/t = 7.4 kHz, which is in line with the frequencies observed in Figure 6.2.
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6.4 Breathing Mode Stability Criterion

6.4.1 Mode Transition as Neutral Deficiency

In this section we discuss a simple criterion to identify the onset of breathing mode oscillations
using a simple 0-D model. The continuity equations for ion, electrons and neutrals in the axial
direction,z, are

onp 0
8_tl + a_z(niVi) = KiNnNe — viwN; (6.18)
on 0
8_te + 9z (NeVez) = kinnNe — vewhe (6.19)
on 0
6—t” = (NnVn) = —KiNpNe + viwh; (6.20)

wherevjy andvey are the ion and electron collision frequencies with the wall, respectively. Assume
guasi-neutrality so; ~ ne ~ nwherenis the plasma density. Focus on the heavy species and neglect
ion to wall collisions and assume a constant neutral velocity to reduce Equations 6.18-6.20 to

on on v

o Vi +n— =kKmn (6.21)
onp on,
50 +Vp i kinpn (6.22)

Introduce the definition of gradient length scale for parameter

_(1do -1
Lvo = (Ed_z) (6.23)

so Equations 6.21 and 6.22 can be written as

on vin vn

—+— =kinpn 6.24
3t Ton vy M (6.24)
onNg  Vahp
— = —kinyn 6.25
ot + Lon, Kinn ( )

If the breathing mode is not excited, then the plasma properties are not varying in time along the
discharge channel length 8¢ot = 0. However, the breathing mode is triggered when an imbalance
exists. More sophisticated numerical simulations show that the breathing mode is characterized by
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adepletion of neutrals due to rapid, intense ionization. Therefore, the criterion for stabilization of
the breathing mode i8n,/dt > 0 and Equation 6.25 is

VNN
kinan < — 1

“Con (6.26)
Equation 6.26 shows the criterion for stability is that the loss of neutrals to ionization in a given
volume must be less than or equal to the flux of neutrals through the volume. Note the neutral
density is typically decreasing along the length of the channel so genkyally 0 and ion velocity

is always increasing sby,, > 0. However, the plasma density increases in the ionization region
and decreases in the acceleration regiohgpcan be positive or negative. The stability criterion

in Equation 6.26 can be re-written using Equation 6.24 Witfot ~ 0

-L -L
&> n( Vnn+ Vnn)

— 27
Vi Np (6.27)

Lvn Ly,

Rewrite Equation 6.27 as particle flux&€ss nv in #/s/n?, of ions and neutrals with a coefficiemt

I'h > ol (6.28)

—Lvn, —Lwn
= L n 6.29
LVn LVvi ( )

The criterion shown in Equations 6.27 and 6.28 must be satisfied throughout the entire length of
the discharge channel, particularly the ionization zone, or breathing mode oscillations will occur.
Because all the length scales should be similar, the coeffieishbuld be?(1) and the breathing
mode stability criterion in Equation 6.28 for conditions in the ionization region of the channel can

be approximated as
[
Ty
The ionization region is defined here as the region between the peak plasma density and the peak
electric field.

<1 (6.30)

6.4.2 Mode Transition as Electron Deficiency

The traditional predator-prey model for breathing mode oscillations treats neutrals as the prey and
electrons as the predators. The breathing mode is excited when neutrals are depleted, which is
supported by the fluid simulations shown later in Figure 6.9. This model inherently assumes that
a sufficient supply of electrons exists to continue ionization since neutral density is the limiting
factor. However, the mode transitions discussed in Section 2.4 hint that the electron supply to the
discharge channel or electron retention in the discharge channel may affect mode transitions. The
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wall material discussion and space-charge saturation [65, 66] directly relate to electron retention
in the channel from near-wall conductivity and supply in the channel from secondary electron
emission. A change in CFF [41, 67] causes a change in the near field plume plasma, which could
indicate the electron supply to the channel is disrupted from changes in electron mobility. This
prompts a different perspective on the initiation of breathing mode where insufficient electron
density causes a loss of continuity in the plasma, interrupts ionization, and excites oscillations.
Consider the same 0-D model used in Section 6.4.1 with a control volume as the primary ion-
ization region and the electron flow into and out of the volume. The ionization region is assumed
to start in the discharge channel 41 z/Lenn < 3/4) in a region where the B-field is increasing
with axial distancedB/ddz > 0. The ionization region may end upstream or downstream from
the B-field peak, which occurs near the exit planB/@lz= 0 nearz/L¢n = 1). Electron source
mechanisms for the ionization region include: cross-field diffusion from the plume, cold secondary
electron emission from the walls, azimuthal motion in the channel (into the volume), and electrons
produced from ionization processes. Electron loss mechanisms for the ionization region include:
cross-field diffusion to the anode, hot electrons lost to the wall, azimuthal motion in the channel
(out of the volume), and electrons lost to recombination. Initiation of the breathing mode from a
depleted electron population can be broadly described as insufficient supply or insufficient reten-
tion/excessive loss:

1. Insufficient Supply

(a) If changes in the plume cause the near-field mobility to significantly decrease, then
the electron supply from the cathode will be “choked-off” and could trigger breathing
mode oscillations.

(b) Insufficient ionization from cold electrons (reducing ionization rate coefficient) or lack
of neutral population means that not enough electrons are produced in the volume of
the channel.

2. Insufficient Retention/Excessive Loss

(&) Changes in the wall sheath could cause significant electron flux to the walls that could
trigger breathing mode oscillations (space charge saturation). Similarly, the wall sheath
changes could prevent electrons from being reflected into the channel to continue az-
imuthal propagation and they are “shunted” to the anode along the wall (near-wall
conductivity).

(b) If the magnetic field is too low, then too many electrons will flow across magnetic field
lines to the anode because the cross-field mobility in the ionization region is too large.
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A rigorous treatment is not provided here and is recommended for future work. This will require a
0-D model or 1-D model which includes continuity, momentum and energy equations.

6.5 Transition as Breathing Mode Damping

This section will use two different numerical simulations to investigate mode transitions by varying
magnetic field strength similar to the experimental investigation of Chapter 4. The first model is
a fully fluid description of the plasma developed by Barral [33] to simulate the discharge channel
of an SPT-100. The second model is a hybrid-direct kinetic simulation of the SPT-100 discharge
channel by Hara [86] where ions, neutrals and one excited neutral state are treated with kinetic
descriptions and the electrons are treated as a fluid. Both models are 1-D axial, time-resolved
simulations that have successfully reproduced breathing mode oscillations. Motivated by the work
discussed in Chapter 4, Hara used the hybrid direct kinetic model to conduct an investigation of
varying magnetic field strength to induce mode transition. [34] The use of Barral’s fluid mode to
investigate mode transitions is presented here. Both investigations reproduced mode transitions
similar to those observed experimentally where the global mode corresponds to excitation of the
breathing mode oscillation and local mode corresponds to damping of the breathing mode.

6.5.1 Fluid Model Description

A 1-D, time-resolved, numerical, fluid model of an HET discharge has been developed by Barral
and used to analyze a SPT-100 discharge. The model is derived and detailed in Ref. 33 and only
summarized here. It uses axial continuity equations for neutrals, electrons and +1 ions. Axial
momentum equations are included for electrons and ions, and the azimuthal momentum equation
and energy equation for electrons only. The radial magnetic field is approximated by a Gaussian

curve
_(Z‘ Lchﬂ (6.31)

B(2) = Bmax exp Lo

whereLg is the channel length,g is the characteristic width of the magnetic field and a peak value
of Brax = 220 G was used in Ref. 33. The SPT-100 channel length is 2.5 cm and the simulated
domain is 3.5 cm, at which there is a virtual cathode providing 5 eV electrons. Electron and ion
losses at the walls are accounted for using a simplified theory for radial sheath and pre-sheath. The
neutral velocity is assumed to be 200 m/s and a constant 1/160 coefficient is used for Bohm-type
electron diffusion sa = 0.1 in Equation 2.7. The total electron energy is

3

1
e=STex Eme(vgZ +vZ,) (6.32)
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whereTe is the thermal temperatureg\is the axial electron velocity, andwis the azimuthal
electron velocity.

The model was used to numerically investigate the breathing mode oscillation of an SPT-100
operated at 220 V, anode mass flow rate of 5 mg/s Xe in Ref. 33. Figure 6.1 shows the time-
resolved ion and neutral density during two breathing mode oscillation cycles. The computer code
for the work in Ref. 33 was provided by the author and recompiled. The results from Figure 6.1
have been recalculated in Figure 6.5.

Axial profiles were extracted from the results in Figure 6.5 at times 50, 80, 125, 145, 150,
and 158us and shown in Figure 6.6. At the beginning of the cytte,50 us, the neutral density
front is recessed deep into the channel near the anode, the electron temperature has a 15 eV peak
at 1.5 cm, and the plasma density is 9.5.0x 10'® m=3 in the channel. Neutral replenishment
of the discharge channel continuestat 80 us with the neutral front propagating downstream
with a peak at 0.5 ct the electron temperature peak has moved to 2.0 cm, the plasma density is
~ 101 - 10'® m=3, and the peak axial electric field has shifted downstream by 0.2 cm. The final
profile of neutral replenishmentis- 125us where the neutral density peak is located at 1.5 cm, the
electron temperature peak is much broader with a lower 10 eV peak at the channel exit, the electric
field peak value is also lower, and plasma density is still beloW &3, Avalanche ionization
begins at = 145us with the neutral density peak located at 2 cm, the electron temperature peak is
outside the channel with a second peak forming at 1.5 cm, and the plasma density is beginning to
increase. The avalanche ionization process continues d50us with the neutral density rapidly
decreasing, the plasma density rapidly increasing, the electron temperature peak at 1.5 cm is how
dominant, and the peak electric field has moved back to 2.0 cm. In the final step of the avalanche
ionization att = 158 us, the neutral density is approximately half of the initial value, the plasma
density is nearly 2 10*® m~3, the electron temperature peaks at 1.5 cm, and the electric field peak
has recessed into the channel at less than 2 cm. Aftdri58 us the breathing mode cycle repeats
itself and the next frame is similar to= 50 us. The refill time is~ 100us and the depletion time
is ~ 10 us so the total cycle time is 110us, which corresponds to a breathing mode frequency of
9 kHz.

In Chapter 4, Figure 4.9 shows the H6 discharge current density in global mode varies from
~ 50 mA/cn? at the minimum of a cycle to- 300 mA/cn? at the peak with the mean value of
~ 150 mA/cn? calculated from the mean discharge current. Assuming the plasma density is lin-
early related to the current density (which was assumed in the HIA), the peak plasma density in a
breathing mode cycle is 6x the minimum plasma density. The simulation results in Figures 6.5
and 6.6 for the SPT-100 show the plasma density in most of the discharge channel varying from
10 to 10" m~3. It is unlikely the plasma density is varying by 3 orders of magnitude during a

1The cause for the neutral density peak is unknown, but it is likely an artifact of the simulation and not physical.
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Figure 6.5: Plasma properties for the SPT-100 With= 220 V andBax = 220 G from fluid
simulation showing breathing mode oscillations based on the analysis by Barral [33]. Properties
shown are neutral density,, plasma density (ion and electrom) axial electric fieldE;, plasma
potentialVp, electron temperatur€e, total electron energy, axial electron velocitye,, and az-
imuthal electron velocitywey. All properties except the densities have been smoothed by a 15
point, radial smoothing algorithm with a cosine weighting in order to remove higher frequency
oscillations not associated with the breathing mode.
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Figure 6.6: Plasma property profiles extracted from Figure 6.5 for selected times showing the
evolution of a breathing mode cycle. Units arer3nfior nn and ny, V/mm for E,, V for Vp, eV

for Te and €, m/s forve, and veg, and G forB. The magnetic field is shown for reference, which
does not change throughout the cycle. The channel exit is shown as a vertical, dotted black line at

z=25cm.
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cycle, so this extreme is likely an artifact of the fluid simulation and the many simplifying assump-
tions made in its implementation. However, the qualitative description it provides of the plasma
during a breathing mode cycle is still valuable.

6.5.2 Mode Transition with Fluid Model

A numerical investigation is conducted similar to the experimental mode transition investigation
where the magnetic field magnitude is varied with all other parameters constant in order to in-
duce mode transitions. The same computational code and parameters that produced the breathing
mode simulations in Figures 6.5 and 6.6 was run VBgax in Equation 6.31 varied. This was
completed for discharge voltages of 200, 220, 240 and 255 V as shown in Figure 6.7. The simula-
tion time was 5 ms to ensure steady-state equilibrium conditions or oscillations are reached. The
discharge current is the mean of the time-resolygtrace from 2.5 to 5.0 ms and the discharge
current oscillation amplitude is the RMS of the same time-history segment. Transition is defined as
the magnetic field magnitude where sustained (non-damped) oscillations are first observed when
decreasing the magnetic field magnitude.

In, A

) S S AU SIS B Ju S SN S S, A B
180 200 220 240 260 230 300 320 340

Figure 6.7: Mode transition investigation using numerical fluid model for different discharge volt-
agesVp =200, 220, 240 and 255 V. Solid lines dgg dashed lines ark +1p, and vertical dotted

lines are the transition point. The trend of increasing transition point with increasing discharge
voltage is observed qualitatively similar to the experimental investigation shown in Figure 4.2.

The B-field sweeps in the numerical investigation in Figure 6.7 followed the same trend as the
experimental investigation in Figure 4.2 where the mode transition occurred at higher magnetic
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Figure 6.8: Mode transition investigation using numerical fluid model to identify the transition
point for different discharge voltag&4, = 200, 220, 240 and 255 V. The trend of increasing tran-
sition point with increasing discharge voltage is observed qualitatively similar to the experimental
investigation shown in Figure 4.4.

field strengths for higher discharge voltages. In contrast to the experimental observations, no
discharge current oscillations are observed for the higher magnetic field settings, which is not
surprising given the simple 1-D nature of the model. As the magnetic field is decreased, sustained
low-amplitude oscillations are initially observed that eventually transition to full breathing-mode
oscillations. Below this transition point, the discharge current oscillation amplitude continues to
increase with only a slight increase in mean discharge current. The transition points have been
extracted in Figure 6.8 to compaBgans versusvp, which shows remarkable qualitative similarity

to Figure 4.4. These results are only meant to give qualitative insight into mode transitions and
are not expected to replicate the empirical results shown in Figure 4.4 for two reasons: (1) the
diffusion coefficients were constant throughout this investigation and no attempt was made to fit
the coefficients to experimental performance data for the SPT-100 and (2) despite some similarities,
the SPT-100 and H6 are different thrusters.

The criterion for breathing mode stabilization developed in Equations 6.28 and 6.30 are ana-
lyzed in Figure 6.9 for each discharge voltage setting. The loBgst shown for eachvp is the
transition point where oscillations are first observed. Breathing mode oscillations begin for the
200 and 220-V discharge cases whgfl, > 1 or @ < 1 near the discharge channel exit plane.

