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A lumped circuit model approach is used to predict performance of a rotating magnetic
field (RMF) thruster. The equivalent circuit is derived by modeling the driving antennae and
plasma as a collection of current loops interacting via mutual inductance and Lorentz forces.
Several physically relevant assumptions are applied to reduce the complexity of the system.
The resulting set of equations require five free circuit parameters that must be determined
experimentally. Data from performance measurements of the Plasmadynamics and Electric
Propulsion Laboratory (PEPL) RMF v2 thruster is used to calibrate the model. While the
model tends to underpredict performance, it mirrors operational trends observed during the
experiment. Thruster performance is discussed in the context of the fundamental scaling of the
model as well as the individual scaling of the free parameters. Several methods for increasing
performance are proposed, including ncreasing specific energy, flow rate, and background
magnetic field strength to achieve higher impulse and efficiency.

Nomenclature

� = magnetic field
� = capacitance
4 = elementary charge
� = electric field
�0 = input energy
�% = energy deposited into plasma
5 = pulse frequency
�I = axial force
6 = current density distribution function
9 = plasma current
� = total current or total impulse
 � = kinetic energy
! = inductance
" = mutual inductance
¤< = mass flow rate
<B = mass of plasma slug
= = plasma density
% = total power
' = resistance
) = thrust
D4G = exhaust velocity
+ = voltage
U = acceleration coefficient
[ = resistivity
Γ = electrical gyrators
Ω = Hall parameter
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l = rotating magnetic field frequency
l24 = electron cyclotron frequency
a48 = electron-ion collision frequency
g = ionization time constant
I0 = stroke length

I. Introduction
The rotating magnetic field (RMF) thruster is a novel propulsion concept that has the potential to fill the niche of high

power (>100 kW) electric propulsion (EP). The concept originated in the fusion community as a method for producing
and sustaining plasmoids for fusion purposes [1–3]. In recent decades, the RMF’s unique method for generating
azimuthal currents was adapted for propulsion purposes. As a type of inductive pulsed plasma thruster (IPPT), the RMF
thruster is theoretically able to obtain a specific mass of 0.05 kg/kW, which is several orders of magnitude lower than
state-of-the-art EP devices such as Hall and Gridded Ion thrusters which currently have power densities of 2 kg/kW
[4]. Like other electromagnetic thrusters, the thrust of IPPTs tends to scale quadratically with coil current �. Pulsing
allows IPPTs to access the high powers necessary to generate the large transient coil currents required to ionize neutrals
and accelerate the plasma [5]. In addition, the inductive nature of the thruster means that there are no plasma-wetted
electrodes, which significantly reduces the possibility of lifetime-limiting erosion processes. A key benefit of IPPTs is
the capability to tune each pulse to a set efficiency and specific impulse, allowing us to vary thrust by changing the duty
cycle. This gives the thruster a wide range of throttleability while retaining desired performance characteristics [6].

The RMF thruster is typically classified as a subclass of IPPTs called a field-reversed configuration (FRC) thruster.
FRCs use azimuthal currents to drive a magnetic field opposed to a steady bias field. This produces a self-contained,
magnetized body called a plasmoid. The plasmoid is accelerated out of the thruster at high speeds and pulse rates to
produce thrust. FRCs have certain advantages over other IPPTs such as pulsed inductive thrusters (PITs) in that they can
achieve superior mass utilization by confining the plasma during ejection. There also tends to be a longer stroke length,
the distance over which the plasma remains coupled and accelerates [7]. The RMF builds upon the FRC concept by
introducing an azimuthal current generation via rotating magnetic fields, which introduces favoring scaling properties
related to the necessary current and voltages needed to operate the thruster. While a plasmoid might not always form,
the principal of operation remains the same. Typical IPPTs, including most FRCs, require 10s of kV to induce the large
currents necessary for ionization and acceleration. The RMF thruster is unique in that it relies on sinusoidal currents,
which can be driven continuously and at lower voltages. Thus, induced current in the plasma comes not from large,
transient currents but rather the frequency at which the current is driven [8].

