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The predictive capability of a fluid-based Hall thruster code using a data-driven closure
model for anomalous electron transport is assessed. The closure model is represented as an
expression for the anomalous electron collision frequency that depends analytically on the local
plasma properties. This closure is incorporated into a high-fidelity multi-fluid code, which is
then applied to simulate a magnetically-shielded Hall thruster operating at 300 V discharge
voltage and 4.5 kW power. The uncertainties in the model parameters of the closure model are
quantified through Bayesian inference, and these uncertainties are propagated forward into
the predictions for the Hall thruster code. The median and 5% and 95% confidence intervals
of the model predictions are compared to experimental measurements of discharge current,
thrust, and ion velocity. It is found that the model predicts features qualitatively similar to
the experiment including low-frequency oscillations in the discharge current and the periodic
movement of the ion acceleration zone. However, the simulated frequencies and amplitudes of
oscillations are higher thanmeasured in the experiment and themedian predicted performance
metrics are 15-20% lower. These results are discussed in the context of the physical significance
and limitations of the data-driven approach to closure.

Nomenclature

�0 = Applied magnetic field
2B = Ion sound speed
� = Applied electric field
�� = Discharge current
9 4(I) = Electron current density parallel to applied electric field
9 34 = Electron current density in E × B direction.
! = Discharge chamber length
<4 = Electron mass
=4 = Electron density
a4 = Total electron collision frequency
a4 (2) = Classical electron collision frequency
a�# = Anomalous electron collision frequency
l24 = Electron cyclotron frequency
%(Θ;f |3) = Posterior distribution function
%(3 |Θ;f) = Likelihood function
%(Θ;f) = Prior distribution function
%(3) = Evidence
'�! = Radial location of channel centerline
@ = Fundamental charge
f = Measurement uncertainty for anomlaous electron collision frequency
)4 = Electron temperature (eV)
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Θ = Model parameters for data-driven closure model
D8 = Ion drift speed in axial direction
E34 = Electron drift speed in Hall direct
I∗ = Axial location where closure model is replaced with Bohm scaling

I. Introduction
The Hall effect thruster is an attractive technology for in-space propulsion, balancing a moderate thrust density

with high specific impulse (> 2000s). These advantages have led to the widespread operational use of these devices for
applications ranging from geocentric orbit raising to station keeping. Despite the growing maturity of this technology,
however, there are a number of outstanding challenges related to their future development. These include open questions
about the fidelity of ground tests for representing on-orbit performance [1–3] and how to perform lifetime assessments
for higher-power, longer duration operation [4]. This latter question is particularly pressing in light of two upcoming
deep space missions that baseline Hall thrusters [5, 6]. Many of these challenges could be addressed in part through
analysis, i.e. the use of high fidelity predictive numerical models. However, to date, the predictive capability of Hall
thruster models has been limited.

This limited predictive capability of Hall thruster models stems from a lack of understanding of key physical
processes that govern Hall thruster operation [7, 8]. In order to yield simulated results that can be leveraged for
addressing operational challenges, Hall thruster models that are used for technology development employ a fluid
or hybrid-fluid approximation for the plasma [9]. While there are well-established classical fluid equations for low
temperature plasmas like that found in the Hall thruster, it has been shown experimentally that not all of these classical
equations apply to this device. Most notably, the cross-field electron current is orders of magnitude higher than can
be explained by classical transport theory. Indeed, while the mechanisms that govern this transport remain poorly
understood, several theories suggest that it is kinetic—not fluid— in nature (c.f. [7, 10]).

Faced with this limitation, the electron transport in fluid-based Hall thruster codes is typically represented with an
ad-hoc transport coefficient—either in the form of an anomalous collision frequency or mobility. This invites a closure
problem. By introducing a new free parameter, the governing set of equations is opened and cannot be solved. It is
therefore common practice to close the equations by prescribing fixed values of this coefficient at each location of
the simulated domain. These values are then adjusted until the code yields predictions consistent with experimental
measurements [8, 11]. In this way, numerical models have been able to match experiment with a high-degree accuracy.
This approach similarly has been applied to guide physics-based investigations (c.f. [12–19]) and to complement design
and qualification efforts [20–23]. With that said, despite the high utility of this approach to numerical modeling, it has a
limited predictive capability. There must first be experimental measurements of an actual system to infer the values for
the transport coefficients.