For the 240 and 255-V cases, breathing mode oscillations begin Iyfign> 1 or a < 1 within
1 cm of the exit plane inside the discharge channel. Note thdtifthig and « are closely related
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Figure 6.9: lon to neutral flux comparison aador stable magnetic field conditions throughout
the discharge channel for different discharge voltages 200, 220, 240 and 255 V. Solid lines
arel’; /T, dashed lines are defined by Equation 6.29, and vertical dotted lines are the channel
exit. The lowesBax shown is the transition point where oscillations are first observed. Breathing
mode oscillations begin whdn/I', > 1 or a < 1 inside the discharge channel for all voltages.
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because they are derived from the continuity equation, which is by definition satisfied in the fluid
analysis. Numerical artifacts are observed in the simulation results of Figure 6.9 which should be
disregarded such as the vertical lines frem 0.3— 0.5 cm and the perturbed lines outside the
discharge channel. The condition for breathing mode excitation is when neutrals are depleted in
the ionization zone of the discharge channel (£.5< 2.5 cm). This technique can be used to
determine the margin of stability against exciting breathing mode oscillations (i.e. global mode)
by how far outside of the discharge channel &il, > 1 or @ < 1. A trade likely occurs, however,
between stabilizing breathing mode oscillations and system performance. Niign« 1, not

all neutrals are ionized and accelerated in the primary acceleration zone and represents a system
inefficiency. A balance must be maintained between increasing system performance with sufficient
margin against exciting breathing mode oscillations and transitioning to global mode.

6.5.3 Variation of Axial Plasma Parameters for Stable Conditions

Figure 6.10 shows axial profiles of plasma properties for magnetic field conditions where the
breathing mode is stabilized in Figure 6.9 for discharge voltages 200, 220, 240 and 255 V
from fluid simulations. The lowedB,x shown is the transition point where oscillations are first
observed. The properties shown are neutral demgitplasma densityy, radial magnetic field

B, axial electric fieldE;, azimuthal electron velocityey, electron temperatur@e, total electron
energye, and ionization rate;. Profiles for axial ion velocity and axial electron velocity are not
shown because they do not vary significantly with magnetic field strength, which supports the
observation of constant thrust through mode transition.

As the magnetic field decreases, the plasma density increases and the neutral density decreases.
The electric field changes in magnitude are less than 10%, but the peak shifts towards the channel
exit by ~ 0.1L, closer to mode transition. The azimuthal electron velocity magnitude increases
(becomes more negative, which is e B direction) in the discharge channel with decreading
The electron temperature and the total energy defined by Equation 6.32 increase closer to mode
transition with decreasing magnetic field strength. This causes an increase in the ionizatign rate,
and ionization rate constant [33;, defined by

vi = ki(€)m (6.33)
1/4
ki(e) = kao(f) exp(——) (6.34)

wherekip = 1.8x 10713 md/s.
Based on the results of this simple fluid model analysis, the trigger for breathing mode os-
cillations is changes in the plasma and neutral density profiles. The neutral velocity is considered
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Figure 6.10: Axial profiles of plasma properties for stable magnetic field conditions for different
discharge voltagegp = 200, 220, 240 and 255 V from fluid simulations. The lowBgix shown is

the transition point where oscillations are first observed. The properties shown are neutral density
N, plasma densityy, radial magnetic field, axial electric fieldE;, azimuthal electron velocity

Veg, €lectron temperatur€, total electron energy, and ionization rate;. The discharge channel

exit is marked by a dashed vertical black line.
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constant throughout the discharge channel length and the ion velocity profile in the discharge chan-
nel does not change significantly with magnetic field variation@)% Vi(Bmax)). Therefore, the
breathing mode is excited when the criterion in Equation 6.30 is violated by the chang&)in

and n;(z) with magnetic field magnitude. A combination of increased cross-field mobility from the
decreased magnetic field and increased ionization from the increased electron temperature causes
the change in neutral and plasma density along the discharge channel length that leads to the onset
of breathing mode.

6.5.4 Breathing Mode Stability Criterion Discussion

The method presented here can be used to check more sophisticated, time-averaged, numerical
codes for stability against breathing mode oscillations (i.e. global mode) by analyzifgor o

in the discharge channel. Margins of stability can also be estimated by determining how far outside
of the ionization and acceleration zones the stability criterion exist. It must be cautioned that this
is not predictive of new thruster designs, but just a check. The simplistic criterion derived in
Equations 6.28 through 6.30 and shown in Figure 6.9 indicates that a depletion of neutrals leads to
the onset of breathing mode oscillations. The supply of neutrals in this simulation is primarily from
the upstream anode, although some neutrals come from recombination at the discharge channel
walls. However, in real HETs neutrals can also be provided by the ground facility where more
neutrals will diffuse into the channel for higher background pressures. Therefore, the thruster
could belesssusceptible to breathing mode oscillationshagher background pressures seen in
ground test facilities because there is a neutral supply from the facility that would not occur in
flight conditions.

If these observations are correct, they would also have implications for magnetically shielded
HETs where much more of the ionization and acceleration zones are outside of the discharge chan-
nel walls. The plasma-to-wall interactions are greatly reduced in magnetically shielded thrusters
by design, and this is visible as a dark gap between the plasma and the discharge channel walls
in photographs. The detachment of the plasma from the wall significantly reduces channel ero-
sion, but also provides a path for neutrals to escape. Additionally, ions that would diffuse to the
walls and re-enter the ionization zone as neutrals are lost. In ground testing, however, this is off-
set by more neutrals diffusing into the ionization region from the ambient background pressure. In
flight conditions with significantly lower background pressures, it is expected thatdagaetically
shielded thrusters would be more susceptible to mode transgiod$reathing mode oscillations.
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6.5.5 Mode Transition with Hybrid Direct-Kinetic Model

Motivated by the results in Chapter 4, a recent investigation by Hara [34] used a hybrid-direct
kinetic simulation developed in Ref. 86 to vary magnetic field and induce a mode transition in an
SPT-100 type thruster. The model uses a direct kinetic simulation for ions, neutrals and one excited
neutral state and treats the electrons as a fluid. Incorporating metastable xenon atoms allows for
excitation collisions and stepwise ionization to more accurately determine velocity distributions,
ionization rates and plasma density. In addition, light intensity is calculated from spontaneous
emission during de-excitation. It has been used to recover the breathing mode for the SPT-100 of
approximately 20 kHz. The simulation is 1-D axial on thruster centerline similar to Barral’s fluid
simulation. [33] Figure 6.11 shows the mean discharge current and oscillation amplitude, which
gualitatively compare well with the H6 experimental data in Figures 4.2 and 4.3. The breathing
mode is damped in a region of optimal performance similar to the local mode in the H6.

10 I T T l T T 'I T T [ T I I T T I T I
Transient Optimal
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T T I T T T I T
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Figure 6.11: Discharge current mean (red squares) and oscillation amplitude or standard deviation
(error bars) during a B-field sweep in an SPT-100 with a hybrid-direct kinetic simulation. Mode
transitions are identified similar to the experimental results with the H6. The “Transient” regime
corresponds with global mode oscillations and the “Optimal” regime with local mode. Reproduced
from Figure 5 of Ref. 34.

The time resolved plasma properties are shown in Figure 6.12 where the two modes are labeled
breathing mode and quiescent mddehich are the equivalent of global mode and local mode,

2Ref. 34 uses the term “stable mode” to describe the condition where the breathing mode has been damped. The
term “quiescent” is used here to avoid confusing nomenclature. The term “local mode” cannot be used appropriately
because the 1-D simulation cannot resolve azimuthal perturbations such as spokes.
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respectively. The neutral density in Figure 6.12(a) and ion density Figure 6.12(b) in breathing mode
display the same features as the previous numerical simulations shown in Figure 6.5. The neutral
density varies by a factor ef 2 and the ion density varies by up to an order of magnitude between
cycles. Increasing the magnetic field strength induces a mode transition to quiescent mode, which
is the equivalent of local mode in the H6 investigation. The neutral density in Figure 6.12(c) and
ion density Figure 6.12(d) for quiescent mode show that the ionization front has been stabilized
axially in the discharge channel. Lower amplitude oscillations are still observed in the ion density,
but the variation is within a factor of 2 instead of an order of magnitude.
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(a) Ground state neutral density in breathing mqbg.lon density in breathing mode. Reproduced
Reproduced from Figure 6(a) of Ref. 34. from Figure 6(c) of Ref. 34.
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(c) Ground state neutral density in quiescent md¢dg.lon density in quiescent mode. Reproduced
Reproduced from Figure 7(a) of Ref. 34. from Figure 7(c) of Ref. 34.

Figure 6.12: Time-resolved neutral ground state density and ion density from hybrid-direct kinetic
simulations of an SPT-100. Breathing mode is shown in (a) and (b), quiescent mode is shown in
(c) and (d). All units are .
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The total electron energy is approximately the same between quiescent and breathing mode, but
the distribution is different. The directed kinetic energy is larger in breathing mode than quiescent
mode, and the thermal energy is larger in stable mode. This could be related to the formation of a
space charge limited sheath on the channel wall as suggested by Barral [66], but Hara’s code cannot
capture this effect. Regardless of the detailed mechanism, the hybrid-direct kinetic simulations of
Hara support the idea that mode transitions are evidence of damped breathing mode in quiescent
or local oscillation mode.

6.6 Conclusions

Mode transition investigations have showed the oscillations associated with global mode decreased
thruster performance, which motivates an investigation to understand their mechanisms so they can
be avoided. Global oscillations have been characterized and it is proposed they are the well-studied
breathing mode oscillation. This implies that mode transitions from local to global mode represent
de-stabilization of the ionization front similar to excitation of the breathing mode.

The global mode oscillation frequency is characterized as a function of operating parameters
from empirical results and is compared to the classic breathing mode frequency model developed
by Fife [77]. The frequency characterizations are noted to have different functional forms. Com-
bining the frequency models with the transition criterion empirically determined in Chapter 4, a
stability criterion for the maximum ionization length is derived. This shows the breathing mode is
excited if the ionization region extends too deep into the channel, which agrees in principle with
the only other known stability analysis. [142]

Based on results from the fluid model presented here and the hybrid-direct kinetic results pre-
sented by Hara [34], it is concluded that the global mode is the breathing mode occurring simulta-
neously around the discharge channel. The transition to local mode is evidence of breathing mode
damping where the ionization front is stabilized, which presumably then allows azimuthal spokes
to propagate via other mechanisms discussed in Chapter 5. These ideas cannot be conclusively
proven until time-resolved internal measurements of the discharge channel are acquired in global
and local oscillation mode. These results provide important characterization for the initiation of
oscillations, but a more complete theory for breathing mode stability is needed.
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CHAPTER 7
Summary

“Judge a man by his questions rather than his answers”
— \oltaire

7.1 Conclusions

The primary objectives of the research presented here were to study mode transitions in HETs
using time-resolved diagnostics in order to develop new system characterization techniques and
improve the understanding of the causes for mode transition. The secondary objective was to
improve time-resolved diagnostics capabilities and analysis techniques to facilitate the study of
plasma oscillations. All of these objectives were accomplished.

New system characterization techniques were utilized, including discharge current, discharge
voltage and magnetic fieldf — Vp — B) maps to identify modes of operation within a three variable
parameter spacé/f,m,B). These results are used to calculate a transition surface for use by
operators to maintain thruster operation in an optimal mode. This leads to the conclusion that
new thruster designs should have magnetic circuits with more capability and not be designed near
saturation. These techniques are extendable to comparing ground-test operation with on-orbit
operation.

The transition criterion and plasma oscillation characteristics in each mode are investigated
and described to provide unambiguous determination of operational mode. Two primary modes
of oscillation are identified as global oscillation mode and local oscillation mode. In global mode
the entire discharge channel is oscillating in unison and spokes are either absent or negligible
with discharge current oscillation amplitude (RMS) greater than 10% of the mean value and can
even be as high as 100%. Downstream azimuthally spaced probes show no signal delay between
each other and are very well correlated to the discharge current signal. In local oscillation mode
perturbations in the discharge current density are observed to propagat&ir Bxdirection with
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clear spokes shown in a HIA PSD. Spokes are localized oscillations that are typically 10-20% of
the mean discharge current density value. The discharge current oscillation amplitude and mean
values are significantly lower than global mode. Downstream azimuthally spaced probes show a
clear signal delay between each other indicating the passage of spokes, but are not well correlated
to the discharge current indicating localized plasma oscillations within the discharge channel. The
mode transitions were consistent across different tests and showed no hysteresis, but did change
at different operating conditions. The transition between global mode and local mode occurred
at higher relative B-field strengths for higher mass flow rate or higher discharge voltage. The
thrust was approximately constant through the mode transition, but the thrust-to-power ratio and
anode efficiency decreased significantly in global mode. The peaks in thrust-to-power and anode
efficiency typically occurs near the transition point. This important result demonstrates that if the
magnetic field is optimized for peak anode efficiency or thrust-to-power in local mode, then the
thruster will be operated near a transition point where changes or degradation over thruster lifetime
could induce a mode transition to global mode.

Plasma oscillations in the channel and plume have been extensively characterized in each mode
with time-resolved diagnostics. For the azimuthal spokes observed in local mode, spoke veloci-
ties are calculated and an empirical dispersion relation is found. A detailed list of observations
are presented that any theory for the mechanism of spoke formation and propagation must ex-
plain: 1. Propagate in thE x B direction, 2. The spoke velocity is 1500-2200 m/s in the H6,

3. The dispersion relation has a functional form wherenonotonically increases witky sim-

ilar to w® =~ vg kI — g, 4. Spoke velocity is weakly, inversely dependent on magnetic field

for By/Bslrans < Br/Bf < 1, and 5. Spokes are typically not observed in magnetically shielded
thrusters. A definitive mechanism for spokes is not determined from existing theories that fit the
aforementioned list of observations, but plasma waves, sequential breathing mode and wall ef-
fects are considered. The homogeneous plasma waves investigaled Budift, electrostatic ion
cyclotron waves, collisional ion acoustic waves with sheaths, and magnetosonic waves. The gradi-
ent driven plasma waves investigated consider spatial variations in plasma density, magnetic field
and electron temperature. Electrostatic ion cyclotron waves are of the same frequency as spokes
throughout the discharge channel and the dispersion relation has a similar functional form to the
empirically approximated dispersion relation. Dispersion relations that account for gradients in
density, magnetic field and electron temperature are within the expected frequency for spokes near
the anode and exit plane. The new methodology developed in this work can be extended to inves-
tigate many other possible mechanisms for spoke formation and determine the causal relationship
between spokes and optimal thruster performance.