Despite the theoretical advantages of the RMF thruster, available experimental data indicates poor performance.
A study by Weber et. al at the University of Washington and Mathematics Sciences Northwest calculated an overall
thruster efficiency of 8% for an RMF thruster operating on nitrogen at 46 J per pulse [9]. A study by Woods et. al at the
University of Michigan’s Plasmadynamics and Electric Propulsion laboratory (PEPL) used a similar thuster design
as Weber to obtain the first published direct thrust measurements (i.e. with a thrust stand). The results again showed
poor performance with coupling efficiencies of less than 5% and negligible thrust while operating up to 1.1 kW [10].
A recent follow-up study by PEPL with a redesigned thruster based on lessons learned from the previous campaign
reported improved performance [11]. The thruster was operated at 5 kW. Thrust in the low 10’s of mN was measured at
efficiencies of 5% or less. The full results have been published alongside this study [12].

To date, several models exist that attempt to explain the underlying mechanisms of the RMF thruster. Hugrass and
Jones utilized a numerical simulation coupled with a circuit analysis to study the coupling of an RMF to a fixed plasma
[3]. Although this was for fusion purposes, and thus lacked the acceleration mechanisms, their work has provided
valuable insight into the penetration characteristics of the RMF current drive. Weber used an enthalpy model to break
down the various efficiency loss mechanisms. Using the model, he was able to approximately calculate how much
energy deposited into the plasma was being lost due to ionization, radiation, convection, screened RMF energy, and
unused thermal energy. Of these, radiation was the dominant loss mechanism and accounted for 78% of the total
plasma energy [9, 13]. Little et al. utilized a circuit model to further understand the neutral entrainment properties of
RMF thrusters when a second stage \-pinch-like accelerator is added. In this configuration, the second stage imparts
additional kinetic energy into a plasmoid already formed and partially accelerated by an RMF [14]. Finally, Woods et.
al. again used a circuit analysis to directly model the coupling of the plasma’s magnetic flux to the RMF antennae.
The numerical model is able to recover performance trends over various operating conditions, although it remains
unvalidated and complicated [15, 16]. Each of these models are not predictive, complicated, or do not model the RMF
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driven acceleration in the thruster. The need for a simple, predictive model is thus apparent to better understand RMF
thruster performance and identify strategies for improving it.

The goal of this work is to put forth a mid-fidelity equivalent circuit model for RMF thrusters that accurately describes
the underlying physics of the system while remaining simple enough to provide insight into thruster performance and
optimization. We achieve this by deriving a model using a lumped circuit approach that consolidates many of the
complex geometrical features of the thruster into physically intuitive circuit parameters. The lumped circuit approach
has been leveraged before to model other IPPTs such as the PIT, \-pinch FRC thrusters, and annular FRC thrusters
[17–19]. To this end, this paper is organized in the following way. In section II we review operating principles of
the RMF thruster and leverage these insights to derive the model. In section III, we provide an overview of a recent
PEPL RMF thruster study from which we use the data to validate our model (full experimental study is found in Ref.
[12]). In section IV, we use the data from the experiment to calibrate our model. In section V, we discuss the observed
performance trends and how the scaling of the various free parameters can be used to further optimize design. Finally,
in section VI, we conclude our study with a brief overview of key findings.

II. Theory
Here, we review the principle of RMF operation and use the mechanics to derive a lumped circuit model.

A. Idealized Model
We first overview the principle of operation of current drive through RMF thrusters. This model is based on the

derivation first presented by Blevin and Thonemann [1]. The key elements in the formation process are illustrated in
Fig. 1. Neutral gas with a small amount of seed plasma from a pre-ionizer fills the discharge chamber. This plasma is
confined by a steady background magnetic field with a radial gradient, given in cylindrical coordinates as

BB = �B,A r̂ + �B,I ẑ, (1)

where �B denotes the steady background magnetic field and �B,A and �B,I are its radial and axial components respectively.
Two sets of saddle coils are oriented perpendicular to each other, and phase-shifted currents with frequency l are

driven through these coils, generating alternating magnetic fields that are 90◦ out of phase. The combined effect of
these coils creates a RMF of the form