In an effort to overcome this challenge, there have been a number of attempts to date to close the governing fluid
equations for the Hall thruster. These approaches primarily have been physics-based: a process is hypothesized to
explain the electron dynamics, and this is then used to guide the derivation of a simplified form for the transport
coefficient [16, 24–33]. While these previous efforts have the advantage of being rooted in physical intuition about the
system, practically, their ability to predict the experimentally-measured transport in the thruster has been limited. As an
alternative, we recently explored in Ref. [10] a data-driven approach to the problem of closure in Hall thrusters. By using
datasets of the experimentally-inferred values of electron anomalous collision frequency over a wide range of parameter
space, we were able to employ symbolic regression to identify new closure models for this transport coefficient. We
showed that these models exhibited improved predictive capability for the transport coefficient as compared to previous
physics-based models. With that said, we have yet to self-consistently incorporate these data-driven closures into a full
Hall thruster simulation. This is a critical step for demonstrating the predictive capability of the data-driven approach.

With this in mind, the goals of this work are to implement one of our data-driven models for the anomalous collision
frequency into a Hall thruster code, to quantify our confidence in the model predictions, and to compare the model
predictions to experimental measurement. To this end, this paper is organized in the following way. In the first section,
we review the problem of anomalous transport, introduce a data-driven closure model for this transport, discuss the
application of Bayesian inference to quantify uncertainty in this closure model, and overview the Hall thruster code
we used for this study. In the second section, we present results that include uncertainty quantification in the closure
model parameters as well as predictions from the thruster code. In the third and final section, we discuss the physical
implications and limitations of our results.
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II. Approach to modeling
We overview in this section the key elements for our approach to predictive Hall thruster modeling. We begin with a

description of the closure problem as it relates to an anomalous collision frequency. We then present a data-driven
model for this collision frequency and a rigorous method for determining its model parameters. We conclude with an
overview of the modeling framework into which we incorporated our data-driven closure model.

A. Anomalous collision frequency in Hall thrusters and the problem of closure
Fig. 1 shows a canonical geometry and coordinate convention for a Hall effect thruster. These axisymmetric devices

are characterized by an axial electric field and radial magnetic field. The magnetic field magnitude is tailored such that
only the electrons are magnetized and subsequently trapped in a closed, E×B current, 934, where they serve to ionize
the propellant and maintain quasineutrality. The heavier, unmagnetized ions are accelerated out of the thruster by the
applied electric field. Ideally, while no electrons are able to cross the magnetic field in the axial direction, in practice
there is a finite electron current density. This is typically represented in Hall thruster fluid-based models in terms of an
Ohm’s law[11, 34]:

94 (I) =
<4=4a4

�2
0

�
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@=4

m=4)4

mI
+ �

�
, (1)

where � denotes the local electric field, 94 (I) is the electron current density in the direction of the electric field, �0
is the magnitude of the applied magnetic field, @ is fundamental charge, =4 is the electron density, )4 is the electron
temperature expressed in electron volts, and a4 denotes an effective electron collision frequency. As Eq. 1 shows, as the
electron collision frequency increases, more electron current is allowed to flow across field lines.

Fig. 1 Canonical geometry and coordinate convention for the Hall thruster showing applied fields and resulting
electron drifts.

There are known classical expressions for the electron collision frequency, a4 (2) that are based on the assumption
that the electron dynamics are dominated by interspecies collisions [34]. However, when these expressions are employed
in Eq. 1, it is found that predictions for electron current are orders of magnitude lower than observed in experiment. It
therefore is common practice to introduce an ad-hoc or anomalous collision frequency, a�# , such that

a4 = a4 (2) + a�# . (2)

This anomalous collision frequency can be adjusted to raise the effective electron current to match experimental
measurements.