For the breathing mode oscillations in global mode, the frequency is characterized as a function
of the operating parameters that differ from previous theories. A postulate is put forward that mode
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transitions from local to global mode represent de-stabilization of the ionization front similar to
excitation of the breathing mode. This postulate is supported by time-resolved fluid simulations
and hybrid direct kinetic simulations of the discharge channel plasma. If validated by future exper-
iments, ionization front stabilization will become a critical performance metric for future thruster
designs.

Finally, this investigation improved upon the ground breaking time-resolved techniques the
HDLP and HIA. An ISR probe was added to the HDLP for ion density measurements and to
monitor plasma oscillations. Simultaneous time-resolved ion and electron density measurements
provides valuable insight into plasma oscillations. A new technique was developed to calculate
ion density in a flowing plasma from a probe aligned with the flow that agreed with the electron
density measurements. New methods were developed to calculate discharge current density from
HIA. This non-intrusive technique was critical to characterizing the change in plasma oscillations
through mode transition. Finally, new techniques for reliably calculating spoke velocity were
developed and rigorously compared, which has provided a new tool for investigations into the
physics of HETSs.

Mode transitions provide valuable insight to thruster operation and suggest improved methods
for thruster performance characterization. Time-resolved diagnostics are critical to measuring the
plasma oscillations to identify HET operational mode. Future HETs should include plasma oscil-
lation measurements and mode transition characterization throughout the their developmental and
operational life-cycles.

7.2 Future Work

7.2.1 Internal Measurements

The most important follow-on work that is suggested from the results presented here is time-
resolved measurements of the plasma in the discharge channel. Measurements are needed to de-
termine how plasma properties fluctuate in the different modes from the anode to the near field
plume at least 1 channel width downstream. A comparison with the fluid and hybrid direct kinetic
simulations presented here can then be performed to assess whether the global mode is the breath-
ing mode and whether mode transition to local mode represents damping of the breathing mode.
It could also answer whether breathing mode oscillations are a deficiency of neutrals through ion-
ization avalanche or depletion of electrons through loss mechanisms. Finally, it could determine
where in the discharge channel spokes originate. Such an investigation could compile empirical
results for what triggers mode transitions and what properties or parameters become “critical” right
before transition. This research could be accomplished with HDLP, time-resolved emissive probes
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and/or time-resolved LIF. [143,144] Use of time-resolved LIF would enable measurement of the
change in time-averaged and time-resolved ion velocity distribution between operational modes.
Additionally, this will allow time resolved ion velocity distributions to observe changes after pas-
sage of a spoke in local mode. All of these difference should also be measured on magnetically
shielded thrusters in different operational modes.

7.2.2 Time Resolved Near-Field Plume Measurements

Another useful investigation suggested by this work is time-resolved near field plume measure-
ments in global and local oscillation mode. This could determine how plasma properties fluctuate
in the different modes in a planar region of the near field plume from the font pole to 1 channel
diameter downstream and from cathode centerline to the outer pole diameter. Such measurements
would enable calculation of how electron transport in the near field plume evolves during an os-
cillation cycle and how that changes between modes. It would also potentially add critical mea-
surements to address the role plasma oscillations play in electron transport. Repeating these tests
with external versus internal cathode as well as different background pressures will provide a more
complete picture for the fundamentals of electron transport within the plume of an HET. These dif-
ference should also be measured on magnetically shielded thrusters in different operational modes.

7.2.3 Parameter Variation

The characterizations presented here vary discharge voWggend mass flow ratan,, but one

will notice in many of the equations that the mean discharge channel r&digsand ion masam,
frequently appear as variables. Using the two-channel NHT called the X2 or the newly developed
three-channel NHT called the X3, [27] where each channel design cross-section is the same with a
different mean radius, would alloRsn to be varied while holding all other parameters constant.

In addition, using krypton or another gas will allow for variationmaf. Repeating a subset of

the experiments presented here will provide a more complete validation of the plasma oscillation
characterizations by changing these two variables held constant here.

7.2.4 Segmented Anode

An assumption is made in the HIA techniques in Section 3.5 that local light intensity is linearly
related to local discharge current. This assumption is validated with the hybrid direct kinetic simu-
lations, [34] but should also be validated by experimental results. The segmented anode developed
by McDonald [78] experienced electrical and thermal difficulties during testing. However, correct-
ing these issues and operating the segmented anode in local and global mode will experimentally
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validate the assumption needed to calculate local discharge current density from ultra-fast imaging
and thus provide a valuable tool for non-intrusively measuring critical discharge channel properties
inan HET.

7.2.5 Dispersion Analysis

The body of literature on dispersion relations for various drift waves is voluminous and many
other appropriate relations should be considered using the techniques described in Chapter 5. Fu-
ture work will investigate the collisional drift instability in cylindrical coordinates as developed by
Ellis [145], which was successfully used by Jorns [60] to identify drift waves related to cathode os-
cillations in magnetically shielded thrusters. Additionally, a drift relation shown by Esipchuk [91]
that accounts for density and magnetic field gradients has been used to reproduce azimuthal os-
cillations in the 10’s kHz in the near-field plume of an SPT-100. [73] Kapulkin [101] developed

a similar dispersion relation analysis for the near-anode region of an SPT-100, which is also very
applicable to the H6 conditions tested here. Frias recently developed two new dispersion relations;
one accounts for electron flow compressibility and the other includes temperature oscillations and
gradients. [102,103] The linearized 2-D axial-azimuthal models by Chesta [104] and Escobar [98]
that account for ionization and neutral density should be investigated. A dispersion relation de-
veloped by Ducrocq [48] to investigate high-frequency azimuthal oscillations has been used by
Cavalier [49] to numerically investigate azimuthal waves, uncovering modes that resemble ion
acoustic waves. Figures 5.13(f), 5.15 and 5.18 all show large gradients lxtiBedrift velocity
throughout the axial and radial extent of the discharge channel. The differences in velocities could
result in shear driven instabilities that drive spokes, similar to the shearing instabilities that have
been cited as a possible source of anomalous electron transport. [45] Finally, a dispersion relation
that takes into account sheaths at the walls was developed by Smoldevy that merits very close in-
spection. [105] Applying all of these dispersion relations to the plasma parameters described above
and comparing to the empirical dispersion analysis of Section 5.6 could yield valuable insight into
the origin and nature of azimuthal spokes.

7.2.6 Magnetically Shielded Thruster B-field Verification

Appendix C showed three different oscillatory modes for magnetically shielded thrusters, with the
highest magnetic field mode exhibiting azimuthal spokes. However, simulations or measurements
of the magnetic field were not performed and it is suspected that the magnetic circuit was satu-
rated at the highest coil currents. If the magnetic circuit was saturated and the B-field streamlines
were not shaped properly like Figure 2.11, then the streamlines may have intersected the channel
walls. This would increase the plasma-wall interactions like unshielded thrusters and may be evi-
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dence that spokes are associated with or caused by plasma conditions at the walls. Although any
plasma-wall contact in Appendix C is unintentional, the ability to intentionally increase or decrease
plasma-wall interactions during thruster operation may provide researchers the ability to study the
role of plasma-wall interactions in HETs by intentionally forcing the plasma to contact the wall
(unshielded) or have reduced plasma-wall contact (shielded) by changing the B-field during a test.
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APPENDIX A

|on Density Calculation in Flowing Plasma

A.1 Introduction

The first technique for measuring plasma properties was the electrostatic probe developed by Irving
Langmuir circa 1924 [116] and remains one of the most fundamental diagnostics for plasma mea-
surements today. Despite the ubiquitous use of Langmuir proobes, there exists a void of analysis
for calculating ion density with the following conditions:

1. Low aspect ratiol(/D < 10) cylindrical Langmuir probe
2. Negatively biased in ion saturation
3. Collisionless thin sheath limit

4. Immersed in a flowing plasma where the directed ion velocity is greater than the Bohm
velocity, vi > vg

Yet this is the often the case for Langmuir probes measuring ion density in the plume of an HET.
The L/D requirement is driven from the necessity for a large enough diameter probe to survive
in an HET plume where erosion will destroy probes and short enough probe length to increase
spatial resolution. These probes operate in the collisionless thin sheath limit due to the density of
the plasma in an HET plume. Finally, the ions in an HET plume have been accelerajeipy
potential so they typically have a velocity ef2x 10* m/s, which is higher than the typical Bohm
velocity of ~ 2x 10% m/s for 5 eV electrons.

The objective is to calculate ion density, independent of electron density, but with knowl-
edge of electron temperaturg, and plasma potential/,, with respect to probe bias potential,
¢p. This section proposes and utilizes a method for approximating sheath size without a priori
knowledge of Debye length (noting thag ~ v1/ne) and subtracting the estimated ion ram cur-
rent to extract the ion sheath current in order to calculate ion density using existing collisionless
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thin sheath theory. Section A.2 provides a brief background on the significant volume of literature
for Langmuir probe measurements. Section A.3 discusses ion density calculations in quiescent
plasmas and flowing plasmas. Section A.4 details methods of calculating sheath size in order to
subtract the ion ram current. Section A.5 discusses the criteria for a “long probe” when consid-
ering the techniques describe here. Section A.6 describes how these techniques are implemented
to calculate ion density in Appendix B where good agreement is seen between ion and electron
density measurements indicating a quasineutral plasma in an HET plume as expected.

A.2 Background

Probe orientation has been known to affect ion current collection since the Explorer 17 mission
[146] where a narrow peak more than twice the normal ion current resulted when the probe was
roughly aligned with the velocity vector of the spacecraft. Since that observation, theoretical,
computational and experimental studies [146—149] have been conducted to investigate the so called
“end effect” of increased ion current when the axis of a cylindrical probe is aligned to within a few
degrees of the bulk flow direction in a flowing plasma. This is caused by ions that are not originally
on a trajectory to impact the probe entering the sheath and being deflected to the probe surface as
shown schematically in Figure A.1.

ION SHEATH
SURROUNDING PROBES

Figure A.1: lon collection by sheaths of cylindrical Langmuir probes oriented transverse (left)
and aligned (right) with the plasma flow. Reproduced from Figure 3 of Ref. 147

The original probe theory by Langmuir and Mott-Smith predicted the relation between ion
current collection and probe orientation for an infinitely long probe which does not exhibit the end
effect. [148] Consider a cylindrical probe of radigs with sheath radiuRs and lengthL , with the
longitudinal axis aligned with the plasma flow as shown in the right schematic of Figure A.1. The
collection area of the probe &, = 27RsL + 7R ~ 2nRsLp for a long probe. The projected area
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of the sheath iproj = 7R2. As L — oo thenAp 3> Aproj, SO Whether in the thick sheath regime,

i.e. Orbit Motion Limited (OML), or thin sheath regime, if the probe is long enough then extra
ions collected by sheath expansion on the end will be negligible compared to the ions collected by
the majority of the probe surface area.

As the sheath expands and the additional current collected by the sheath and deflected towards
the probe can be a significant fraction of the total current collected. The end effect studies have
focused on the OML regime where the sheath expansion draws in significant extra current as
shown in Figure A.1. References to probes aligned with a flowing plasma for thin sheath have
concluded that sheath expansion does not effect the results and traditional quiescent plasma thin
sheath Langmuir probe analysis applies. [127] However, these results are for sufficiently long
probes as to be considered infinite probes with length to diameter ratios of 80 or higher.

The conflicting constraint of a short probe for improved spatial resolution and larger diameter
for survivability in the flowing plasma of an HET plume leads to cylindrical probes with length
to diameter of less than 10. The area ratio of side to end issstill but the shorter length than
previous studies means that even a slight sheath expansion will draw in extra current that causes
an error in density calculations. Previous authors [5, 146,148, 150] have suggested that a probe in
flowing plasma requires subtraction of the so-called ion “ram” current

Iram = AprojanVvi (A.1)

whereAproj is the projected area of the probe to the flows the ion densityy; is the ion velocity
(assuming mono-energetic flowing plasma) anslthe elementary charge (assuming +1 ions).

A.3 lon Density Calculation

A.3.1 Quiescent Plasma
In traditional collisionless thin sheath theory the ion saturation current to a negatively biased probe

in a quiescent plasma is related to the ion density by [116-118, 151]

li = 0.605Ap0N; VB (A.2)

Ve = \qTe/M (A.3)

wherevg is the Bohm velocityA is the probe area, and the electron temperaligis in eV.

Note that Equation A.2 does not account for probe bias, which has been shown to affection ion
collection. Laframboise [152] conducted numerical calculations to quantify the effects of probe
bias on current collection as the sheath surrounding the probe grows with larger negative biases.
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Peterson and Talbot [153] approximated the thin sheath re§gep > 5 results of Laframboise

with an algebraic expression which requires knowledg&gfip obtained by other means and
assumes ion collection only; < Te and +1 ions. Therefore, collected ion current is a function

of probe bias, which is not accounted for in Equation A.2. Incorporation of Peterson and Talbot’s
approximation into the present analysis method is reserved for future work.

A.3.2 Flowing Plasma

Returning to the unexpected ion current spike when a negatively biased probe on Explorer 17 was
aligned with the spacecraft velocity vector. Bettinger and Chen [146] explained this as the “end
effect” with a finite probe length. They postulated that an infinitely long probe aligned with plasma
flow would behave the same as a probe in quiescent plasma, but a finite probe would collect extra
current through the sheath end that would artificially increase the saturation ion current. They
separated the collected ion current into current from the sheath side where traditional Langmuir
probe theory applies and current from the sheath end. This current from the projected area of the
sheath end is the so called “ram” current because the ions are flowing faster than the Bohm velocity
and are pushed through the sheath.

For very long (large aspect ratio) probes, there will be ram current entering through the sheath
end, but that will be negligible compared to the current entering through the side of the sheath.
Bettinger and Chen’s work [146] focused on OML as have others who have investigated probe
alignment in flowing plasma. For Hester and Sonin [147], the probe aspect ratio for their OML
analysis was between 76 and 225 and for Bettinger and Chen [146] the aspect ratio was 411. Pre-
vious researchers have found that in the thin sheath regime for large aspect ratio probes, traditional
thin sheath theory can be applied without correction. [127] However, for aspect ratios less than 10,
it will be shown that a correction factor is necessary.

The current collected by an ISR probe can be written as the sum of the traditional Langmuir
probe current from Equation A.2 and the ram current of Equation A.1

lisr=li+ lram (A.4)

The projected area in Equation A.1 can be approximatethas = 7RZ with a sheath radiuss,
for a cylindrical probe aligned with the plasma flow as shown in Figure A.1(right). Using the
non-dimensional sheath radiys,= Rs/Rp, Equation A.4 can be solved for ion density

|
ni = ISR ; (A.5)
0.605A,qVe + 7(ysRp) v
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In order to use this technique, the sheath radius, must be calculated using probe bias, plasma
potential, and electron temperature. The calculatiopsaghust be independent of the value rgf
to ensure the density calculations are not coupledyie.ys(¢p, Vp, Te) # ys(Ne).