B'"� = �> cos(lC)x̂ + �> sin(lC)ŷ, (2)

where �> is the amplitude of the magnetic field. While a real RMF would have spatial variation, this idealization of the
field does not. The RMF frequency should be much greater than the ion cyclotron frequency but much less than the
electron cyclotron frequency to ensure that the induced ion currents are much smaller than the electron currents. The
combination of Faraday’s law of induction and the generalized Ohm’s law for an infinitely long plasma column show
that the time-varying RMF magnetic field produces an electric field that in turn drives an azimuthal plasma current. The
electron Hall parameter is defined as Ω4 = �>/([=44), where [ is the plasma resistivity, =4 is the electron density, and
4 is the elementary charge. In the limit of low plasma resistivity, Ω4 will be much greater than one, and the electrons
will rotate in sync with the RMF. In this case, the plasma current density as a function of radial position is

9\ (A) = −=44lA, (3)

where =4 is assumed constant. The above formulation, specifically Eq. (3), illustrates a key advantage of RMF thrusters.
In principle, if the resistivity is sufficiently low, the current that is driven in the azimuthal direction is independent of the
current in the driving coils.

There have been three theories proposed as to what process accelerates the plasma in the RMF thruster. A self-field
acceleration component may contribute to thrust. It can be caused by a self-induced radial magnetic field interacting
with the azimuthal current. Thrust may also be produced through the conversion of thermal to kinetic energy via
adiabatic expansion. Here, we only consider the Lorentz force on the plasma is produced by the interaction of the
azimuthal current and the external magnetic field. This equation can be expressed as

�I =

∫
+

�\�B,A 3+. (4)
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Fig. 1 RMF Operation: a) Side view cross-section in the A-I plane of the thruster illustrating how ionized gas
is injected into the discharge chamber. A steady bias magnetic field with radial gradient is present. b) The
RMF coils are discharged. c) An azimuthal current is generated in the plasma, which also induces an opposing
magnetic field. d) The plasma is accelerated out of the thruster.

Despite this simple representation avoiding many of the intricacies related to coupling between the plasma and antennae,
we can begin to see what parameters are important for thruster performance. Notably, the thrust, like the azimuthal
current, scales with frequency instead of magnetic field strength. In theory, we should arrive to similar conclusions once
we derive the lumped circuit model.

B. Lumped Circuit Model
Armed with fundamental operating principles outlined in the above subsection, we can begin to assemble our

lumped circuit model.

1. Geometry and Assumptions
For simplicity, we assume the plasma has a cylindrical shape and is semi-infinite in length (i.e. length� radius).

The coils are arranged in a similar way to the setups shown in Fig. 3. One coil produces a magnetic field primarily in
the x-direction and the other produces a field primarily in the y-direction. Other assumptions are:

• Constant plasma slug geometry
• Negligible thermal effects
• Electrons are inertialess
• Ions do not contribute to current
• Negligible electron pressure
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Fig. 2 Generation of axial current due to x-direction coils. End on view is on the left while a side view is
featured on the right.
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Fig. 3 RMF thruster circuit diagram. The antennae current loops are are on the left, the axial plasma current
loops are on the right, and the azimuthal plasma current loop is in the center. They are all coupled inductively
or through gyrator terms.

2. Deriving Axial Plasma Current Loop Equations
The two antennae couple to the axial currents in the plasma. We can use Ohm’s law to describe the axial plasma

currents induced in the plasma by the coils,
�I −

�\�A

=4
= [�I . (5)

Here, �I is the axial electric field, �A is the radial magnetic field, and �I and �\ are the z- and \-direction plasma
current densities respectively. The coil magnetic fields are,

�2,G = W2,G �2,G (6)
�2,H = W2,H �2,H . (7)

The W terms are geometric factors that relate the coil currents to the magnetic fields they produce. They are a function of
A and \. Similarly, the plasma slug creates magnetic fields due to the mirror currents induced in it by the coils,
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�B,G = WB,G �B,�G
(8)

