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The impact of plasma instabilities on the electron thermodynamics of a magnetic nozzle
is investigated. An expression is derived for an effective collision frequency between electrons
and ions that results from a wave-induced resistive force in the parallel direction to the nozzle’s
magnetic field. This collision frequency is then incorporated into the classical heat conduction
term in the electron energy equation to find an expression for an effective polytropic index. An
experiment is performed on an electron cyclotron resonance thruster at 17 W to evaluate this
expression. Measurements are performed of both the background plasma properties and wave
propagation characteristics. Experimental measurements indicate a polytropic index of 1.15
±.1. This result is compared to the instability-driven theory which predicts a polytropic index
that varies between 1 and 1.1, comparing well with measurements. The results are discussed
in the context of thruster energy balance, and several potential error sources are addressed.

Nomenclature

= = Number density
� = Effective magnetic nozzle area
D = Bulk velocity
) = Temperature
@ = Heat flux
q = Plasma potential
< = Particle mass
W = Polytropic index
5 = Distribution function
U = Initial condition )0/=W−1

0
@ = Species charge
� = Electric field
� = Magnetic field
'0= = Anomalous resistivity
% = Pressure
a = Collision frequency
j = Susceptibility
l = Frequency
: = Wavenumber
n0 = Permittivity of free space
/ = Particle charge state
�",4 = Maxwellian electron distribution function
E \ = azimuthal velocity
E� = Electron � × � drift
+� = Electron diamagnetic drift
l?,8 = Ion plasma frequency
Eq = Phase velocity
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I. Introduction

Magnetic nozzles are a type of electric propulsion that generate thrust by expanding a heated plasma through a
diverging magnetic field. The plasma propellant typically is heated by an electrodeless radiofreqency or microwave

antenna in a discharge chamber. The energized propellant then diffuses out of the chamber and is further accelerated by
diamagnetic currents interacting with the applied magnetic field. These devices are believed to exhibit long lifetimes
and to be propellant ambivalent, which is ideal for long-duration missions that may require mid-flight refueling.

Low power, smaller nozzles (i.e. under or around 100 W) are typically considered “electron-driven,” meaning
that the heating is applied directly to the electrons. This is the case because many wave heating schemes (i.e. helicon
or electron cyclotron resonance) require particles to be magnetized, and magnetized ions require prohibitively high
magnetic fields at the small lenghtscale of 100 W class devices. The high temperature electrons then accelerate out of
the nozzle aided by the interaction with the applied field. As they do so, the cold ions are dragged by an ambipolar
electric field from the electrons that accelerate them downstream. Thus, the nozzle converts electron thermal energy
into bulk ion energy, which translates directly to thrust.

While this principle of operation is relatively well understood, a complete description of the details of the evolution of
electron energy remains elusive. Typically in order to model such a plasma, one of several assumptions about the thermal
decay is applied. The first such assumption is that of isothermal electrons. It is often argued that the electron temperature
is constant along field lines because the electrons are highly mobile on this axis, and any temperature gradients would
instantly be relaxed. However, while this approximation may be valid for estimating upstream temperatures from
a downstream measurement, it breaks down when used to model the thermal expansion physically. Indeed, it has
been shown [1] that the isothermal situation implies an infinite heat flux from the nozzle itself, which violates energy
conservation. Alternatively, electron adiabaticity has also been theorized. This assumption is convenient for its
straightforward analogue to conventional, neutral gas nozzles and neglects heat flux and collisional heating. However,
this case classically requires a high collision rate, which is not often the case in these plasmas.

Measurements to date have shown that neither of these extremes in heat conduction—isothermal or adiabatic— is
correct. A multitude of measurements have shown that electrons cool as they expand and thus are not isothermal. At the
same time, the degree of cooling is too weak to be considered adiabatic [2, 3], except under rare conditions [4]. It is
thus evident that either heating or heat flux must be significant in a magnetic nozzle expansion. With this in mind, there
have been several recent attempts to reconcile theory with experiment on this issue. Zhang et al. [5] theorized that
the observed trends in temperature may be predicted by a non-local, non-equilibrium treatment of the electrons. They
derived a thermodynamic model of an expanding electron fluid with a depleted high energy population that accurately
predicts electron temperature decay with expansion. However, this theory is predicated on a collisionless environment,
which has been shown to not be satisfied for some lower power nozzles [2]. As an alternative explanation, Ahedo et al.
[6] showed through a quasi one dimensional fluid-based model that if it is assumed that there is an equivalence between
conducted and convected heat flux, it is possible to create temperature profiles consistent with experiment. However,
this approach was limited in that it was largely phenomenological and not based on a first-principles argument. Finally,
Little and Choueri [2] argued that adoption of a classical heat conduction, i.e. a Fourier-like law governed by collisions,
can explain measured trends in electron cooling in their experiment. However, they noted that in practice, the magnitude
of the classical collision frequency was too low, which led to a nonphysical heat flux downstream greater than the power
delivered to the thruster. The authors thus concluded that even if the scaling of a Fourier law is appropriate, a higher
collision frequency would be required to physically explain the expansion.