While the introduction of the anomalous collision frequency into the classical fluid equations allows for simulations
to better represent the measured electron transport in these devices, in practice, this new variable leads to a closure
problem. The number of unknowns exceeds the number of equations. To close the governing equations and therefore
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arrive at a self-consistent model for the thruster, it is necessary to find an additional governing equation—a closure
model—for this new collision frequency that relates back to the parameters solved for in the original fluid formulation,
i.e. a�# ()4, �, ...).

B. Data-driven closure model for anomalous collision frequency
We recently explored in Ref. [10] a data-driven method to find a closure model for anomalous collision frequency.

This was based on regressing datasets from previously measured values of a�# as a function of local plasma properties,
e.g. temperature, density, and local drift speeds. We employed a symbolic genetic algorithm to search functional space
for different closure models that fit the data. We in turn were able to show that the resulting closures yielded predictions
for the dependence of the measured collision frequency on plasma properties with an order of magnitude improvement
in goodness of fit over some previous physics-based closure models. We similarly demonstrated that the data-driven
models were extensible—they could be used to match new datasets beyond those that were used to train them.

While this approach yielded a family of possible analytical models that could fit the data, we consider here as a case
study only one of the results (Data-driven model I in Ref. [10]):

a�# (2B , D8 , E34, l24,Θ) = l24
�
20 +

21D8
222B + E34

�
, (3)

where l24 is the electron cyclotron frequency, D8 is the local ion drift speed, 2B is the ion sound speed, and E34 is
the electron drift velocity in the Hall direction. We also have introduced model parameters, Θ = (20, 21, 22) that are
constants. The values for these model parameters were reported in Ref. [10] as Θ = (−3.37× 10−2, 2.39, 3.32); however,
as we discuss in the following, we leave these as free parameters to be inferred in this work.

C. Bayesian inference for model calibration
The expression in Eq. 3 is a reduced fidelity approximation for the more complicated physical process that governs

the anomalous transport. The need for adjustable model parameters, Θ, that must be calibrated against data is a direct
consequence of the model’s lower fidelity. The challenge lies in determining values for these coefficients that best
represent the data but that also can describe the plasma state under multiple and varied operating conditions.

With this in mind, the model parameters can be inferred through simple linear regression, as we did in Ref. [10].
However, this approach only yields one set of parameters—the set that minimizes the residual of the error between the
model and data. Choosing only one value does not reflect the inherent uncertainty in the model and data. For example,
since Eq. 3 was not derived from first principles and is a fluid approximation to a kinetic process, it is possible that it is
missing relevant aspects of the physics. This can be represented as uncertainty in the model parameters. Similarly, the
dataset for performing the model inference is inherently sparse, and there thus is a corresponding uncertainty as to how
extensible the model parameters are to new operating conditions. Both these sources of uncertainty will directly impact
the predictions from Eq. 3 and by extension any thruster code that incorporates this closure.

In order to quantify the uncertainty in these coefficients, we adopt a probabilistic approach based on the method of
Bayesian inference [35]. In this case, we treat the model parameters as random quantities that are described by posterior
probability distributions:

%(Θ;f | 3) = %(3 | Θ;f) · %(Θ;f)
%(3) , (4)

where 3 is the experimental dataset, %(3) is the Bayesian evidence, f is a model error parameter, %(Θ;f) =
%(20)%(21)%(22)%(f) is the prior probability distribution of the model parameters (assumed to be independent), and
%(3 | Θ;f) is the likelihood. Physically, this expressions, which is a form of Bayes’ theorem, indicates the probability
that a given set of model parameters Θ is correct given the dataset, 3.

The dataset we use for inference is the same training data reported in Ref. [10]. This is comprised of the inferred
anomalous collision frequency as a function of local plasma properties for four different Hall thrusters and seven
operating conditions:

3 = [{(2B (1) , D8 (1) , E34 (1) , l24 (1) ), a�# (1) },
{(2B (2) , D8 (2) , E34 (2) , l24 (2) ), a�# (2) }, (5)

...