A.4 Sheath Size Estimate

A.4.1 Approximate Sheath Radius from Space Charge Limited Current in
Cylindrical Coordinates

The sheath surrounding a negatively biased probe can be approximated by a cylindrical space
charge limited diode with the sheath edge acting as the cathode of Rydind the probe surface

acting as the anode of radii® assuming the probe is of sufficient length that a majority of the
current enters from the side. The boundary conditions are zero electric field and potential at the
sheath edge and probe bias at the probe surface. Chen [154] derived an approximate analytical
solution for the space charge limited current density at the catllpdegtween a cylindrical outer
cathode and concentric inner anode that does not involve a power series expansion like the well-
known Langmuir-Blodgett law [155]

B E
T 9 VmR2E T 9 Vm (R, —Ry)2R2\IN(Re/Re) '

The first part of Equation A.6 is the Langmuir-Blodgett law whgiie a geometry correction
factor that is a function of cathode and anode radii that cannot be explicitly solved. fdsed the
non-dimensional radius ig = r/R, so the non-dimensional sheath radiugis= Rs/Rp. Solving
the second part of Equation A.6 using '8 drder Taylor series expansion about 1 yields a sheath
radius of

8r colp \'? 314
=|—= 1 A7
(T e (A7)

whereL is the length of the probéion is the current collected by the probe, afylis the probe
bias. Equation A.6 has less than 10% error from the Langmuir-Blodgett solutigr for10, but
the expansion in Equation A.7 limits the validity 4@ < 2 for 50% error. Despite the seemingly
large error, Equation A.7 is a reasonable analytical approximation to the numerically integrated
Poisson’s equation that does not have electron density as a variable.

The validity of Equation A.7 can be further checked by comparison with other expressions for
sheath thickness that are a function of electron density outside the sheath. Using Equations A.2
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and A.7, approximating the probe are&,;, by the cylindrical sheath area Ral p,, and using the
non-dimensional potentigly = ¢p/Te, the non-dimensional sheath radius can be written as

AD 34

1
~ +lx—y34 41 A.8
s Rp)(p \/5)( (A.8)

after neglecting a 1.02 constant coefficient. The Debye lengtly is (soTe/ene)/? in Sl units
anda = (Rp//lD)z. This matches well to previous analytical estimates for sheath thickness [156]
calculated from equating charge on a body to charge in the sheath

ys=1. 66RD 3411 (A.9)

or calculated from ignoring electron density in the 1-D Cartesian approximation solution to Pois-
son’s equation [120]

vs=1.02(10/Ry) (VEs-1/V2) " (VEp+ V2 +1 Rz X+ (A.10)

A.4.2 Sheath Radius from Numerical Integration

The sheath radius can be solved numerically from Poisson’s equation and thin sheath probe theory
with several assumptions:

1. Quasi-neutral electron and singly charged ion plasma of demsiutside the sheath with
steady-state plasma conditions

2. Axi-symmetry and uniform conditions along probe length in cylindrical coordinates so
/00 =0/0z=0

3. Electrons are much higher temperature than electiigns, T;
4. T follows a Boltzmann distribution
5. Large negative probe bias | > Te

Poisson’s equation is then
_)

V. E=-vV%-= g%(ni o) (A.11)

whereE is the electric field represented by the gradient of the scalar poterdiadin; and ne are
the ion and electron density, respectively. The boundary conditions(Reg =0, ¢(Rp) = ¢p, and
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0¢/0r|r, = 0 Whereg,, is the probe bias and the plasma potential is set to zero. Using the reduced
potential,y = ¢/Te, the electron distribution as a function of non-dimensional radius becomes

Ne(y) = Noexplx(y)] (A.12)

Assume continuity at the sheath edge where all ions entering the side of the sheath reach the probe
surface with most of the ion current entering from the side. Also assume conservation of energy
with ions entering the sheath at the Bohm velocity in the radial direction. The ion density becomes

ni(y) = no$[1— 2x ()| 2 (A.13)

Using Equations A.2, A.12, and A.13, Equation A.11 can be written in cylindrical coordinates as

d? 1d 0% _
_)g+__X - —[exp(x)—ﬁ(l—zx) 1/2 (A.14)
dy? ydy s Y

Rp)\? liRp

=l—| = Al
¢ (/lD) 0.605Tee027L pVe (A.15)
subject to the boundary conditions

x(1)=xp

x(ys)=0 (A.16)

Ax/dylys=0

The second order ODE in Equation A.14 subject to the conditions in Equation A.16 represents
a problem of three variables and three unknowns syRée also unknown. Iteratively numerically
solving the boundary value problem ODE using a built in MatLab solver until all boundary con-
ditions are met generated a solution set within the limits efd < 3000 and-65< y < -1 as
shown in Figure A.2(a). For small probe bias, suchyas-5, the assumption dé| > Te has
questionable validity and far < 4 the thin sheath assumption Bf > Ap aso is questionable.
Therefore, the limits were selected based on the range seen during experimentation and limitations
of assumptions. Numerically solving Equations A.14 yielded potential praf{lgsfor 1 <y < ys
which were found to fit very well to a power law assumption

4
Ys=7 |
=— A.l7
()=o) [YS_ 1] (A17)
using a least squared curve fit to the numerical results. This is similar to Bettinger and Chen [146]

but the assumption thét< 2 is not imposed with the non-convergent integral dealt with by a limit
analysis. Figure A.2(a) shows that over the majority@ndy valuesys < 2 which supports thin
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sheath and the use of Equation A.7. Figure A.2(c) shows the difference is less than 2b6%%00

so the space charge limited result of Equation A.7 is a good approximation to the numerically
integrated Poisson’s equation. The power law fit for potential profiles in Figure A.2(d) shows that
£ only varies from~ 2.8— 3.6 over a vast majority of the trade space.

(a) 1, from Mumerical Intergration (b) 1, from Space Charge Limit Approximation
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Figure A.2: Contour plots showing non-dimensional sheath edder a range otr andy from

(a) numerical integration of Equation A.14, and (b) the space charge limit approximation of Equa-
tion A.8. The percent difference between (a) and (b) is shown in (c) and the power law fit from
Equation A.17 is shown in (d).

A.5 Long Probe Criteria

Up to this point in the derivation a quiescent plasma has been assumed for simplicity and to avoid
an all-out computational Computational Fluid Dynamics (CFD) or PIC assault. However, now
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. Cylindrical Langmuir Probe o /
Flowing lons I

at velocity v,

.
>

Figure A.3: Cylindrical Langmuir probe with length, and radiusR, in thin sheath regime with
sheath radiugs axially aligned with flowing plasma of velocity;. lons entering the sheath are
shown to be collected by the probe a distahfrem the end.

consider a flowing plasma end on to the probe superimposed onto the previous model of a simple
cylindrical sheath as shown in Figure A.3. An ion flowing parallel to the longitudinal axis of the
probe enters the sheath near the edge. The velocity vector initially is only adibection, but it

bends towards the probe as it converts potential energy from the electrical field into kinetic energy
in ther direction. Conservation of energy and the power law assumption for potential profile from
Equation A.17 are used to create a differential equation

=)= :—\/ 16| (A.18)

There are no electric fields in tizdirection so the velocity along the length of the probe will be
constant at;. Assuming an ion enters the cylindrical sheatlygtwhich is less tharys, then the
ion will travel a lengthl down the probe in timé/v; before it impacts the probe to be collected.
Integrating Equation A.18 foy from y, to 1 andt from O tol/v; yields

2-¢ 2 [2e | 1
—1-(ys—7va) 2 (ys— )?— ﬁ(pp'R_pV_ (A.19)
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Taking the limit asya — ys and using the space charge limited approximatiomfofrom Equa-
tion A.8, equation Equation A.19 can be rewritten as
| V2 Ve 1

R Sl A.20

1o £-2 VBXp ( )
If the length of the probd., is much greater thal Ly > |, then most of the probe surface area
will be collecting current that entered from the side of the sheath instead of the end and the above
assumptions for traditional thin sheath quiescent plasma theory with subtraction of the end-effect
ram current is valid. Define the parameteas

_Lpveé-2 454

T=——"—"" A.21
1o Voo 2 Xp ( )
which is very similar to a previous definition [147] in the OML regime
L
n=-—22 (A.22)
AD Vo

Hester and Sonin stated that> 3 was a sufficiently long probe where all current entering the
sheath end was collected by the probe andifes 1 the current from the end effect was negligible
[148]. Here we will consider three separate regimes of probe operation

* 7 <1 The end effect current dominates the current from the side sheath and the entire probe
area will be collecting ions entering from the end as well as the side so the above assumptions
are invalid.

* 7~ Rp/Ap The end effect current contributes to the total ion collected current and must
be subtracted out, but the simple assumptions made above are valid for most of the probe
surface area. Far= Rp/Ap the end effect current is 50% of the total ion current.

* 7> Rp/Ap The end effect current is a negligible component of the total collected ion current
and the use of simple collisionless thin sheath theory applies.

This work focuses on the second regime wheteR,/1p and the end effect current is present but
not dominant and therefore must be subtracted out.

A.6 Implementation in Analysis

The analysis presented here has been implemented in the automated Langmuir probe processing
scripts using Matlab. The three steps are
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1. The plasma potential, and electron temperatuig are determined from HDLP measure-
ments and the probe bigg is known. This allowsy to be calculated from Equation A.15

andyp to be calculated from
_ %= Vo

T (A.23)

Xp

2. The ODE in Equation A.14 is pre-solved so the sheath radigsis determined from a
look-up table giverr andyp.

3. Usingys and an assumed value for ion velocity, the ion density is calculated from Equa-
tion A.5. For Figure B.5(b) an ion velocity of 16.7 km/s was assumed baségl e 700 s.
However, in the future it will be determined from the time delay calculated by linear cross-
correlation from the ISR signal te.

The ion density results shown in Figure B.5(b) calculated using the method described here
match very well the electron density results shown in Figure B.5(a). Without correcting for the ion
ram current, the ion density would be larger than the electron density by at least 50% or up to an
order of magnitude.
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APPENDIX B

Plume Maps

B.1 Introduction

Maps of plasma properties in the plume of an HET are valuable to understanding thruster operation.
This appendix describes a technique where plasma plume maps are created from a series of axial
probe injections at different radial locations. Section B.2 describes the analysis techniques to take
multiple axial probe injections and create 2-D contour maps of plasma properties. Each injection
of the probe into the plasma plume is analyzed individually to generate time-averaged and time-
resolved quantities. The time-averaged quantities are stitched together to create 2-D contour maps
of the plasma plume properties. The difference between time-resolved and time-averaged plasma
property calculation is discussed and the results are compared with previous investigations in the
literature. Section B.3 shows the contour maps of plasma plume properties including electron
density, ion density, plasma potential and electron temperature. Section B.4 uses PSD analysis
from time-resolved plume measurements to identify dominant oscillations in different regions of
the plume.

All of the plume maps and measurements in this Appendix are for the H6 operated with Xe
at nominal magnet settings. The anode mass flow rate was 18.81 mg/s and the cathode mass flow
rate was 1.32 mg/s (7% CFF), which resulted in a discharge current ofEZD11A. The discharge
voltage was maintained at 30080.1 V. The cathode to ground voltage was -11.3 V and the
cathode keeper to ground voltage was -6.7 V.

B.2 Plume Map Generation

B.2.1 Single HDLP-ISR Shot

The HDLP-ISR was swept using a 200 kHz sine wave with each cycle completing two |-V sweeps
(one up-sweep and one down-sweep). Each HARP injection lasted approximately 420 ms, which
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yielded approximately 168,000 |-V sweeps per radial location. Given the sinusoidal velocity pro-
file of the HARP, the “dwell time” at each axial location was not constant. For the time averaged
results, all sweeps within 1 mm of travel were averaged together to give one I-V trace to represent
that point in theR—Z plane. This represented 100’s to 1000'’s of I-V traces for each 1 mm of axial
travel. Each I-V trace was processed using the automated algorithms and manual auditing de-
scribed in Chapter 3.4 to generate time-averaged plasma properties as a function of axial distance
for each radial location measured.

B.2.2 Time-Averaged Plasma Property Contour Maps

The probes were injected 61 times at varying radial locations as shown in Figure B.1 to measure
plasma properties in a 2-D plane. Figure B.4 shows examples of the time-averaged axial plasma
properties during probe injections at four different radial locations. Combining each individual
probe injection yielded 2-dimensional contour maps of time-averaged plasma properties in the
R-Z plane shown in Figure B.5. The spatial domain extended from cathode centerline radially
out to over 3 channel radii and from the channel exit plane downstream to over 5 channel radii.
Smoothing was done for each individual probe injection usingRk{, moving average window.

All 2-D contour plots have also been smoothed by a two-index radius, cosine weighted, moving
average window to reduce noise. Despite the smoothing some noise still remained in Figure B.5
which can be seen as jagged edges of contour lines or small “islands” of increased or decreased
plasma properties seen in the contour plots. A quadrant of the H6 is shown to scale at the contour
plot top in order to show cathode, inner-pole and discharge channel locations for reference. All
locations and lengths are non-dimensionalized by the discharge channel centerlineR@glius,

As shown in Figure 3.1, the ISR probe was mounted above the HDLP for the results presented
here. Later experiments used two HDLP-ISRs mounted similar to Figure 3.1 for measurements
on of the X2, which was significantly better. Because the ISR probe was mounted 25 mm above
the HDLP, the radial location of the ISR differed from the HDLP, which varied as function of
as shown in Figure B.2. The difference is most pronounced over the cathofe.afi = 0 and
decreases at larger radial positions.

Details of the H6 are discussed in Section 3.3 and Figure 3.2 shows the magnetic field stream
lines generated from simulations. The 2-D plume maps shown in this section all have the magnetic
field streams lines overlaid to identify which plasma properties are tied to the magnetic field lines.

B.2.3 Time Resolved Plasma Properties

Every two traces were averaged together to yield time-resolved plasma properties during each
injection. This technique reduced the rate of I-V traces (hence plasma properties) to 200 kHz but
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Figure B.1: Top view of H6 (discharge channel not visible) with blue lines representing radial
locations of probe injections with the HARP. Note the increased resolution (more injections per
radial length) over the cathode on thruster centerline and over the discharge channel.

averaged out slight differences between up-sweeps and down-sweeps. With approximately 168,000
total I-V traces per injection this resulted in 84,000 I-V traces to calculate plasma properties every
5 us. The same technique used for time-averaged plasma property calculations of automated I-V
analysis with manual audits was employed as described in Chapter 3.4.