While all of these theories are applicable in certain situations, the final one is particularly intriguing in light of recent
experimental work that has shown that plasma instabilities may be a source for enhanced, non-classical collisionality [7]
in the nozzle plume. Indeed, plasma instabilities have been shown to lead to enhanced, “anomalous” resistivity in a
variety of plasmas [8–14], and we recently have observed a lower hybrid drift instability in a magnetic nozzle plume
that induces an effective collision frequency several orders of magnitude higher than the classical equivalent [7]. It
stands to reason that the problem illustrated in Ref. [2] of heat flux higher than thruster power may be resolved then
with the inclusion of anomalous effects, and a modified Fourier law may be usable in these situations. Thus, given the
role of instabilities in inducing an anomalous collision frequency higher than the classical value and the inconsistency
of classical collisions in magnetic nozzle expansion, the need is apparent to analyze the applicability of an anomalous
collision frequency in impeding heat flux.

This work presents a first analysis of the applicability of anomalous effects to a Fourier law of heat transport in a
magnetic nozzle. To this end, we organize this paper in the following way. We outline the theory behind anomalous heat
transport and the theorized polytropic index in Sct. II. We then proceed to outline the experiment that we performed in
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Fig. 1 Illustration of a paraxial model.

Sct. III and outline the results as applicable to the current analysis in Sct. IV. Finally, we discuss the results and the
correlation between theory and experiment in Sct. V and provide concluding remarks in Sct. VI.

II. Theory
In this section we establish the mathematical formalism that forms the basis of the current hypothesis. We first

introduce a quasi one dimensional geometry that we will apply for this work. We then motivate the study of thermal
energy patterns based on thruster performance. Next, we introduce the polytropic assumption as a closure scheme for
the fluid equations. We then progress into a discussion of the electron energy equation and various closure schemes for
it, introducing the Fourier law and discussing how it relates to the polytropic index. Finally, we outline the impact that
waves may have on enhancing this collision frequency and relate it to our prediction of heat flux and the polytropic index.

A. Geometry and coordinate convention
We begin by describing the geometric framework that will inform the theory that we use for this study. We will

assume a quasi one-dimensional flow [2, 6, 15], where all quantities vary only in the axial direction and we incorporate
a varying area �(I). We define this area as the circular cross section with its outer edge coinciding with the outermost
field line that intersects the thruster exit plane (Fig. 1). We define I as the direction along centerline and ‖ as the local
direction along the magnetic field, with \ being the azimuthal direction.

We now apply this paradigm to the steady-state fluid equations. We start with continuity, which we acquire by
volumetrically integrating over cross-sectional area �. Doing so shows

(=BDB�) ′ = 0 (1)

where = is the number density, D is the velocity, and a subscript B indicates an arbitrary species and the prime indicates
3/3I. We also may find an equivalent energy equation, starting with a generalized form assuming that pressure % = =)
with ) being the temperature, and further assuming zero resistivity:

0 =
3
2

u · ∇(=B)B) +
5
2
�=)∇ · u + ∇ · q (2)

=
3
2
D(=B)B) ′ +

5
2
=) (D�) ′ + (@�) ′, (3)

Where @ is the heat flux. The first two terms of this equation represents the total fluid energy change from acceleration
and convection, and the final term represents the heat flux term, i.e. conduction. Here, we have again neglected Ohmic
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heating and collisional heat transfer, which would contribute further terms. Now that we have established the paraxial
model that we are going to use in this analysis, we will explain the significance of the thermal energy decay with this
paradigm.

B. Relationship between specific impulse and temperature
Magnetic nozzles are thermally driven. As the main mechanism for thrust production is the conversion of thermal

electron energy into ion kinetic energy, the electron thermodynamics plays a crucial role. This energy conversion relies
on a plasma potential drop as an intermediate. To explore this concept, we reference the coordinate convention shown in
Fig. 1 and consider the simplified case of a collisionless electron Ohm’s law in the direction parallel to the applied
magnetic field:

0 − (=4)4) ′ +
=4

<4
q′ (4)

q′ =
<4

4

(=4)4) ′
=4

(5)

where q os the plasma potential, 4 is the electron charge, <4 as the electron mass, and q as the plasma potential. The
relatively massless electrons thus induce an electric field along field lines through this expansion.

The ions carry the majority of the momentum in the plasma, and thus may be taken as a reliable proxy for thrust
production. Even though the thrust is directly produced by the electron pressure and the diamagnetic currents interacting
with the magnets, conservation of momentum dictates that the total momentum flux leaving the system is equivalent
to the thrust production. As such, accelerating the ions is equivalent to producing thrust. As they are not directly
heated, they are unlikely to maintain a significant pressure. However, the inertial term in the ion momentum equation is
important given their higher mass. In steady state,

<8

2
(D2
8 ) ′ = 4q′ (6)

=
(=4)4) ′
=4

. (7)

This simple analysis reveals that a decreasing electron thermal energy is converted directly into bulk ion kinetic energy.
However, this does not provide a complete description of the plasma. Indeed, while we might motivate expressions for
how the density will decrease due to expansion of the plume, we do not know a priori how the temperature will vary. A
closure model for electron energy, i.e. an equation that relates the temperature to other more easily inferred parameters
like plasma density, is still required.