{(2B (# ) , D8 (# ) , E34 (# ) , l24 (# ) ), a�# (# ) }],
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where# = 650is the length of the dataset. For the likelihood, we assume a normal distribution:

%¹3 j � ; f º =
#Ö

9=1

1

f 9
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2c
� exp

"

�
1
2

�
a�# ¹ 9º � a�# ¹2B¹ 9º– D8¹ 9º– E34¹ 9º– l 24¹ 9º–� º

f 9

� 2
#

– (6)

wherea�# ¹ 9º denotes the measurement from the9C� element of the dataset,3, f 9 denotes experimental error in the
measurement, anda�# ¹2B¹ 9º– D8¹ 9º– E34¹ 9º– l 24¹ 9º–� º is the function given by Eq. 3 evaluated for the argument given
by the 9C� element of the dataset,3. Assuming the model for the anomalous collision frequency with the �t parameters
� is correct, Eq. 6 represents the likelihood that we would measure the given dataset assuming the data is normally
distributed.

For our datasets, there is no uncertainty reported and therefore no prescribed values off 9. We therefore have elected
to treat these measurement uncertainties as model parameters that also will be inferred from Bayesian analysis. With
that said, if we assumed each measurement error was an independent parameter, this would expand the dimension of the
model parameter space to# , which is prohibitively large. To avoid this problem, we make an informed estimate for the
form of this error based on Eq. 1. When we infer the collision frequency in the plasma, we are solving this Ohm's
law using direct experimental measurements (or simulated measurements from calibrated models) of the local plasma
properties. This functional relationship is given by

a�# = l 24 5¹�– =4– )4– �0– 94¹I ºº– (7)

where 5 is a non-dimensional function of the local plasma properties. We thus can relate the measurement uncertainty
in the collision frequency measurement,Xa�# to measurement uncertainties in the arguments of5:

Xa�# = l 24
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where we have assumed there is no uncertainty in the magnetic �eld measurement (and thusl 24). From this result,
it is evident that the uncertainty in the measured collision frequency will scale with the cyclotron frequency and the
fractional error in the measured plasma properties. For simplicity of evaluation, we make the strong assumption that the
parenthetical quantity in the argument of Eq. 8 is a constant, representing an average measurement error over the plasma
properties. We therefore can express the variance in Eq. 6 as

f 9 = Xa�# ¹ 9º = 23l 24¹ 9º– (9)

where23 is a constant of proportionality. Formulated in this way,23 becomes another e�ective model parameter to be
inferred through inspection of the data.

The prior distributions of the model parameters,%¹� ; f º = %¹� ; 23º, in Eq. 4 re�ect our prior knowledge about the
probability distributions of these terms. In our case, our choice of priors is guided by the previous work in Ref. [10] that
showed a best-�t value from linear regression of� = ¹� 3•37 � 10� 2–2•39–3•32º. We prescribe a range of possible
values for each coe�cient based on this best value and assume the parameters are uniformly distributed in these ranges.
Similarly, for the measurement uncertainty coe�cient, we assume0•05 Ÿ 23 Ÿ 1 where we have introduced a lower
bound to prevent measurement uncertainty from being 0. The upperbound re�ects our belief that the electrons will
remain magnetized in the thruster main discharge such that the anomalous collision frequency will not exceed the
cyclotron frequency. Taken together, these assumptions about the model coe�cients are expressed as

%¹20º = U¹� 3 � 10� 1–3 � 10� 1º %¹21º = U¹ 0–5º %¹22º = U¹ 0–5º %¹23º = U¹ 0•05–1º• (10)

Finally, we note that calculating the evidence term,%¹3º in Eq. 4 is non-trivial (and in most cases intractable).
However, there are well-established sampling methods to approximate the posterior distributions of model parameters
without explicitly evaluating the evidence [36]. We adopt such a sampling method in this work and subsequently leverage
it to forward propagate the uncertainty in the model parameters through to the predictions from the Hall thruster code.