A common sense check was performed whereby the time-resolved propesti€s V) were
averaged together for each millimeter of HARP travel and compared to the time-averaged results
obtained by averaging the |-V traces together before calculating plasma properties. Figure B.3
shows an example of this comparison for the radial location of RR§ and the time selected of
227 ms corresponding to an axial location of 2Rgy during injection. As expected, the results
are very similar indicating that the time-resolved plasma properties are indeed oscillating about the
calculated time-averaged values. The time-averaged plasma properties for the time segment shown
in Figure B.3 was calculated from over 250 individual I-V sweeps averaged together to create one
I-V trace. The time resolved points in Figure B.3 are at 200 kHz because every other trace was
averaged together.

The comparison of time-averaged to the average of time-resolved did not correlate well within
~ 3/4 Renn) Of the cathode or channel exit where the I-V traces became very distorted due to noise.
In those situations, the time-averaged values maintained better integrity since over 500 sweeps
were averaged together to calculate the plasma properties which was able to average out the noise
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Figure B.2: Radial location of ISR probe with radial location of HDLP. The difference is due
to the 25 mm vertical offset of the ISR probe and becomes less significant with increasing radial
distance.

to generate a clean I-V trace. Therefore, the time-resolved data near the cathode and channel exit
were less reliable.

Simply counting the number of cycles over the 0.3 ms shown in Figure B.3 yields estimated
20-30 kHz plasma property oscillations. This also confirms that measuring plasma properties at
200 kHz is well above the Nyquist criteria for the 10's kHz oscillations present and meaningful
time resolved plasma property data is present.

B.2.4 Comparison With Previous Results

The next check is to compare the time-averaged values with previous results for the thruster operat-
ing at or near this condition. The experimental thesis of Jameson [114] characterized the sensitivity
of H6 efficiency which included plume maps at the 300 V, 20 A operating condition (Section 6.2.1).
Time-averaged measurements were made of plasma potential and electron temperature using emis-
sive probes and Langmuir probes. The electron temperature and plasma potential in Figure B.3 can
be compared with Figure 6.44 and 6.40 in Ref. 114, respectively. For the same location within
the plume, the electron temperature is 4 eV in Figure 6.44 of Ref. 114 and the time-averaged
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Figure B.3: Comparison of time-resolved and time-averaged plasma electron density, electron
temperature and plasma potential (with respect to ground)/Rgn = 1.25 and time 227.0 to
227.3 ms which corresponds to an axial positioz & = 2.13 during probe injection.

guantity in shows 3.5 eV. Similarly, the plasma potential is 22-23 V in Figure 6.40 of Ref. 114
and the time-averaged quantity in Figure B.3 shows 23 V. However, the time-resolved quantities in
Figure B.3 show the electron temperature and plasma potential are oscillating a few eV and several
volts, respectively, about those average values.

The electron temperature in Figure B.4(c) on cathode and channel centerline can be compared
with Figure 6.45 and 6.46 of Jameson [114], respectively. Figure 6.46 for channel centerline
electron temperatures shows a distinct humpdraroundz /Rqnn = 1. Figure B.4(c) also shows a
temperature increase 1 to 2B before settling out to the far field temperature-d.5 eV. The
near field temperature of just over 12 eVzaRn = 0.1 is within 1 eV of the value reported by
Jameson. Figure 6.45 shows cathode centerline electron temperature with a peak near 8.5 eV inside
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Figure B.4: Axial profiles at four radial locations of (a) electron density, (b) plasma potential
(referenced to cathode potential), and (c) electron temperature. Radial locatiBas) in-

clude: 1) on thruster centerline and cathode orifice (0.00), 2) near thruster centerline over cathode
keeper (0.05), 3) inner-pole (0.50), and 4) discharge channel centerline (1.00). All plots have been
smoothed by a B8R, moving average window.
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z/Rennt = 1 before decreasing while Figure B.4(c) shows the peak of 7 eV just izgiRign = 1.

The far field of Figure 6.46 and 6.45 are 4 eV while in Figure B.4 for the same location the electron
temperature is 3.2 eV. Therefore, the same trends are observed between Jameson’s research and
this investigation with slight differences in magnitudes that are within 1 eV.

Figure 8.18 of of Jameson [114] shows the plasma potential with respect to cathode potential
for cathode centerline. Comparing with Figure B.4(b), they both show 27 2/Rahn = 0.75.
Jameson Figure 8.18 shows33 V atz/Rehn = 1.9 which is within 10% of the 36 V shown in
Figure B.4(b). The plasma potential in Figure B.4(b) on channel centerline can be compared with
Figure 6.42 of Jameson [114]. The results from Jameson are with respect to ground and a cathode
to ground voltage of -11 V is shown in Figure 7.4 of Jameson for a 7% CFF, which will be used
for direct comparison. Jameson shows 48, 38 and 352yRat,, = 0.13, 1.0 and 2.0, respectively.

Figure B.4(b) shows 72, 46 and 41 V atRn = 0.13, 1.0 and 2.0, respectively. The values
reported here are higher than Jameson, but both have a significant change in z/8g@at 0.5.

Reid [44] also measured plasma potential and electron temperature using emissive and Langmuir
probes, but at 300 V and 20 mg/s flow which is not exactly the test case here. Assuming the values
Reid [44] reported in Figure 7-20 are with respect to ground and the cathode to ground potential
is -11 V, then the plasma potential B8R, = 0.4 is ~ 50 V. This agrees with Figure B.4(b) that
shows 52 V atz/Rehn = 0.4. The near field values agree with Reid and the far field values show

the same trend but are higher than Jameson. In conclusion, the results presented here agree with
previous investigations.

B.3 Plasma Plume Property Maps

Figure B.5 shows the time-averaged, spatial distribution of plasma properties in the plasma plume
of the H6 operating at nominal conditions. The result for electron density, ion density, plasma po-
tential referenced to ground and electron temperature are shown in Figure B.5(a)-(d), respectively.
The scales of the plots in Figure B.5 were selected in order to maximize the observable detalil
in the downstream plume. However, this often saturated the plasma properties within one channel
width downstream of the exit plane on discharge channel centerline. The ion density peaks at 7.5
10 m~23 on channel centerline, but the upper limit is set toX61D' m~2 for direct comparison
with electron density. The uncertainty in ion density is significantly higher than electron density
due the subtraction of ion ram current described in Appendix A. The plasma potential peaks at 95V
in the near-field plume in front of the discharge channel, but within one channel width downstream
of the exit plane decreases to less than 50 V. The electron temperature peaks at 25 eV, but within
0.2 channel widths decreases to 15 eV.
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Figure B.5: Plasma plume maps for (a) electron density, (b) ion density, (c) plasma potential

(referenced to cathode potential), and (d) electron temperature. Contour intervals for density in (a)
and (b) are 2.% 10 m~3, for plasma potential in (c) is 1 V, and for electron temperature in (d)

is 0.5 eV. All plots have been smoothed by a two-index radius, cosine weighted, moving average
window. Magnetic field direction lines are shown in black.
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B.3.1 Electron Density

Figure B.4(a) shows axial profiles of electron density on cathode and thruster centeffRgg =

0.00), over the cathode keeper near thruster centerlifiB(f = 0.05), over the inner-pole

(r/Rehnt = 0.50), and discharge channel centerlingRcnn = 1.00). The axial profiles for all radial
locations have been combined into a 2-D contour map of electron density in Figure B.5(a). Results
near the cathode that are clearly erroneous from the quality control steps in Section 3.4.6.5 have
been removed. Figures B.4 and B.5(a) shows the electron density is peaked over the discharge
channel, is very low near the inner pole and is low outside of the channel radius. The general shape
of the contours show that as plasma emanates from the entire discharge channel the plasma streams
converge towards and merge onto thruster centerline without crossing it.

The density in Figure B.5(a) shows a peaked region abov&®’ m=2 on discharge channel
centerline (yRehni = 1) that extends directly downstream urgjlRqnn ~ 1. Figure B.4(a) shows
that the peak value is overn&10t” m=2 and then decays to belowx110Y m™3 at z/Rehni = 5.

The plume appears to merge onto thruster centerline in the ramg®g@f = 2— 3. The plasma

on thruster centerline for axial distance4nn > 3 would have emanated from all locations of
the discharge channel, which will be important in the discussion of oscillations within the plasma
plume in Section B.4.

Figure B.5(a) and (b) show a slight wave in the radial direction making the properties appear
to “flicker” back and forth slightly like a flame. This is likely due to probe movement side-to-side
during injection on the HARP of approximateh2 mm. As seen in Figure 3.1 the probes have a
very long aspect ratio and likely did not shoot into the thruster without latitudinal swaying. During
injection, a significant torque was applied to the probe array from the HARP while accelerating
them towards the thruster. Close inspection of the time-averaged spatial plasma properties data
where the radial shots over the discharge channel were spaced 2 mm apart indicated that the probes
did not completely sway more than one radial increment, therefore a conservative estimate of 2 mm
is assume for the probe location uncertainty both horizontally and vertically.

The density over the inner-pole/Renn = 0.50) is less than k 10 m~3 for z/Repn < 1 and
increases to match the density on thruster centerline /g, > 1.25. The densities for all four
locations in Figure B.4 converge at X80 m™2 at z/Rehn = 2.75. One can speculate that the
“bridge” for electrons emitted from the cathode to the plasma emanating from the discharge chan-
nel begins before this axial distance. So electrons would on average travel at &gt = 2
downstream before entering the discharge channel plume for neutralization and electron supply for
the discharge channel.

On thruster and cathode centerlim¢Rc,n = 0.00), the electron density is belowsd10 m~3
and then increases to 1.5x 10 m=3 at z/Renn = 1.5. Since the cathode is an electron source,
the density is expected to peak near thruster and cathode centerline close to the cathode exit at
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z/Renni = 0. Therefore, a dip in electron density over the cathode orifice is unexpected and requires
further investigation as this may be an erroneous result. This could be due to the magnetic field
perturbing the assumption of unmagnetized plasma for traditional, thin sheath Langmuir probe
analysis. The cause for this result is systematic since the same trend was observed for all injections
that were directly over the cathode orifice where B-field lines directly connected plasma inside the
cathode, through the orifice opening and out into the plume with the probe. Over the cathode
keeper, which is just off thruster and cathode centerling B¢, = 0.05, the density is initially
peaked near810Y” m™3 at z/Renn ~ 0.5 and then decreases to match the centerlirgRgn ~ 1.5.
Although only a few millimeters from the injections over the cathode orifice, these profiles to
follow the expected results.

In general the density contours in Figures B.5(a) and (b) are not parallel or perpendicular to
the magnetic field directions shown. This indicates that the plasma is generally unmagnetized as
assumed. However, an exception may be seen in Figure B.5(a) for electron densizyRe@gan=
1.5- 2.5 dose to thruster centerline (Rchni < 0.25) where the electrons appear to emanate from
the near-cathode region along B-field lines.

B.3.2 lon Density

Figure B.5(b) show ion density calculated from the ISR probe mounted above the HDLP, which
is why the map does not extend to thruster centerline. Areas where the density is so low that the
Debye length is greater than the probe radius have been masked. The techniques described in
Appendix A were used to calculate the ion density. Using these techniques, excellent agreement is
seen with electron density in Figure B.5(a), which are shown on the same scale for reference. This
is not surprising as the plasma is expected to be quasi-neutral.

The ion density contours show a similar “flicker” to the electron density showing the uncer-
tainty in probe radial position due to probe lateral movements. The HDLP-ISR was aligned with
the HDLP on discharge channel centerline so the ISR had larger error, estimateditoibe. This
accounts for the observation of the peak ion density not perfectly aligned with discharge channel
centerline in Figure B.5(b) as seen with electron density in Figure B.5(a).

Table B.1 quantifies the difference between ion and electron density for various axial locations
along discharge channel centerline. In general, the peak of neanfigdshsity is higher thame,
and ng is larger at all other plume locations. The ion density shows a peak on discharge channel
centerline that propagates downstream. The plume seems to merge towards centerjRgfior
2. The ion density outside of the discharge channel raditRqn > 1) is below 0.5< 101" m=3.
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Z/Rehnl | '/Rehni | Ne | N
0.5 1 4.20 | 4.89
1 1 3.41| 2.96
2 1 2.18 | 1.53
3 1 1.29| 0.95
4 1 1.02 | 0.67

Table B.1: Comparison betweegandn; at axial locations on discharge channel centerline. Units
for ne and n; are x10 m~3.

B.3.3 Plasma Potential

Plasma potentials in shown in Figures B.4 and B.5 are with respect to cathode potential. The
plasma potential was first calculated with respect to ground and then shifted to account for the
cathode potential 11.3 V below ground. Displaying the plasma potential with respect to cathode
potential has more physical meaning since the discharge voltage is applied between cathode and
ground.

The plasma potential contours in Figure B.5(c) show the expected increase in plasma poten-
tial near the channel exit. The plasma potential is higher fBnn < 1 (the plume region within
the discharge channel diameter) and decreases significantly outside the channel diameter. Fig-
ure B.4(b) has the same shape and similar magnitude as Figure 6.43 of Jameson [114] and Figure
5-12 (top) of Reid. [44].

Figure B.4(b) shows the peak plasma potential on discharge channel centerline is over 100 V
and quickly decays to less than 55 V byRchn ~ 0.25. The sharp transition in potential profile at
Z/Renni ~ 0.25 likely indicates the end of the ion acceleration region. 8 > 0.25 the plasma
potential gradually decreases to far field value between 30-35 V. The plasma potential for all axial
profiles in Figure B.4(b) equilibrate at30—- 35 V for z/Rcnn > 3, which supports the postulate of
the plasma connection between cathode and discharge channel plasma in this region.

The entire axial profile for the plasma potential on the inner-pole is between 30 and 35 V.
Although the data was unreliable for plasma potential ZfiR:nn < 0.25, Figure B.4(b) shows
the two profiles near thruster centerline are decreasing towards cathode potential with decreasing

Z /Rehnl-

B.3.4 Electron Temperature

Figure B.5(d) shows the electron temperature contours with a peak near the channel exit as ex-
pected. The axial profile in Figure B.4(c) shows the peak at the discharge channzlRxi & 0)
is 20 eV, which decreases to below 5 eV #gRn > 1. Unlike the density and plasma potential,
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the electron temperature contours do approximately follow the magnetic field contours downstream
from the discharge channel upa@dR.nn ~ 2. This follows the assumption of isothermality where
electrons are approximately the same temperature along magnetic field lines. Isothermal lines do
not hold near the cathode where a downstream temperature peak is seen close to thruster centerline
in the map of Figure B.5(d) and the axial profiles of Figure B.4(c). Cold electrons are emitted from
the cathode and some collisional process causes a temperature peak downstyBam at0.75.
The electron temperature 485 eV atz/Rqn ~ 0.5 and then peaks to over 7 eV atRehn ~ 0.75
before decreasing below 5 eV fpfRepn > 1.

The electron temperatures for all axial profiles in Figure B.4(c) equilibrate 26— 3 eV
for z/Renni > 2.5, which also supports the postulate of the plasma connection between cathode and
discharge channel plasma in this region. The electron temperature along the inner-pole axial profile
does not change by more than 1 eV.