C. Polytropic law for electron energy
A common method for inferring the varying electron temperature in nozzles is to assume an equation of state based

on a polytropic law:

)4

=W−1 = U (8)

where U is a constant along an electron streamline and W is the so-called polytropic index. Setting the derivative of this
form equal to zero and integrating along a streamline provides a means of directly measuring the value of W locally:

W = 1 + ln()/)0)
ln(=/=0)

(9)

where the subscripts 0 indicate an upstream position. Closing the fluid equations in such a way provides a convenient
way to solve them; however, predicting the value of W proves to be more of a challenge.

Previously, a computational study has been performed that allowed W to vary as a free parameter in a magnetic
nozzle expansion [1]. This work found that a lower W implied a higher heat flux downstream, which in turn ultimately
was converted to ion energy and enhanced specific impulse. This correlation between W and specific impulse motivates
the current study on what may cause W to take a given value.
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D. Estimating polytropic index based on closure models for electron flux
While the energy equation subject to the paraxial approximation allows us an extra equation to solve for )4, we have

introduced an even higher moment of the distribution function in allowing the heat flux to be finite, and must find a way
of closing the fluid equations by making an assumption regarding the heat flux. Commonly, this value can be taken to be
either zero (adiabatic limit) or infinity (isothermal limit), and looking at these limits provides a means of physically
bounding W.

1. Adiabatic approximation
In an expanding nozzle, heat flux is often assumed to be zero, resulting in the adiabatic limit. This approximation

is successfully used for conventional nozzles and provides a convenient closure for the plasma case as well. This
assumption further makes physical sense, since a fully Maxwellian distribution function has zero heat flux. To understand
why, we may look at the kinetic definition:

q =
<

2

∫
(v − u)3 5 (v)3v (10)

with 5 (v) being the distribution function. This is an odd moment taken over the random (i.e. zero-mean) velocity,
meaning that any distribution function that is symmetric about its mean velocity will give zero heat flux. A drifting
Maxwellian distribution fulfills this criterion and thus does not conduct heat. The energy equation that results is [16]

0 = D�(=)) ′ + 5
3
=) (D�) ′ (11)

=
) ′

)
− 2

3
=′

=
(12)

where we have used the continuity equation to substitute =(D�) ′ = −=′D�. Performing the integration, we see that
)

=2/3 = const. (13)

Thus, the adiabatic assumption yields W = 5/3.

2. Isothermal approximation
Taking the limit in the opposite direction q→ ∞ gives the other physical bound of W. In this case, the heat flux

overcomes any temperature gradients immediately, implying that )4 =const. Applying this to the polytropic law, we see
that W = 1. Thus, W varies with the magnitude of the heat flux and should be bound by 1 or 5/3. However, this index
has been measured previously and is generally found to take an intermediate value between these two limits [2–4]. To
explore this possibility, a more precise form for q is needed.

3. Fourier law for heat conduction
Finite heat flux is a potential route to changing the value of W between the isothermal and adiabatic limits. Often, a

Fourier law is assumed, where heat travels down a temperature gradient and is impeded by collisions [17]. This law
takes the form

q = −3.2
=)∇)
<a

, (14)

where a is the electron collision frequency. This law provides a closure to the fluid equations, since the higher moment
value (q) is replaced by values of lower moments of the distribution function. Substituting this form for q and further
assuming a polytropic law for )4 allows us to find a value for W.

4. Form for W
We may now use the Fourier law and the polytropic assumption in the energy equation to find a relation for W. We

relpace the temperature with the polytropic form, finding

)4 = U=
W−1 (15)

) ′4 = U(W − 1)=W−2=′ (16)
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where we have defined U = )4,0/=W−1
0 . Inserting these definitions and the Fourier law (Eqn. 14) into the energy equation

yields (
W − 5

3

)
2
3
D=′ − (W − 1) 3.2U=W−1=′

<4a

[
�′

�
+ 2(W − 1)=′

=
+ =
′′

=′
− a

′

a

]
= 0. (17)

The first term on the left represents convection and the second term represents conduction and expansion effects. If
collisions are frequent, the heat conduction becomes negligible (adiabatic), and W = 5/3. When collisions are infrequent,
the right side dominates and two possible solutions appear. The first is simply W = 1, which is typically the isothermal
limit. However, in the current experiment, this solution always takes a true value slightly under 1, which is nonphysical.
Thus we may discard this solution.

However, a second solution is present as well. Namely, the term in square brackets can be set equal to zero and
solved for W as

W = 1 − =�′

2=′�
+ =′′=

2(=′)2
− a′=

2a=′
. (18)

This equation provides the value for W in the low collision frequency limit. In the zero-expansion limit (�′ = =′ = a′ = 0),
we recover the isothermal value. When expansion is present, the second and third terms increases the predicted W, since
=′ < 0 and �′, =′′ > 0. The contribution of the final term depends on the model for collision frequency.

Typically, a lack of collisions implies W = 1; however, in the case of an expanding nozzle, small but finite collision
frequency with a Fourier model for heat flux in fact implies a W somewhat greater than unity. This has been shown
theoretically by Little and Choueri [2], who found a low collision limit of W ≈ 1.16 for their magnetic field geometry.