D. Multi-�uid Hall thruster model
We used Hall2De, a multi-�uid, two-dimensional plasma physics code to perform Hall thruster simulations with the

data-driven closure. This numerical was developed by the Jet Propulsion Laboratory and has been used extensively
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Fig. 2 Outer loop algorithm for implementing data-driven closure model with Hall2De.

to simulate several state of the art Hall thrusters [17, 20� 22, 37� 39]. A detailed overview of the code can be found
in Ref. [11]. We describe here its salient features and underlying assumptions. Hall2De assumes an axisymmetric
geometry for the thruster and employs a magnetic �eld aligned mesh that is de�ned in the radial and axial coordinates.
The governing �uid equations, continuity, momentum, and energy, are solved simultaneously along this mesh for the
ions and electrons in the code. The electrons, as noted above for Eq. 1 are assumed to be inertialess and therefore
described an Ohm's law. Hall2De has the capability to model multiple ion species, di�erentiated by charge state and
the location where they are born in the plasma. The discriminator for this latter featured is dictated by the electrical
potential where ions are created by ionization.

Key inputs to the model include the thruster geometry and material, mass �ow rate, the discharge voltage, the number
of ion �uids and charge states to be modeled, magnetic �eld topography and strength, and the boundary conditions. The
anomalous collision frequency is also treated as an input where it is prescribed as a function of axial position along the
channel centerline,a�# ¹I– ' � ! º. This frequency is then mapped to the rest of the simulated domain along magnetic
�eld lines. Wherever a �eld line intersects the channel centerline of the thruster, the prescribed value of anomalous
collision frequency is assigned. This same value is used along the entire magnetic �eld line but scaled at each location by
the strength of the magnetic �eld. Key model outputs of Hall2De include the total discharge current, performance (thrust,
e�ciency, and speci�c impulse), and local values of the electric �eld and the plasma �uid properties of each species
(densities, velocities, and temperatures). The code has the ability to vary the collision frequency pro�le automatically to
achieve speci�ed targets (e.g. a discharge current setpoint), though this option was not enabled for this work.

In order to test our closure model with Hall2De, we adopted the outer-loop approach shown in Fig. 2. We ran the
code for a �xed set of time steps," , and then exported the ion sound speed,2B, electron azimuthal drift,E34, ion drift,
D8, and electron cyclotron frequency,l 24 along the channel centerline. We used these values in Eq. 3 to calculate the
collision frequency pro�le from the closure model along channel centerline and then used this pro�le as a new input
to Hall2De. With this new collision frequency pro�le, we ran the code again and repeated the process. In order to
avoid non-physical results (e.g. negative collision frequencies) during this outer loop implementation, we made two
additional assumptions: the anomalous collision frequency has a �oor ofa�# ¡ 10� 4l 24, and a half channel length
downstream of the magnetic �eld peak, denoted locationI � , we replace the closure model with the approximation
a�# ¹I º•l 24¹I º = a�# ¹I � º•l 24¹I � º. This latter requirement is consistent with previous numerical studies that have
shown the collision frequency becomes Bohm-like downstream of the acceleration zone [13].

For the results reported here, the time step we employed for Hall2De was2 � 10� 8 s. In order to ensure that we
did not arti�cially introduce numerical oscillations with the outer loop approach, we varied randomly the number
of iterations," = 5 � 10, we ran the code before repeating the loop. Simulation lengths in real time were typically
3 � 10� 4 s. This was su�ciently long to indicate oscillations consistent with the "breathing mode" (typically 10-20 kHz).

E. Simulated thruster
Fig. 3(a) shows the H9, a 9-kW class Hall thruster, that we simulated for this study. This device, which is described

in more detail in Refs. [40� 42], was developed jointly by the University of Michigan, the Jet Propulsion Laboratory, and
Air Force Research Laboratory. It employs a center-mounted LaB6 hollow cathode and a magnetic shielded topography.
For this work, we modeled one operating condition, 300 V discharge voltage on xenon with a nominal power of 4.5
kW. The inputs to Hall2De (shown in tabular form in Fig. 3(b)) are based on the experimental conditions for this
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