An interesting observation is the stream of higher temperature electfgns3) emanating
from the outer pole (regions on the thruster face outside the channel) extending out at approxi-
mately 5 from the thruster axis as seen in Figure B.5(d). The rest of the plasma for the far-field
plume isTe < 3 eV. Figures B.9 and B.10 in Section B.4.2 show the plume regions where the
spoke oscillations dominate. This stream of relatively hotter electrons corresponds with the plume
regions where spoke oscillations dominate. This could indicate that spoke oscillations propagating
into the plume from the discharge channel provide a lower resistance path for higher temperature
electrons to escape the hotter discharge channel region.

B.4 Spatial Dominance of Oscillations

The purpose of this section is to identify, quantify and discuss how different types of oscillations
are dominant within different spatial regions of the plume. This will be accomplished by discretiz-
ing the probe injection at each radial location into axial steps to calculate the PSD at each axial
increment. Then the PSDs at each axial and radial position can be compared to identify peak fre-
guencies and signal strengths. Figure 4.10 shows distinct peaks in the HDLP-ISR PSD that match
the peaks from HIA, which are azimuthal spokes. Of particular interest is identifying where these
azimuthal spokes are dominant or absent.

Each HDLP-ISR injection yielded time-resolved data on electron density, ion density, plasma
potential and electron temperature. Figure 11 of Ref. 157 shows an example of position versus
time for probe injection using the HARP. The position profile very closely resembles half of a
cosine wave, where there is longer residence time at the extrema (far field plume and near the
truster). The frequency resolution of a DFT depends on the number of points and sample rate for a
given signal. To facilitate a direct comparison, all PSDs will be calculated from the same number

238



of data points. The axial extent of each probe injection will be divided into ten equal number of
points and not equal length increments. Therefore, a PSD from the center of a probe injection will
be calculated from the same number of points as one close to the thruster, but it will cover more
axial distance in the plume.

B.4.1 Plume PSD

Calculating a PSD from Equation 3.40 yields the signal power as a function of frequency. All
PSDs have been normalized according to Equation 3.3 where the AC component is isolated by
subtracting the mean value and dividing by the RMS value normalizes the amplitude. The result is
that all PSDs are scaled the same as shown in Figure B.6.

7o/ Roti = 1.00, 7./ Ry = 1.08, 2/Ruw = 0.13 - 2.00

Ip
i
7. H
—V

—_—T

PSD
PSD

0 10 20 30 40 60 70 80 90 100

50
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Figure B.6: PSDs for probe injections over the inner-pole near the cathode (left) and on channel
centerline (right). The PSDs for discharge current, ion density, electron density, plasma potential,
and electron temperature are shown for an axial rang@afn = 0.13 to 2.00. Black dashed verti-

cal lines are the frequency bands used for relative signal power plots. Distinct cathode oscillations
are observed near the cathode and inner-pole (left). Azimuthal spoke oscillations are dominant on
channel centerline (right).

Example PSDs from probe injections over the inner-pole near the cathode and on channel
centerline are shown in Figure B.6 where all points from GI3R:n < 2.00 are used. Cathode
oscillations as discussed by Jorns [60] are present in Figure B.6(left) between 68 and 83 kHz. The
peaks for spoke oscillations are clearly present in Figure B.6(right) fog, Vp and Te similar to
Figure 4.10. The discharge current does not display any of these characteristic oscillations. The
spoke orders fom=5-8 can be neatly divided into 3 kHz wide bands as shown in Table B.2 and
in Figure B.6. Note that other spoke orders are clearly present in Figure 4.10 suchZand 4,
but are not as well defined as=5-8.
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Feature| f1 (kHz) | f2 (kHZz)
m=5 14.5 17.5
m=~6 18.5 21.5
m=7 22.5 25.5
m=8 26.5 29.5

Cathode| 68.0 83.0

Table B.2: Frequency bands for spoke ordars5- 8 and the cathode oscillation used to calculate
relative signal power in the plume from HDLP-ISR measurements.

The thruster was operated at nominal conditions, which is local oscillation mode. The plume
can be roughly divided into three regions of primary oscillations as shown in Table B.3. The
oscillations in each region exhibit different characteristics which are manifestations of azimuthal
spokes and cathode related oscillations. As shown repeatedly throughout this work, the azimuthal
spokes are localized oscillations that originate in the discharge channel or in the very near-field
plume outside the channel. These are localized density perturbations that: 1) propagate down
stream into the plume, 2) cause an increase in local discharge current (electrons crossing B-field
lines to reach the anode), and 3) increase optical light emission. The cathode oscillations are
dominant close to thruster centerline and are characterized as high-frequency, density gradient-
driven drift waves. [60]

Figure B.7 shows PSDs from various locations within the plasma plume that are graphically
identified in the figure, where the red lines represent the radial location and axial extegt\fgr
and T and blue lines represem. As discussed previously, because the probe is moving during
injection, the PSD is calculated from data within a certain axial extent. The same number of points
are used for each PSD so the plots from the center of the plume cover a large axial range as seen in
Figure B.7 because of the probe time-position profile. Due to the vertical offset of the ISR probe,
then; calculations are always at a larger radial distance thamgdlwalculations. Note this causes
the largest discrepancy for smallest radial location (left most column of plots in Figure B.7) where
re/Rehni = 0.06 andrj/Rchnl= 0.32 are shown together.

Region 1 in Figure B.7 is near the cathode and is dominated by cathode oscillations from 68
- 83 kHz as described by Jorns [60] and faint spokes are only observed as closer to the discharge
channel. Using similar high-speed image analysis techniques to those described in Section 3.5,
Jorns investigated oscillations in a magnetically shielded H6. [60] The magnetically shielded H6
at NASA JPL is the same design as the H6 described in Section 3.3 with a centerline mounted cath-
ode, but the magnetic circuit and and discharge channel walls have been modified to employ the
magnetic shielding techniques described in Section 2.3.8. [22]. Global oscillations in the entire dis-
charge channel were observed in the frequency range of 7-12 kHz that resemble the global modes
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Region | Description | r/Rehni | Z/Rehnt | Plotsin | Dominant
Fig. B.7 | Oscillations
1 Cathode and 0-0.5 | 0-0.75]| (a) (b) Dominated by cathode 0s-
inner-pole cillations with weak spoke
oscillations
2 Discharge 05-1.5| 05+ | (c)()(g)| Dominated by azimuthal
channel (h) () (k) | spoke oscillations
centerline () (o) (p)
3 Thruster 0-0.5 1.0+ | (e) (i) Broad PSD peak similar
centerline (m) (n) | to discharge current with
weak spoke oscillations

Table B.3: Identification and description of plume oscillations. The approximate radial and axial
extents are shown for the three different oscillation regions identified. The subplots of Figure B.7
are assigned to the oscillation regions.

oscillations in Chapter 4 for the unshielded H6 and Appendix C for the magnetically shielded
NASA-300MS. Additional oscillations were detected over the inner pole between the cathode and
the discharge channel in the frequency range of 75-90 kHz that were identified as cathode oscilla-
tions. Using linearized two-fluid equations in cylindrical coordinates, the cause for the oscillations
was determined to be density gradients near the cathode. They are not related to the azimuthal
Hall current as spokes are suspected to be and these cathode related oscillations propagate CW
opposite to theéE x B direction. The presence of these oscillations in the discharge current PSD

of magnetically shielded thrusters and absence in unshielded thrusters leads to the conclusion that
pushing the ionization zone outside of the discharge channel causes a strong coupling between the
near cathode plasma and discharge plasma not observed in unshielded thrusters.

Region 2 in Figure B.7 is immediately in front of the discharge channel, downstream from
the discharge channel, and outside the discharge channel displays very strong spoke oscillations
as evidenced by the PSD peaks that match the HIA peaks from 15 - 30 kHz. This is can be
explained from the following argument. Consider a local section of the discharge channel that is
generating plasma and as the plasma propagates downstream it also diverges radially. Assuming
the ions do not have an azimuthal velocity component, which is the premise for assuming ions are
unmagnetized in HETSs, the plasmar#R:n > 1 will be predominantly generated from a local
segment of the discharge channel at the same azimuthal location due to the cylindrical geometry
of an HET. Therefore, we expect these regions to be dominated by spoke oscillations, which are
localized oscillations. We also expect the plasma immediately downstream from the discharge
channel to exhibit spoke oscillations since the plasma is focused to propagate directly downstream
by design of a high-performing thruster. These characteristics are observed in Region 2.
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Region 3 in Figure B.7 is downstream close to thruster centerline is dominated by oscillations
from 5 - 20 kHz that match the discharge current oscillations and the closer to thruster centerline,
the weaker the azimuthal spoke peaks. This is also expected from the following argument. Con-
sider a point in the plasma plume close to thruster centerline (nearly in front of the cathode for the
internal cathode configuration) that is 4R downstream. This point would have an equal view
factor to every location of the discharge channel and will therefore be populated by plasma that
originates from everywhere around the discharge channel effectively “summing” the localized os-
cillations. Since azimuthal spokes are localized oscillations, when they are “summed” around the
discharge channel, they will constructively and destructively interfere to wash out any individual
spokes. Plume convergence is supported by the ion current density measurements from Figure 5-8
of Reid [44] that show that the plume from the discharge channels converge befByg, down-
stream on thruster centerline. The downstream probes in front of the discharge channel are strongly
correlated to spoke oscillations, but they are also weakly correlated to the discharge current with
p typically less than 0.3. This indicates the discharge current is either a weak global oscillation
or is the “summation” of the localized discharge current oscillations due to the spokes. Regard-
less, we expect the plasma oscillations downstream near thruster centerline would be similar to
the discharge current oscillations since the discharge current is a global measurement of the entire
discharge channel, which is observed in Region 3.

B.4.2 Signal Strength in the Plume

The different regions can be visualized by examining the relative signal strengtmefandV,.

The probe injections at each radial location are divided into 10 equi-point (but not equi-distance)

axial regions. The relative signal power for a particular frequency band from Table B.2 is calculated

according to Equation B.1 at each axial step and each radial location. The resulting plume maps in

Figures B.9-B.8 show the spatial domain where various frequencies listed in Table B.2 dominate.
The total signal power in a frequency band can be calculated by integrating the PSD over the

frequency band. The relative signal powsr,is the signal power of a given frequency band from

f1 to f, divided by the signal power over the entire frequency range of consideration (0-100 kHz

here) according to

2pspdf
1

KPPsDdf

whereS is in decibel, dB. Reviewing dB notation, 100% of the signal power is 0 dB, 50% of the
signal power is -3 dB, and 25% of the signal power is -6 dB. The HDLP sample rate was 200 kHz
so only signals below the Nyquist frequency of 100 kHz will be considered, which are shown as the
integral limits in the denominator of Equation B.1. If the PSD is consf@8tD# PS D(f), then

Sfl_fZ = 10 |Oglo (Bl)
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a 3 kHz band of the PSD would be 3% of the signal power from 0-100 kHz and in Equation B.1
S = -15 dB. A 15 kHz band of the same “flat” PSD would be 15% of the signal power from
0-100 kHz and in Equation B.3 = -8 dB.

Figures B.8-B.9 shows oscillations in ion density, electron density and plasma potential. As
shown in Section 4.5.4 for a stationary HDLP-ISR, oscillationsd@nd V, are well correlated.

The correlation coefficient was calculated betwegrand V, for the entire plume witlp > 0.5

for all areas except near the cathode. For the domains associated with Region 1 in Table B.3,
the correlation coefficient decreasedde- 0.2. This could indicate that density and potential
oscillations are out of phase near the cathode.

Figures B.8 shows how cathode oscillations dominate in Region 1 and Figure B.7(a) and (b)
shows the clear peak in 68-83 kHz. This region extends to from the cathode k¢Rggr~ 0.05
out tor/Rehnt ~ 0.75. Interestingly, it does not appear directly on cathode centerline. The cathode
oscillation is dominant from the inner-pole downstreanz B8, ~ 1. Figure B.7(d) also shows
a slight peak in this band for areas far outside of the discharge channel radius where large radial
density gradients will occur. This can also be seen in Figures B.&fat r /R ~ 2.5 and
Z/Rennl ~ 1.75. This could be related to the cathode oscillations where the electrons are bouncing
along B-field lines from inner to outer pole.

Figures B.9 and B.10 shows Region 2 wherertie 5— 8 spoke order oscillations dominate.
They are clearly seen to dominate in an area downstream from discharge channel centerline ex-
tending inward ta /Renhn ~ 0.5 and outward tor /Renn) ~ 2.5 For the ellipsoidal area (angled out
from thruster centerline) with major axis extending from £.%/Rcnhn < 4.0 and minor axis from
1.0 < r/Rehni < 2.0, over 70% of the signal power is in the 4 azimuthal spoke oscillation bands
that comprise only 12% of the bandwidth from 0-100 kHz. Figures B.9 and B.10:fand V,
show that spoke oscillations are not dominant on thruster/cathode centerlind=fgg < 0.5. In
fact, Figure B.7(a),(e),(i) and (m) show that spokes are scarcely detectable on thruster centerline
over the cathode. The plasma in this region is populated by the cathode and cathode oscillations
for z/Renni < 2 and by plasma produced equally around the discharge channeRgy, > 2.

Region 3 is shown by an absence of any one dominant oscillation in the triangular region from
0<r/Rehni<1and 3<z/Renni < 5 in Figures B.9-B.8. The discharge current PSDs in Figure B.7(a)-

(p) has a peak between 11 and 12 kHz, but the spectrum is broad with significant signal strength
from 4-40 kHz. The plasma density PSDs follow this shape with spokes or cathode oscillations
either absent or negligible.

Plots of relative signal strength are very helpful in identifying regions where a particular oscil-
lation is dominant; however, caution is warranted in concluding that an oscillation is not present
if the relative signal strength is low. For example, one should not view Figures B.9 and B.10
as evidence that spokes originate nefk.nn ~ 3 and r/Rehn ~ 1.2 and propagate upstream into
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the channel. Figures B.9 and B.10 show that the relative signal strength for spoke oscillations on
discharge channel centerlim¢R:,n = 1 near the exit plane/Rehn < 1 gopears low. However,
Figure B.7(c) shows the absolute strength of spoke oscillations are just as strong as further down
stream, but the strength of oscillations in the entire 0-100 kHz band is higher by the discharge
channel exit than farther downstream so the relative strength of spokes is weaker. Therefore, plots
like Figures B.9-B.8 should always be used in conjunction with Figure B.7.