To predict a value between the two limits, we require a form for a. The standard form takes that of classical
electron-electron or electron-ion collisions, a4 ≈ 4 × 10−12= lnΛ/)3/2

4 [16], where lnΛ is the Coulomb logarithm and
)4 is in eV. This form has been studied previously by Little and Choueri and indeed predicts a value of W comparable to
what is observed. However, this collision frequency is admittedly insufficient to inhibit electron heat flux in magnetic
nozzles. Applying a Fourier law in this study results in a total heat flux downstream that is larger than the power being
delivered to the thruster. However, the fact remains that the theory may be predictive if the collision frequency were
higher.

One way for the effective collision frequency to be higher than the classical prediction is through nonlinear
interactions between particles and waves. This enhancement to the typical collision frequency has been observed in
many plasmas [12, 18, 19] and may induce an effective collision frequency orders of magnitude higher than the classical
equivalent. Furthermore, we have recently published a study [7] that shows that a lower hybrid drift instability exists
in the plume of a magnetic nozzle, and the effective collision frequency of this mode is several orders of magnitude
higher than the classical value. This instability may further influence electron heat transfer in a magnetic nozzle via an
enhancement to the electron Ohm’s law. We elaborate on this concept in the following section.

E. Anomalous electron collision frequency from waves
To motivate how instabilities can drive anomalous resistance, we start from the Vlasov equation:

m 5

mC
+ v · m 5

mx
+ @
<
(E + v × B) · m 5

mv
= 0 (19)

where 5 is the species distribution function, C is time, v is the velocity coordinate, x is the position coordinate, E is the
electric field, and B is the magnetic field. The right hand side typically represents a collision operator, but we assume
the plasma of a magnetic nozzle to be classically collisionless. To derive the impact of waves on the steady-state particle
distribution, we may isolate the steady state values by performing a phase average.

We begin by perturbing the distribution 5 = 50 + 51 and the electric field, E = E0 + E1, where the subscript 1
indicates a small, oscillatory quantity. In general, we may further perturb the magnetic field. However, the magnitude of
this impact is related to the plasma V, and the V for low temperature plasmas such as ours is typically small. We may
further specify the perturbation by assuming a sinusoidal character, 51,E1 ∝ 48 (−lC+k·x) , where l is the frequency and
k is the wavevector. To isolate the steady-state values, we will perform a phase average on the entire equation. Each
quantity that is of first order in the perturbed quantities will vanish since the perturbations are periodic. The only term
that remains is the second order term:

m 50
mC
+ v · m 50

mx
+ @
<
(E0 + v × B) · m 50

mv
= − @

<
〈E1 ·

m 51
mv
〉 (20)
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where 〈·〉 represents a phase average. This result shows that a wave may act as an effective collision operator on the
steady-state distribution.

To determine the impact of waves on measurable, fluid quantities, we may take successive moments of Eqn. 20.
First, taking the zeroth moment (integrating both sides over velocity space) yields the unchanged continuity equation:

m=0
mC
+ m

mx
· (=u) = 0 (21)

where the right hand side of Eqn. 20 disappears after integration by parts.
Taking the first moment of Eqn. 20 (i.e. multiplying the entire equation by <v then integrating over velocity space)

gives the modified momentum equation:

=<
mu
mC
+ =<u · mu

mx
= =@ (E + u × B) − m%

mx
+ @〈=1E1〉 (22)

= =@ (E + u × B) − m%
mx
+ R0=. (23)

Here, we have assumed that the anomalous force can be modelled as a resistivity between electrons and ions (to be
proven in Sct. II.F) as R0= = <=ā0= (u4 −ui), where ā0= is the effective, or ”anomalous“ collision frequency tensor. We
consider this to be a diagonal tensor and write it in this form only to imply that it is not necessarily isotropic. Explicitly,
in the direction parallel to the magnetic field, we find

a0=, ‖ =
@〈=1�1, ‖〉

<=(D4, ‖ − D8, ‖)
. (24)

Physically, waves retard motion of electrons as they extract energy to grow, which acts as an effective collision
frequency. This modified value may be used in lieu of classical collisions in the heat transport term [20], such that
a4 → a�# in the Fourier law of Eqn. 14.

To evaluate this term, we need a full form for the anomalous resistivity @〈=1�1, ‖〉 and the relative velocity D4, ‖ −D8, ‖ .
We begin with the former and return to the relative velocity at the end of this section.

F. Expression for anomalous collision frequency in low temperature nozzle
The phase averaged terms are difficult to evaluate in their current forms. However, with knowledge of the nature of

the waves in question, we may rewrite these in more tractable forms. To this end, we begin with Gauss’ law for electric
fields:

∇ · � = d

n0
. (25)

Again assuming a periodic nature of the electric field, we may rewrite this as

8k · E1 =
4

n0

∑
B

/B=1,B (26)

in which we have defined k as the wavevector and /B as the charge state of the species. Here we have also assumed a
similar law for the steady state values, ∇ · E0 =

4
n0

∑
B /B=0,B .