�B,H = WB,H �B,�H
. (9)

There is also an external, steady magnetic field,

®�4GC = �4GC,A ®A + �4GC,I®I. (10)

Thus, the total magnetic field, written in cylindrical coordinates, is

�A =
(
�2,G + �B,G

)
cos \ −

(
�2,H + �B,H + �4GC,H

)
sin \ + �4GC,A (11)

�\ =
(
�2,G + �B,G + �4GC,G

)
sin \ +

(
�2,H + �B,H

)
cos \. (12)

Per Faraday’s law, time varying magnetic fields will produce electric fields. For our case, we can relate the azimuthal
magnetic fields to the axial electric field,

m�A

mI
− m�I

mA
= −3�\

3C
. (13)

Applying the semi-infinite plasma column assumption (all axial derivatives go to zero) and solving for �I yields

�I =
m

mC

∫
�\ sin \3A. (14)

The magnetic and electric fields we defined can be inserted into the axial Ohm’s law in Eq. 5. We have the axial
current density, however, in order to obtain Kichoff’s voltage law (KVL) equations for the plasma, we need to consider
the plasma current that couples to each of the coils. Per Fig. 3, the x-coil produces a magnetic field in the x-direction.
It couples into the plasma, driving a current in the axial direction. That resulting plasma current induces its own
x-direction magnetic field that couples back to the coils. We can define a conductor geometry per Fig. 3c) which
illustrates the plasma current that couples to the coil. Thus, generally speaking, there are two current density populations
driven by the coils, one with a density distribution 6I,�G

and the other 6I,�H
. In addition, there is an azimuthal current

density distribution function, 6\ . They are related to the plasma’s total and density currents by

�I,�G
= 6I,�G

�I,�G
(15)

�I,�H
= 6I,�H

�I,�H
(16)

�\ = 6\ �\ . (17)

KVL for the axial plasma currents induced by the x-direction coils can be found by multiplying Eq. 5 by 6I,�G
and

integrating over the column of the plasma, + ′. The same process can be done using 6I,�H
to derive KVL for the axial

plasma currents driven by the y-direction coils. The derivation for both equations can be found in the appendix. Here,
we note the electrical parameters we obtain. We use the expressions related to the �I,�G

current loop. However, they are
the same apart from phase differences for �I,�H

. First and foremost, there is a mutual inductance term that characterizes
the coupling between the antennae and the currents. It has the form,

"G =

∫
+ ′
6I,�G

∫
W2,G sin \3A3+ ′. (18)

The mutual inductance is solely a function of the geometry. Similarly, the self-inductance is

!B,�G
=

∫
+ ′
6I,�G

∫
WB,G sin \3A3+ ′, (19)

and also depends only on geometry. The resistance is the bulk analog to the plasma resistivity,

'B,�G
=

∫
+ ′
[6I,�G

23+ ′. (20)
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To characterize the Lorentz force interactions within the plasma, a series of quantities called, "gyrators," are
introduced. In electronics, gyrators are the fifth circuit element after resistors, capacitors, inductors, and transformers.
If we suppose a current loop with voltage +1 and current �1, a current can be induced in another inductor with voltage +2
and current �2 through an ideal gyrator, �, by the equations,

+1 = −��1 (21)
+2 = ��2, (22)

where G has units of resistance. In induction motors, for instance, the gyrator term manifests as the angular frequency
induced by stator on the rotor [20]. In our model, the gyrator term descries how the axial plasma currents can induce
azimuthal plasma currents and vice versa. For example, the gyrator term describing the interaction between �I,�G

, �2,G ,
and �\ is,

Γ2,G
′ =

∫
+ ′

6I,�G
6\

=4
W2,�G

cos \. (23)

This gyrator term contains geometric elements related to the axial and azimuthal plasma currents. It also scales
inversely with the plasma density. The gyrator parameters have units of either Ω/� or Ω/�2 depending on whether the
magnetic field in question is steady (i.e. the external fields) or depends on the coil or plasma currents respectively.