Catheds, f = 68.0 - 83.0 kHz
z./l‘Rcfml
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Figure B.8: Relative signal strength for oscillationsnin ne, andVy throughout the plume that
correspond to cathode oscillations in the frequency band shown in Table B.2. Magnetic field
directions are shown overlaid. Maps have been smoothed by a two-index radius, cosine weighted,
moving average window to reduce noise.
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Figure B.9: Relative signal strength for oscillationsnin ne, andVy, throughout the plume that
correspond to spoke ordems= 5, 6 in the frequency bands shown in Table B.2. Magnetic field
directions are shown overlaid. Maps have been smoothed by a two-index radius, cosine weighted,
moving average window to reduce noise. 246
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Figure B.10: Relative signal strength for oscillationsinne, andV, throughout the plume that
correspond to spoke ordems= 7, 8 in the frequency bands shown in Table B.2. Magnetic field
directions are shown overlaid. Maps have been smoothed by a two-index radius, cosine weighted,
moving average window to reduce noise. 247



APPENDIX C

Magnetically Shielded HETs

C.1 Introduction

Mode transitions in two magnetically shielded thrusters are investigated using the same techniques
described in Chapter 3 for the investigation of the unshielded H6 in Chapter 4. Section C.2 de-
scribes the NASA-300MS at NASA GRC and Section C.3 describes the HGMS at NASA JPL.
Both magnetically shielded thrusters exhibit two transition points with three different oscillatory
modes.

C.2 Magnetically Shielded 300M (NASA-300MS)

C.2.1 NASA-300MS Information

NASA is developing a 10-15 kW HET for a Solar Electric Propulsion Technology Demonstration
Mission. As part of this effort, the NASA-300M thruster was modified with magnetic shielding
and called the NASA-300MS shown in Figure C.1. Ref. 158 details an extensive characterization
effort at NASA GRC to characterize the NASA-300MS with far field diagnostics including Faraday
probesE x B probes, retarding potential analyzer, Langmuir probe, and thrust data. HIA was also
performed on the NASA-300MS and is presented here. For brevity, the NASA indicator in front
of the thruster name will be dropped.

The 300MS in Figure C.1 is the based on the 300M, which is a magnetic layer HET with a
magnetic lens topology designed for high specific impulse missions [159] and a centrally mounted
cathode. The magnetic circuit and the discharge channel walls of the 300M were modified to
accommodate the magnetic shielding, but rest of the thruster including the mean channel diameter
remains unchanged. A second configuration of the 300MS was used with a shortened discharge
channel length. The anode was moved down stream reducing the discharge channel length by 20%
and is denoted as the 300MS-2. [158] All results presented here for high-speeding imaging were
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performed on the 300MS-2. The magnetic field was radially out s&tkd direction was CCW
like the H6. The thruster was operated on xenon with an anode mass flow rate of 40 mg/s and
cathode mass flow rate of 3.2 mg/s for an 8% CFF. Two operating conditions were tested:

1. Vp=300V,Ip =50 A, P=15kW

2. Vp =400V, Ip =50 A, P =20 kW

(a) On the thrust stand at NASA GRC. Reproduced (b) Operating in VF-5 at 15 kW.
from Figure 2 of Ref. 158

Figure C.1: The NASA-300MS at NASA GRC.

The investigation in Ref. 158 concluded that “the 300MS data sho®%6 higher voltage
utilization efficiency,~ 2.5% lower divergence efficiency, and1.5% higher current utilization
efficiency than the 300M data. The two thrusters have roughly the same values in charge and mass
utilization efficiencies. The general conclusion is that the 300M and 300MS have very similar
performance as measured by the anode efficiency.” The 300MS and the 300MS-2 had the same
performance within measurement uncertainty.

The same techniques of varying magnetic field strength without varying shape used in the
H6 investigation were employed here by maintaining a constant magnetic coil current ratio of
lim/lom = 1.05+0.01. Note that no magnet field simulations or measurements were conducted at
the differentl settings to verify the magnetic field shape was unaltered. This short coming is sig-
nificant as the magnetic circuit was likely saturated at the highest magnet currents. If the magnetic
field topology shown schematically in Figure 2.11 is not maintained because the magnetic circuit
was saturated, then the plasma may unintentionally interact with the walls similar to unshielded
thrusters. If this is the case, then it may provide researchers the ability to study the role of plasma-
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wall interactions in HETs by intentionally forcing the plasma to contact the wall (unshielded) or
have reduced plasma-wall contact (shielded) by changing the B-field during operation.

C.2.2 Experimental Setup

The tests were conducted in Vacuum Facility 5 (VF-5) at NASA GRC and described in Ref. 158,
with key metrics summarized here. VF-5 is a cylindrical vacuum chamber 4.6 m in diameter and
18.3 m long equipped with cryo-panels and 20 oil diffusion pumps. The pressure as measured
by an ion gauge mounted near the thrust stand was 20> Torr, corrected for xenon. The
commercial gas feed system includes a 1000-sccm mass flow controller for the anode and 200-
sccm controller for the cathode with an uncertainty of measuremenl ®@% of reading. The
commercial discharge power supply can provide up to 2000 V and 100 A with a 5.5 mF output
filter capacitance, and a 15.3 mF capacitor bank was connected in parallel. Separate commercial
power supplies were used to power the cathode heater, cathode keeper, and electromagnets. The
thrust stand is an inverted pendulum thrust stand designed by Haag [109] and is actively cooled
during operation. The nominal accuracyi2% [159] and thermal drift is corrected by measuring
thrust signal periodically without gas flow, where the maximum wa® mN. The thrust to power

is calculated from Equation 2.23 and the anode efficiency is calculated from Equation 2.24.

VF-5 does not have a view port on or close to thruster centerline like LVTF. Therefore, the
thruster was imaged from a side view port using a mirror 4.4 m downstream as shown in Figure C.2.
This caused the thruster image captured by the FastCam to be inverted, which was corrected in
post-processing. Vibration was noticed in the mirror, but the frequency was lower than the plasma
oscillations and did not perturb the data analysis.

The same equipment and analysis techniques described in Section 3.5 were used to acquire and
process the HIA results presented here. An Agilent DSOX3024A digital oscilloscope with built
in function generator was used to trigger the FastCam and the oscilloscope to acquire discharge
current data. The discharge current was measured with a Tektronix A6303 current probe connected
after the capacitor bank and a Tektronix TM502A amplifier set to AC-coupled mode.

C.2.3 Results and Discussion

Magnetic field sweeps were completed for the magnetically shielded 300M and two mode transi-
tions were identified. During magnetic field sweeps, the magnet current increments were typically
0.5 A, which is more coarse than the 0.1 A increments used for the H6 investigation near the
transition points. As a result, transition regions could not be defined like the H6 investigation.

A transition similar to the local-to-global mode transition in the unshielded H6 was observed at

Iym = 3.5 Awhere the discharge current and low frequency oscillations dominatégfer3.5 A;
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Figure C.2: Experimental setup of 300MS in VF-5 at NASA GRC showing thruster, mirror, and
view port for high-speed imaging.
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however, no spokes were observed foy > 3.5 A. A new transition was observed between

lym = 5.5- 6.0 A where there was no noticeable change in discharge current, but spokes were ob-
served foll | > 6.0 A. For the discussion here, Mode 1jg <3.5A Mode2is3.5 )y <5.75A

and Mode 3id|u > 5.75 A. The modes are summarized in Table C.1 and their characteristics are
detailed below.

Figure C.3 shows the discharge current, thrust, thrust-to-power, and anode efficiency for the
300 and 400 V condition. Except for thrust, the same trends are observed as the unshielded H6
in Figure 4.30. The 300M-MS shows a general decrease in thrust with decreasing magnetic field
magnitude, which is different than the H6 that was nearly constant. The sharp increase in discharge
current and oscillation amplitude in Mode 1 is very similar to the local to global transition observed
in the unshielded H6 in Figure 4.3. Mode 1 shows the highest discharge current, lowest thrust,
lowest thrust-to-power and lowest anode efficiency. The performance values peak in Mode 2 where
the discharge current is minimum, the thrust-to-power peaks, and the anode efficiency peaks. The
400 V condition shows high-amplitude oscillations near the spoke transition point that will be
discussed later. The thrust peaks in Mode 3, but the discharge current is higher than Mode 2 so the
thrust-to-power is less than Mode 2. In general, thrust peaks near the spoke mode transition, but
the discharge current is unaffected by the spoke mode transition. The observation that the presence
or absence of spokes does not affect the discharge current between Modes 2 and 3 and could be an
important clue in understanding the nature of spokes in magnetically shielded thrusters.

The B-field sweeps for the 300 V and 400 V condition are shown in Figures C.4 and C.5, re-
spectively. The top row shows the mean discharge current with the RMS values as dashed lines
around the mean to visualize oscillation amplitude. The selected magnet settings shbw=are
3.0 or 3.1, 4.5 and 6.5 A which correspond to oscillation Mode 1, 2 and 3, respectively, as de-
scribed in Table C.1. The second row is the PSD for the discharge current and HiAp A%
corresponds to the left axis whiley and spoke ordersmn= 2 -9 correspond to the right axis. The
different scaling is due to different units of the original signals (current in A versus current density
in mA/cn?). The traces overlay each other when scaled as shown in Figure C.4 and C.5, which
reinforces the correlation betweép and mp that has been shown previously. The HIA upper
frequency limit is 43.75 kHz due to the camera frame rate of 87.5 kHz, but the discharge current
sampling rate allowed the upper limit dp PSD to be over 80 kHz. This is important because
the cathode oscillations between 50-60 kHz cannot be resolved by HIA (with the Photron SA5 at
256x 256 resolution), but they can be seen in the discharge current. The third row plots in Fig-
ures C.4 and C.5 are discharge current dengitglculated using the HIA techniques discussed in
Section 3.5. The fourth row is a normalized spoke surface that is calculated by normalizing each
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Figure C.3: 300MS (a) discharge current, (b) thrust, (c) thrust-to-power, and (d) anode efficiency
for the 300 V (blue) and 400 V (red) during B-field sweeps. The dashed lines atguard the
discharge current oscillation amplitude or RMS values. The two mode transition lines are shown.
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frame (vertical column of points &= 0 — 360 at a given time,t;) from the discharge current
density according to _

j(0.%)
This technique isolates and intensifies any azimuthal spokes that may be present by eliminating
entire channel oscillations. When spokes are not present, the normalized spoke surfaces appear as
nearly random noise.

In Figure C.4, the lowest magnetic field settinglpfy = 3.0 A corresponds to Mode 1 in
Table C.1 and shows the breathing mode similar to the unshielded thruster. There is a strong peak
at 3 kHz, alower peak at 24 kHz and another broad peak from 56-60 kHz. No spokes are presentin
the PSD. The discharge current shows large amplitude global oscillations from 50 to 250 mA/cm
The indeterminate, noisy nature of the normalized spoke surface reinforces that no spokes are
present. The discharge current oscillation amplitude is the largest in this mode-a@@d%& of the
mean as shown in Figure C.6, which increases with decreasing magnetic field strength starting at
the mode transition line.

The magnetic field setting ¢fy = 4.5 Ain Figure C.4 corresponds to Mode 2 in Table C.1 and
shows that cathode oscillations are dominant. The peak6fx kHz is larger than the breathing
mode peak at 5 kHz. Again, no spokes are present in the PSD, which is reinforced with the
noisy normalized spoke surface. Oscillationg iare smaller than Mode 1 vary between 115 and
140 mA/cnt; however, the cathode oscillations are higher frequency than the Nyquist limit of the
FastCam so the oscillations are not fully resolved. The discharge current oscillation amplitude is
the least of all modes at less than 10% in Mode 2 for 300 V in Figure C.6 with the minimum at
lym = 5.5 Aclose to the spoke transition line.

The highest magnetic field setting lofs = 6.5 A in Figure C.4 corresponds to Mode 3 in Ta-
ble C.1 and simultaneously shows the breathing mode, spokes, and cathode oscillatiohs. The
PSD shows a peak at3 kHz that corresponds to the breathing mode and a broad pea&QatHz
that corresponds to cathode oscillations. Spokes are clearly present by the strong peaks-ifi
of the HIA PSD. The strongest peakns= 3, which is over an order of magnitude higher than
all other spokes orders. The normalized spoke surface shows that only 3 spokes are present at one
time. Angular striations can be seenjimtermixed with vertical lines showing a mixture of whole-
channel oscillations and azimuthal spokes that are between 110 and 160 fnAfemormalized
spoke surface isolates the spokes very clearly with a spoke velocity, 6 1000+ 100 m/s. The
discharge current oscillation amplitude in Figure C.6-i40% in this Mode 3 for 300 V. Sec-
tion 2.3.8 discussed how the electron reflection is likely different between magnetically shielded
and unshielded thrusters. It identified that electrons would be reflected back into the plasma by
either the magnetic mirror effect near the poles or the ambipolar effect, but further theoretical,

Ji0.t) = (C.1)
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computational and experimental investigations are required to determine the exact mechanism. In
trying to understand why spokes only propagate for strong magnetic field settings, one could spec-
ulate that the electron reflection mechanism changes from ambipolar reflection to magnetic mirror
reflection, which allows spokes to propagate through an unknown mechanism.

Figure C.5 for the 400 V condition shows many of the same trends as the 300 V condition. In
Mode 1 a strong breathing mode peak is observed at 5.5 kHz that is evidenced by strong vertical
lines in j with oscillations between 50 and 250 mA/&niThe normalized spoke surface and the
HIA do not show any evidence of spokes. In Mode 2 the cathode oscillations dominate at 57 kHz
with breathing mode oscillations at 6 kHz of lower magnitude. The discharge current density
oscillation amplitudes are smaller between 115 and 140 mA/é&smwith Mode 1, the normalized
spoke surface and the HIA do not show any evidence of spokes. In Mode 3 a combination of
breathing mode, cathode and spokes are present. Spoke are clearly visible in the HIA PSD with
the dominant spoke order of= 3 and three spokes observed in the normalized spoke surface. The
breathing mode peak is 2 kHz and is the same strength as the broad cathode oscillations from
50-60 kHz.

The PSDs for different magnet settings for 300 V and 400 V are shown in Figure C.7. The
300 V condition in Figure C.7(a) shows the 3-5 kHz breathing mode oscillation is present for
Modes 1-3. There is always a 50-60 kHz peak for cathode oscillations that is only higher in
magnitude than the breathing mode for Mode 2. The 400 V condition in Figure C.7(b) shows the
2-6 kHz breathing mode oscillation is present for Modes 1-3. There is also always a 50-60 kHz
peak for cathode oscillations that is higher in magnitude than the breathing mode for Mode 2.