Rearranging Eqn. 26 provides us with the dispersion relation:

0 = 1 +
∑
B

jB (27)

where we have defined the susceptibility

jB ≡
8/4

n0

=1,B

k · E1
. (28)

The susceptibility is generally a complex value that represents the response of a species to an electric field, both in
magnitude and phase offset. Using this value, we may rewrite the wave-induced resistivity as

@〈=1E1〉 = 〈�2
1
n0
8

kjB〉 (29)

=

∫
n0�

2
1 (k)kIm(jB)3k (30)
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where we have applied a Fourier transform of �1 to evaluate the phase average. From Eqn. 30 and 27, we observe that,
for a plasma with only electrons and singly ionized ions, Im(j4) + Im(j8) = 0 and R0=,8 = −R0=,4. Thus we see that
the presence of an oscillation serves as a means of transferring momentum between electrons and ions. This fact serves
as motivation to define the force as an effective resistivity between electrons and ions as in Eqn. 24.

To determine the electron susceptibility, we may perform a different operation on Eqn. 19. Namely, perturbing the
distribution function and electric field but neglecting higher order terms (as opposed to phase averaging) provides a
direct relation between =1 and �1. For the plasma in question, we may make the following assumptions:

• Electrons are isothermal across the magnetic field.
• The magnetic field is uniform and steady.
• Classical collisions are negligible compared to electromagnetic forces on both species.
• Ions are cold and unmagnetized.

• The steady state electron number density is quasi-Maxwellian, with an asymmetric component induced by the
cross-field number density gradient.

Finally, the electron steady state distribution function is assumed to be quasi-Maxwellian, incorporating an asymmetric
factor in the azimuthal drift direction as

54,0 (v =
(
1 − 1

=4

m=4

m ⊥
<4E \

4�

)
�M,4, (31)

where �",4 is a Maxwellian distribution function.
The final dispersion relation is found upon integrating the perturbed Vlasov equation along unperturbed orbits using

the method of characteristics. This process has been described in previous references [21] and leads to an electron
susceptibility of

j4 =
1

:2_2
�

[
1 + l − : \ (E� + E� )

:IEC4
4−:

2
\
A2
!
/2�0

(
:2
HA

2
!

2

)
/

(
l − : \E�
: ‖EC4

)]
. (32)

Here, �0 is a modified Bessel function of the first kind, / is the plasma dispersion function, EC4 is the electron
thermal velocity, A! is the electron Larmor radius, _� is the Debye length, and E� and E� is the electron diamagnetic
and � × � drift velocities, respectively. We may then find the wave-induced resistivity by inserting this value into Eqn.
30. We further may relate : to l using the full dispersion relation from Eqn. 27,

0 = 1 −
l2
?,8

l2 + j4 (33)

where the second term represents the cold, motionless ion susceptibility, and l?,8 is the ion plasma frequency. This wave
derives its energy for growth from the electron diamagnetic drift. It then acts as a medium for transferring the electron
momentum lost into the ions. This transfer acts as an effective resistivity to the electrons and induces a cross-field
electron transport akin to a higher electron-ion collision frequency, as we have observed in a previous work [7]. However,
our previous work also observed that the wave propagated parallel to the magnetic field with a comparable magnitude to
its azimuthal component. This fact implies that the same energy and momentum transfer is likely happening between
the waves, the electrons, and the ions in the parallel direction (as per Eqn. 24). While the lower hybrid drift instability
theory does not incorporate finite electron or ion velocities parallel to the field, it is likely that they are still flowing
relative to each other based on their differing rates of attachment to the magnetic fields [22]. This relative velocity may
form the source of the resistivity in this direction and might encourage such a strong parallel propagation.

With a sufficient understanding of the wave that we observe, we are now ready to return to our evaluation of the
relative drift velocity.

G. Relative velocity
To evaluate Eq. 24, we must estimate the relative magnitude D4, ‖ − D8, ‖ via a few approximations. First, we take the

electrons to follow their continuity equation, namely (=D�) ′ = 0. We solve this equation for the velocity and find

D4,I = D0 exp
(∫ I

3

=�

(=�) ′ 3I
′
)

(34)

8

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

M
IC

H
IG

A
N

 o
n 

A
ug

us
t 3

1,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

1-
33

99
 



Fig. 2 Illustration of the experimental setup from the a) front-on and b) top-down perspective.

where D0 is the condition assumed at our most upstream measurement point, I = 3 cm. The ions are unmagnetized and
are thus less likely to expand with the field lines. Instead, they are likely to be accelerated only by the plasma potential
gradient as

D8 =

√
2@
<8
(q − q0) + D2

0. (35)

We estimate a final velocity of 10 km/s based off of previous ion velocity measurements [23] to return an initial D0 of 7
km/s, which we use for both electrons and ions. While physically motivated, these values are still merely approximate.
Given the uncertainty in these velocities, we elect to allow a parameter V in front of the velocity difference such that
D4, ‖ − D8, ‖ → V(D4, ‖ − D8, ‖). We will assume V = 1 presently but will discuss its variation in Sct. V.

Now that we have established the theoretical framework required to evaluate Eqn. 24, we proceed to outline the
experiment that we performed to test our hypothesis.

III. Experiment
We next briefly explain the experimental apparatus we used in this experiment to investigate this theory as presented

in Fig. 2. As this is the same data set used in Ref. [7], we will only briefly repeat the process here. We performed
the experiment on an electron cyclotron resonance thruster at the University of Michigan, which we operated at 17 W
delivered power and a 2 sccm-Xe flow rate. We operated in the Junior vacuum facility, which is a 1m diameter and 3m
length facility with a cryogenic pump. This setup allowed us to test at a backpressure of 4.3×10−6 Torr as measured on
the wall.

We first measured the magnetic field using a Lakeshore Gaussmeter and three-dimensional Hall probe. We positioned
the Hall probe on a set of orthogonal motion stages at atmosphere and took readings in 5 mm steps. We mapped the
streamlines and found the outermost field line that intercepted the thruster to define the effective area � as a function of
distance downstream.

To measure waves in the context of a magnetic nozzle, we implemented the technique of Beall [24] in situating a
set of tungsten electrostatic probes downstream of the thruster. Each probe measured 5 mm in length and 1 mm in
diameter. In biasing them to ion saturation levels, we can take relative fluctuations in the current readings as relative
density fluctuations, =̃/=. Knowing the distance between the two and finding the phase difference of each frequency
between the two probes provides the wavenumber and can be used to directly measure the dispersion. In using this
technique, we are able to determine l and k.

We further used one of these probes in a second sweep across the plume as a Langmuir probe to determine
background plasma properties. We applied the Druyvesteyn technique to analyze the electron energy distribution
function [25] to find an effective number density and electron temperature, and considered the maximum of the first
derivative of the electron current to be the plasma potential [26]. Figure 2 illustrates this setup. The measurement
domain for all of these values was the axial region between I = 3 cm and I = 14 cm, with the radial measurements
extending out to the outermost field line.
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Fig. 3 a) Number density, plasma potential, and electron temperature as a function of axial position. b) Sample
power spectral density taken from a point 7 cm downstream and 2.5 cm off-axis.

IV. Results
We present in Fig. 3a the one dimensional electron temperature, plasma potential, and number density as measured

by the Langmuir probes. In these figures, we have averaged over the effective area as outlined in Fig. 1. We note a few
expected trends in this dataset. First, the plasma potential drops monotonically downstream as the electron temperature
decreases as well. The commonly understood relation between these two values is q′ = (=)4) ′/= resulting from the
electron Ohm’s law. Physically, this equality represents the exchange of energy between ions and electrons. As the
electrons cool, the ions accelerate through the potential drop. These values indeed vary following this relation in the
present work. The number density similarly decreases downstream as the effective area of the nozzle increases and the
plasma expands. This too is expected from continuity, since as the plasma expands and accelerates the number density
must decrease.

We can use the correlation between number density and electron temperature to calculate W by W = 1 + ln()̂ )
ln(=̂) . Figure

3b shows this result through the plume. We note that we have removed the first point at 3 cm downstream, which we
used as the reference for the normalization and thus has an undefined W. This result reveals an average W of ≈ 1.15,
which lies between the isothermal and adiabatic limits. This result is within the range of what has been observed in
similar systems [2–4] and is thus expected.

Using the results from the Langmuir probe, we may calculate the classical electron-ion collision frequency [27].
While we have already discussed the general lack of classical collisions in these plasmas, it is nevertheless instructive to
observe the magnitude and implications to compare them to the anomalous values. We report the classical collision
frequency in Fig. 4b and the predicted heat flux in Fig. 5. We do not present the predicted value of W in Fig. 4a, since
this calculation predicts a fully isothermal plasma in this situation. This is a noteable departure from the previous work
studying the relation between classical collisions and W, which showed a lower limit of 1.16 [2]. The primary reason for
this departure may lie in the lower value of �′/� in our nozzle. The previous work used a nozzle produced by current
carrying coils, whereas the current one is generated by a series of permanent magnets that may not maintain the same
expansion profile. Since the expansion causes the non-isothermal value in Ref. [2], decreasing the relative expansion
rate will drive the electrons more isothermal.

We also reconfirm the physical discrepancy that arises in that heat conduction limited only by classical collisions is
far too high– in our case, several orders of magnitude higher than the power we delivered to the thruster. Again, this
result was also found in Ref. [2] and is thus expected. However, the discrepancy in the previous work was a single order
of magnitude, whereas ours is at least three. The reason for this difference is the drastically reduced classical electron
collision frequency in our plasma. The previous work reported number densities up to three orders of magnitude higher
than what we find in the present work and electron temperatures lower by several eV. As the Coulombic collision
frequency is proportional to =/)3/2

4 , these differences drastically alter the value between the two plasmas.
Now that we have measured W directly and found the implications of classical theory, we can analyze the results

from the wave observations. Figure 3b presents an example power spectral density of density oscillations at a point
7 cm downstream from the exit plane and 2.5 cm off-axis, where we have averaged the results from the two probes
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oriented in the azimtuhal direction. We characteristically observe a decay of wave magnitude as the frequency increases
and can identify this incoherent mode with a lower hybrid drift instability [7]. We further note a coherent mode at a
lower frequency, but we believe that this is likely a separate mode so we have removed it from the present analysis. We
use the value (=1/=0)2 in Eqn. 30 after substituting for it in terms of �1 and j4 as per Eqns. 28 and 32. Numerically,
we separate the power spectral density into bins of 500 Hz then take the integral to be

@〈=1�1, ‖〉 ≈
∑
:\

n0�
2
1,I: ‖Im(j4)Δ: \ (36)

where Δ: \ is the 500 Hz bin width and the electric field oscillation magnitude �1,I represents the power spectral density
of oscillations over the bin width.