The most significant difference between the 300 V and 400 V conditions is the very sharp
peak in discharge current oscillation amplitude for 400 V,gt= 5.5 A, which corresponds to a
minimum in oscillation amplitude for 300 V as shown in Figure C.6. This trend of large discharge
current oscillation amplitude crosses the spoke mode transition boundary and suggests the spokes
are unrelated this phenomenon. Surprisingly, Figure C.3(a) shows that mean discharge current
is unaffected by these increased oscillations. This indicates it is not a global or breathing mode
oscillation since those have increased mean discharge current and oscillation amplitude. The high
amplitude oscillations observed in Mode 2a} = 5.5 A are cathode oscillations strongly peaked
at 59 kHz. The oscillation amplitude (Figure C.6) and oscillation strength (Figure C.7(b)) are
nearly the same as the breathing mode in Mode 1. However, these oscillations do not affect thruster
performance as shown in Figure C.3. The 300M-MS appears to be more susceptible to cathode
oscillations at 400 V that do not impact performance. The magnetic field settihg ef 5.5 A
appears to be a resonance with cathode oscillations and merits further investigation.
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Figure C.6: Discharge current oscillation amplitude for 300M-MS during magnetic field sweeps
for 300 V (blue) and 400 V (red). Oscillation amplitude is the RMS value divided by the mean

value. Mode transition lines are shown.
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Figure C.7: Discharge current PSD for (a) 300 V and (b) 400 V for selected magnet settings.
Mode numbers are shown in parentheses. All PSDs have been smoothed by a 400 Hz moving

average filter.
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Mode 1 Mode 2 Mode 3

Limits Iim<35A 35<Iim<b57BA Iim>575A
I Combined cathode
o Global oscillation I .
Description : Cathode oscillation| spoke and breathing
(breathing mode)
mode
~5-10 kHz

Low Frequency Dominant ~5—10kHz oscillations present

1-5kHz (300 V) | oscillations present

F<20kHz 5-10 kHz (400 V) | but not dominant C;ﬁlnoz‘; ':Srgm;:‘iggs
High Frequency Dominant Cathode related
f — 20-100 kHy Weak or not present 60 kHz (300 V) oscillations at

50-60 kHz (400 V) 60 kHz
Strong spokes;
Spokes Not present Not present Vgp =
1000+ 100 m/s
Discharge Current - 15% < 10% (300 V) ~10% (300 V)
RMS/Mean 10-30% (400V) | 10-20% (400 V)
Ip Middle
T Middle
T/P Middle
Na Middle

Table C.1: Summary table of modes and oscillations for the 300M-MS. The bottom four rows
show a qualitative ranking fdip, T, T/P andn,
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C.3 Magnetically Shielded H6 (H6MS)

C.3.1 HO6MS Information

The H6MS shown in Figure C.8 is based on the H6 described in Section 3.3. The inner and outer
front pole pieces and the inner and outer screens were modified to implement magnetic shielding
in the H6. Changes were also made to the discharge chamber with new rings modified as described
and shown in Figure 3 of Ref. 37. The design, detailed numerical modeling, and extensive testing
of the HGMS has been well documented in a series of publications. [4, 22, 36, 37, 160] During
the initial test campaign to compare the HGMS to the H6, [37] “practically erosion-free operation
has been achieved for the first time in a high performance Hall thruster.” It was noted that the
specific impulse increased by 2.9%, the total efficiency decreased by 1.7% and the insulator ring
temperature decreased reduced by 12-16%. The discharge current oscillations increased by 25%,
but did not affect the thruster stability. The investigation presented in Ref. 37 used an anode mass
flow rate of 18.35 mg/s with a cathode flow rate of 1.28 mg/s. The present investigation had an
anode flow rate of 18.23 mg/s (L% lower) with a cathode flow rate of 1.28 mg/s. As shown in
Figure C.9(a), the discharge currents are the same to within 1% so this difference is negligible.

(&) On the thrust stand at NASA JPL. Rep(b} Operating in the Owens Chamber at 6 kW.
duced from Figure 9 of Ref. 37. Reproduced from Figure 7 of Ref. 37.

Figure C.8: The H6MS at NASA JPL.

The same techniques of varying magnetic field strength without varying shape used in the
H6 investigation were employed here by maintaining a constant magnetic coil current ratio of
lim/lom = 1.21. The magnetic field shape variations over magnet current settings were not verified
with simulations like the H6. The magnetic field was known to become skewed due to saturation
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for I;m > 5 Al, so ratio ofl;m/lom = 1.00 was investigated for the higher magnetic field settings.
Although not shown here, the results are indistinguishable from the nominal coil current ratio, so
lim/lom = 1.21 is used for this investigation in order to provide a direct comparison with previous
work.

The first study on oscillations in the HGMS was conducted by Jorns [60] where classic breathing
mode oscillations were observed from 7-12 kHz and cathode related observations were observed
from 75-90 kHz as discussed in Section B.4.1. The cathode oscillations are dominant close to
thruster centerline and are characterized as high-frequency, density gradient-driven drift waves.
The results presented here agree with that work so the lower frequencies observed here are labeled
as breathing mode and the higher frequencies are identified as cathode oscillations.

C.3.2 Experimental Setup

This experiment was conducted in the Owens Chamber at NASA JPL, which is a 3 m diameter by
10 m long cryogenically pumped vacuum chamber. The pressure during testing wa€ T Jorr
corrected for xenon as measured by an ion gauge mounted near the thrust stand. Similar to Figure 3
of Ref. 60, the FastCam described in Section 3.5.1 is in a viewport of the Owens Chaihben
downstream and off thruster centerline by6°. The FastCam acquisition and discharge current
acquisition were triggered by a Wavetek 178 function generator sending a TTL pulse. A Tektronix
DPO-3054 digital oscilloscope recorded the AC component of the discharge current at 500 kHz.
Section IV of Ref. 37 contains additional details about the facility, the thruster and measurement
diagnostics. Processing of the high-speed images was done according to the techniques described
in Section 3.5.

C.3.3 Results and Discussion

The discharge current with oscillation amplitude (RMS) is shown in Figure C.9(a) for a 300 V
discharge. Only discharge current was measured in the present work, but matched well from the
initial investigation by Hofer [37] so the thrust data shown in Figure 10 of that work is applicable
here and shown in Figure C.9(b). Similar to the NASA-300MS, three modes are observed with
two transition points at approximatelyy ~ 2.75 A andl;y = 5.25 A. The performance data for
the HGMS Figure C.9 shows the same trends as the NASA-300MS in Figure C.3.

The discharge current in Figure C.9(a) is minimized in mode 2 and shows a minimum value
atljy = 3.5 A, which is a lower setting than the nominal settinglgf = 4.0 A. The thrust in
Figure C.9(b) continually decreases throughout the B-field sweep with a 5% decrease from the
peak in mode 3. The thrust to power in Figure C.9(c) shows a peak in mode 2 at a lower B-field

lPersonal correspondence with R. Hofer, February 2014.

261



setting than the nominal setting. The total efficiency is presented in Figure 10 of Ref. 37, but the
anode efficiency shown in Figure C.9(d) was calculated from the discharge current in Figure C.9(a),
thrust in Figure C.9(b), an anode mass flow rate of 18.35 mg/s, and Equation 2.24. Similar to the
300MS, the anode efficiency peaks in mode 2.

(a) Discharge Current (b) Thrust
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Figure C.9: H6MS (a) discharge current, (b) thrust, (c) thrust-to-power, and (d) anode efficiency
for the 300 V (blue) reproduced from Figure 10 of Ref. 37 the present work (red) during B-field
sweeps. Only discharge current was measured in the present work, but matched well from the pre-
vious investigation so the performance data is valid. The dashed lines digparalthe discharge
current oscillation amplitude or RMS values. The two mode transition lines are shown.

Figure C.10 shows the HGMS magnetic field sweep at 300 V. Similar to the NASA-300MS in
Figure C.4, three modes are observed with two transition points. Select magnetic field strengths
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have been chosen for further analysis in each of the modes. Figure C.10 can be compared to the
unshielded H6 300 V sweep in Figure 4.9 of Section 4.5.1.

In mode 1 atl;y = 2.5 A, the breathing mode at 10 kHz is an order of magnitude higher than
the cathode oscillations at 69 kHz with no detectable spokes in the normalized spoke surface.
Although not shown, the cathode oscillations nearly disappelafat 2.0 A, which is deep into
breathing mode. The discharge current density oscillates globally around the discharge channel
with fluctuations between 100 and 150 mAfwith some spikes up to 180 mA/ém

The nominal conditions djy = 4.0 Ais in mode 2 and also does not exhibit any detectable
spokes in the normalized spoke surface. The breathing mode frequency remains at 10 kHz and
is approximately the same strength as the cathode oscillations. The cathode oscillations peak
at 78 kHz, but the peak width is broader than in mode 1 before they disappear. The discharge
current density oscillates globally around the discharge channel with fluctuations between 120 and
140 mA/cnt with some spikes up to 150 mA/é&nHowever, the cathode oscillations are above
the Nyquist frequency of the FastCam so these oscillations are not adequately captures in the HIA
PSD or spoke surfaces.

Mode 3 atl|y = 6.0 Ashows a strongn= 3 spoke order in the HIA PSD, which can be observed
as three bright regions on any vertical line of the normalized spoke surfacen ¥l3gpeak is over
an order of magnitude higher than the next highmast 6, which is a harmonic, and 2 orders of
magnitude higher than other spoke orders. Using the correlation method described in Section 5.5.2,
the spoke velocity is 1450170 m/s. The cathode oscillation peak is even broader in mode 3 and
the approximate peak is at 68 kHz. The discharge current PSD has a broader peak between 7 and
10 kHz and is the same strength as the cathode oscillations. The discharge current density displays
spokes (diagonal striations) and global oscillations (vertical lines) with the fluctuations between
130 and 150 mA/crh

Figure C.11 shows the same B-field sweep as Figure C.10, but the selected magnetic field set-
tings for further analysis are within mode By =3.0, 4.0 and 5.0 A. These represent the limits
before the upper and lower transition as well as the nominal settihgyef 4.0 A. The discharge
current increases with increasing magnetic field streri_gihlg.?, 20.2 and 20.8 A, respectively.

The breathing mode frequency remains the same strength, but the frequency decreases with in-
creasing magnetic field strength,=10.3, 9.1, and 6.8 kHz, respectively. The cathode oscilla-
tions show a significant change in response to the magnetic field strength. The cathode oscillation
strength decreases from nearly the same strength as the breathing mode near the lower transition
point to barely detectable near the upper transition point. The frequency peaks are 75, 77 and a
barely perceptible peak near 70 kHz. No spokes are observed in the normalize spoke surface.
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C.3.4 Comparison between H6 and H6MS

The mean discharge current and oscillation amplitude (RMS) for the H6 and H6MS at 300 V are
compared in Figure C.12. The flow rate for the H6 is 19.5 mg/s and for the HGMS is 18.23 mg/s.
The upper and lower bounds of the transition region between global and local mode are shown for
the H6. The transition points between modes 1, 2 and 3 are shown for the HGMS. The magnetic
field strength have been aligned by the nominal values of inner magnet coil curtept08.50 A

for the H6 and | = 4.00 A for the HGMS as used in Ref. 37.

The discharge currents show remarkable similarity with the largest difference at the highest
magnetic field settings. The HGMS mean discharge current is larger at the higher magnetic field
setting while the H6 oscillation amplitude is larger. The transition from global to local mode for
the HGMS occurs at higher relative magnetic field strength than when the H6 enters the transition
region to global mode, however the uncertainty on the H6MS transition past @58, /B; due to
largerl;v increments. The mean discharge current values do not differ significanBy/fBf < 1
regardless of the slight difference in transition point. The H6 shows less change in the discharge
current above the transition point 0.5 A) than the HEMS+ 1.5 A).

C.4 Summary

A mode transition study was conducted in magnetically shielded thrusters similar to Chapter 4
where the magnetic field magnitude was varied to induce mode transitions. The investigations
presented here show a global to local mode transition similar to those detailed in Chapter 4 at low
magnetic field magnitudes, except that spokes are not observed in the local mode. The equivalent
global mode in magnetically shielded thrusters exhibits large amplitude, low frequency (1-10 kHz),
breathing mode type oscillations. The equivalent local mode in magnetically shielded thrusters
exhibits higher frequency (50-90 kHz), low amplitude, entire channel oscillations that Jorns [60]
determined where cathode related oscillations. This shows a strong coupling between the discharge
plasma in magnetically shielded thrusters (which is outside the channel compared to unshielded
thrusters) and the cathode plasma. Cathode oscillations in unshielded thrusters are discussed in
Appendix B and shown in Figure B.7. Unshielded thrusters do show cathode oscillations in the
plume region over the inner pole, but their influence does not extend into the discharge channel so
they are not detected in the discharge current signal. Therefore, it can be deduced that magnetically
shielded thrusters are more susceptible to plasma conditions outside the discharge channel. A
second mode transition is observed in magnetically shielded thrusters at higher magnetic field
magnitudes where spokes are observed simultaneously with cathode oscillations and breathing
mode type oscillations.
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Figure C.12: Comparison of discharge current for the H6 (blue) and HEMS (red) during a B-field
sweep for 300 V. The oscillation amplitude (RMS) is shown above and below the mean value.
Vertical blue lines are the boundaries for the transition region for the H6 identified in Chapter 4

between local mode and global mode. Vertical red lines are the transition points for the HGMS
between mode 1, 2 and 3.

Three different oscillatory modes are identified with the 300MS and H6MS: Mode 1) global
mode similar to unshielded thrusters, Mode 2) cathode oscillations and Mode 3) combined spoke,
cathode and breathing mode oscillations. The optimal thrust to power and efficiency are achieved
in cathode oscillation mode or Mode 2. Thrust decreased by 5-6% with decreasing magnetic field
strength. The presence or absence of spokes and strong cathode oscillations did not affect each
other or discharge current. The 300MS 400 V condition exhibited a cathode oscillation resonance
in Mode 2 close to the spoke transition that did not cause an increase in mean discharge cur-
rent. Similar to unshielded thrusters, mode transitions and plasma oscillations effect magnetically
shielded thruster performance. As magnetically shielded development continues, it will be im-
portant to creatép — Vp — B maps of thruster performance and understand the thruster oscillatory
mode using time-resolved diagnostics.

Both magnetically shielded thrusters exhibit two transition points with three different oscilla-
tory modes, and the discharge current responds differently to the transition points. When spokes
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appear at the higher transition point, the mean discharge current is unaffected. At the lower transi-
tion point, the discharge current increases significantly similar to the local to global mode transition
of unshielded thrusters. Previous work by Brown [41] showed that the local to global mode transi-
tion corresponded to an increase in electron transport through the channel for unshielded thrusters,
and we can assume similar mechanisms are responsible for the increased discharge current in
magnetically shielded thrusters at the lower transition point. The discharge current indifference be-
tween mode 2 and 3 at the upper transition point leads one to deduce that the appearance of spokes
does not measurably affect cross field transport. Furthermore, if the magnetic field is skewed at
higher magnetic fields such that the plasma contact with the wall is not minimized as occurs for
nominal magnetically shielded operation, this could indicate that plasma contact with the wall is
the cause for azimuthal spokes.
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