Since the summation in Eqn. 36 is over : \ but incorporates : ‖ , we further require a relation between the two.
Experimentally, we find that the parallel propagation is linear and comparable to the azimuthal propagation (see Fig. 3
of Ref. [7]). Since we have measured the waves in A and I, we cannot directly deduce the wavenumber parallel to the
field line. However, we may project the (A, I) propagation onto the field line by analyzing the phase velocity. The phase
velocity is given by Eq = l/: and takes a different value in each direction. We may use these measurements to find
: ‖/: \ with

: ‖
: \

=
:A�A + :I�I

�: \
(37)

=
�I/Eq,I + �A/Eq,A

�/Eq,\
. (38)

We present the average magnitude of this value in Fig. 5b, observing that the parallel propagation is stronger
upstream but is dominated by the azimuthal propagation downstream.

We may use the magnitude of the oscillation =1/=0 as a function of frequency with Eqn. 28 and 32 to calculate
�1,I . We may then use this result in Eqn. 30 to find the anomalous resistivity, which we finally insert into Eqn. 24 to
find the anomalous collision frequency in the field-aligned direction. We present this value (averaged over each nozzle
area downstream as per the quasi-1D geometry) in Fig. 4. We compare it on the same axes to the value predicted via
classical electron-ion collisions which we see to be orders of magnitude less than the anomalous equivalent.

We have already reported the anomalous collision frequency in the azimuthal direction in Ref. [7] and do not
replicate those results in this work. We present here instead the parallel collision frequency a ‖ in Fig. 4b and the
classical equivalent a2 . It is clear from this data that throughout the plume the anomalous collision frequency is at least
three orders of magnitude higher than the classical value, motivating the idea that it may contribute to supporting the
temperature gradients and predict the observed polytropic index.

Finally, we may apply these results to find the total heat flux @ via the Fourier law (Eqn. 14) and the predicted
polytropic index from the anomalous collision frequency using Eqn. 24 and 17. After finding the heat flux, we solve
Eqn. 17 numerically. Since it is often multi-valued, we choose the result that lies between 1 and 5/3, as these are the
physical limits that W should take. Fig. 4a presents the resulting polytropic index, and Fig. 5a indicates the total down
stream heat flux as a function of position for both the classical and anomalous case. The total power delivered to the
thruster is also labelled at 17 W. We observe that the anomalous heat flux is comparable to the delivered power (albeit
slightly higher in the upstream regions), whereas the value predicted from classical collisions is 4 orders of magnitude
higher. The trend that we observe in this value is expected. Initially, the heat flux is high from the large values of = and
)4. These values decay downstream as the energy stored in the pressure is converted to ion kinetic energy. The heat flux
again begins to rise as the anomalous collision frequency trends downwards, but this may be accounted for by analyzing
the various error sources we discuss in the following section.

V. Discussion
These results reveal that a description of the electron heat flux implementing a Fourier law with an anomalous

electron collision frequency predicts a polytropic index comparable to what is observed, i.e 1.15. Moreover, inclusion of
the anomalous collision frequency reduces the predicted heat flux downstream by several orders of magnitude compared
to the classical value. Moreover, the maximum predicted heat flux approaches the power delivered to the thruster. This
is a notable difference from previous work discussing heat flux in a magnetic nozzle with a Fourier law [2], who found
that the heat flux was too high. Indeed, it appears that the inclusion of anomalous effects may constrain the heat flux

11

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

M
IC

H
IG

A
N

 o
n 

A
ug

us
t 3

1,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

1-
33

99
 



Fig. 4 a) W predicted from waves and directly measured. Error bars are roughly 15% but have been left off
for clarity. b) Effective collision frequency in the field-aligned direction (a0=,I) and classical collision frequency
(a2).

Fig. 5 a) Total heat flux through the nozzle predicted by classical collisions and anomalous effects. Error bars
are on the order of 10%, which do not appear on a logarithmic scale and are thus omitted.

to more physical levels. This is reminiscent of our previous work as well, which indicates that these effects likely
contribute to electron momentum across field lines [7]. Thus, while classical collisions are likely insufficient to affect
the expansion in a typical nozzle, instabilities may play a significant role.

The trend in heat flux is also generally representative of what we expect for this device. As the plasma expands
downstream, we expect the heat flux to decay as the thermal energy is converted into ion bulk energy. We indeed observe
a sharp decrease in anomalous heat flux between 5 and 7 cm downstream, which may reflect this energy transition.

However, two inconsistencies emerge with our results. First, the total heat flux upstream of 5 cm remains higher
than the total delivered power by roughly a factor of 4. While this is significantly closer than the classical prediction, it
is still unphysical. Second, the heat flux appears to rise downstream of 7 cm. The precise reason for this trend is not
clear. However, there are several potential modifications to the theory that may be able to explain these phenomena.

The inconsistencies in our measurements may stem in part from the assumptions underlying our model. For example,
we make a strong assumption by using a Fourier law and simply replacing the collision frequency with an anomalous
one. The derivation of the Fourier law for heat conduction in the classical case starts with the Boltzmann equation
with a classical collision operator incorporating electron collisions with ions as well as with other electrons. In effect,
by employing an expansion approximation, it is shown that the balance of collisions can lead to asymmetries on the
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Fig. 6 a) Polytropic index with varying collision frequency scaling factors with the observed 1.15 illustrated by
the dashed line. b) Predicted heat flux downstream as a function of space for varying collision frequency scaling
with the thruster power illustrated by the dashed line.

velocity distribution that in turn result in finite heat flux. The scaling of this heat flux follows an Onsager relationship,
i.e. a Fourier law moderated by the classical electron collision frequency. It is not clear from a first principles analysis
that a kinetic collision operator based on the wave-particle interaction will yield a similar form. We have made this
assumption out of expedience. However, for a full description of the interaction between waves and heat flux, a new
formalism should be developed starting with the kinetic wave collision operator [20].

The second simplifying assumption we have made is about the magnitude of the relative drift between electrons
and ions. This was necessitated ultimately by the challenge in directly inferring the electron velocity. It is difficult
to accurately derive a magnitude for a0=,I as per Eqn. 24. To briefly explain why, we begin by understanding that a
magnetic nozzle is globally current-free, given that there are no electrodes exchanging current with the plasma. Thus,
integrating the net current density over the plasma volume must equal zero. While we approximate this value as
illustrated in Eqn. 34 and 35, observation of Eqn. 24 implies that the collision frequency is quite sensitive to this
approximation. To investigate this sensitivity, we may return to the parameter V defined in Sct. II that acts as a control
for the relative velocity.

To explore the variation of the results on W and @, we may look at the results when changing V freely. In increasing
V, we are thus increasing the relative velocity and decreasing the overall heat flux. To this end, we present the resulting
W and heat flux for V = 1, 4, 10, and 100 in Fig. 6. These results show that by multiplying the collision frequency by a
factor of 4, the predicted W matches the experiment more closely and the total heat flux downstream is universally less
than the power delivered to the thruster. As this value increases further, W begins to approach the adiabatic limit as
expected, and the previously lower values approach the observed value. While we have multiplied the relative velocity
by a universal factor, it is also likely that our approximation breaks down to a different extent for each point. Thus,
perhaps at 5 cm a value of V closer to 50 is necessary, whereas a value of 4 works for 9 cm downstream, implying that
the electrons and ions are moving with a larger relative velocity downstrem. Moreover, the heat flux terms may exhibit
similar trends. While a universal factor of 4 decreases the predicted heat flux below the total value, given that electron
convection and ion kinetic energy must also draw from the thruster input, it is unlikely that the full power is going to
electron heat flux, and this V value is likely higher upstream. The fact that this trend appears in both the W and total heat
flux calculation lends credence to such a variation.

As a final comment on a possible modification to our approach, there remains the possibility that Ohmic heating and
thermal energy transfer between particle species and waves may be significant. Whereas we have neglected these values
in Eqn. 3, two new terms appear on the right hand side when the direct wave effects are included:

3
2

d=)
dC
+ 5

2
=)∇ · uf = −∇ · q + @ (=0〈E1v1〉 − v0 · 〈E1=1〉) (39)

where we have defined v1 =
∫

v 513v. The second term on the right hand side represents an effective collisional thermal
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energy transfer between the electrons and the waves, and the final term represents Ohmic heating from the anomalous
resistivity. These two terms may represent significant heating contributions and modify our results.

VI. Conclusion
In this work, we have presented a theory for determining anomalous heat conduction along magnetic field lines in a

magnetic nozzle. We have defined an anomalous collision frequency that represents momentum exchange between
electrons and ions. This method implements quasilinear resistivity and assumes that the anomalous collision frequency
in the momentum equation may also be used in an electron Fourier law. This is a reasonable assumption, since electron
heat conduction may indeed be impeded by the momentum exchange interaction between species. However, a full
treatment would require an effective electron-electron collision frequency as well as the incorporation of Ohmic heating
and heat transfer derived from the Boltzmann equation.

We then applied our theory to experimental data on an electron cyclotron resonance thruster. We directly measured
the plasma properties and found a polytropic index of 1.15. We compared this to wave measurements, which we used
in our theory to predict heat flux and a non-adiabatic polytropic index. We find a agreement to within 15% over the
domain; however, as we have presented the theory the total heat flux downstream is greater than the power delivered to
the thruster within 6 cm of the thruster exit, and the predicted W is too low. It is found that decreasing the assumed
relative velocity between ions and electrons by a factor of 4 corrects these values and matches match the data. This
work ultimately represents a critical step in a more thorough understanding of the wave-particle interactions that affect
magnetic nozzle thermodynamics. This insight may in turn be leveraged to arrive at self-consistent descriptions for
thruster operation and performance.
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