3. Deriving Azimuthal Plasma Current Loop Equations
KVL for the azimuthal plasma current can be found in much the same way as the axial plasma currents. We start

with the generalized Ohm’s law for the azimuthal current density,

�\ +
�I�A

=4
= [�\ (24)

�\ is only composed of the time varying electric field caused by the time varying axial magnetic field produced by the
azimuthal current,

�\ = −
m

mC

1
A

∫
A�B,I3A = −

m

mC

1
A

∫
AWB,I �\3A. (25)

We insert our previous definitions for the plasma current densities and magnetic fields, multiply by 6\ , and integrate
over + ′ to recover KVL for the azimuthal current. In addition to recovering many of the same gyrator parameters we see
in the axial plasma current KVL equations, we also obtain new electrical parameters that characterize the effective
resistance caused by the magnetic fields. For instance, the resistance caused by the x-coil magnetic field is,

'′′�2,G
=

∫
+ ′
Ω′′�2,G

2
[6\

23+ ′, (26)

where Ω′′
�2,G

is an effective Hall parameter,

Ω′′�2,G

2
=
W2,�G

2 cos \2

([=4)2
. (27)

Like the gyrator terms, these resistances have units of either Ω/� or Ω/�2 depending on whether the magnetic field
in question is steady (i.e. the external fields) or depends on the coil or plasma currents respectively. A full list of these
electrical parameters is provided in the appendix.

4. Slug Acceleration
The acceleration of the slug is defined by Newton’s second law. The force acting on the slug is the Lorentz force

caused by the azimuthal current interacting with the external radial magnetic field,

<B
32I

3C2
=

∫
+ ′
�A ,4GC6\3+

′�\ . (28)
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Here, I is the axial position of the slug and <B is its mass. There may also be a self-induced radial magnetic
field caused by the plasma coupling to flux conservers. These structures act to sustain the constant flux on the short
timescales of the plasma acceleration. They consist either of metallic straps placed along the thruster cone or the cone
itself is composed of conductive material [16]. In our model, flux conservers are absent as a recent study by Sercel et al.
concluded that any additional coupling between the plasma and surrounding structures is an inherent loss mechanism
[11]. Consequently, the thruster we use to calibrate the model is constructed of primarily nonconductive materials.
Thus, the self-induced fields are minimal.

5. Antennae Current Loops
In addition to the KVL and acceleration equations, the expressions governing the forced oscillation of the antennae

to produce the necessary sinusoidal waveforms are,

+�C,G
+ !2,G

3�2,G

3C
+ '2,G �2,G −

3"2,G

3C
�I,�G

− "2,G
3�I,�G

3C
= +0 cos (lC) (29)

+�C,H
+ !2,H

3�2,H

3C
+ '2,H �2,H −

3"2,H

3C
�I,�H

− "2,H
3�I,�H

3C
= +0 sin (lC) (30)

3+�C,G

3C
=
�2,G

�C ,G
(31)

3+�C,H

3C
=
�2,H

�C ,H
. (32)

Here, +0 is the power supply voltage. Each of the antennae has a self-inductance, !2,8 , resistance, '2,8 , tuning
capacitance, �C ,8 , and mutual inductance term chracterizing coupling to the plasma, "2,8 . Here, 8 is either G or H
depending on the antenna.

C. Simplifying the Model
The full system of equations is provided in the appendix. Without simplification, there are 34 free parameters

(everything related to the plasma) across 8 equations, a remarkably convoluted system. We can reduce the number of
free parameters by applying a series of physically relevant assumptions.

• Equivalent geometric factors: Assuming axisymmetry, the circuit parameters for quantities in the x-direction
will be the same as those in the y-direction. The primary difference is a change of sign depending on the direction.
As an example, we can assume the axial plasma inductances are,

!B,�G
= !B,�H

= !B . (33)

• Current phase offsets: For both the antenna and plasma axial currents, the currents associated with the y-direction
magnetic fields can be expressed as constant phase offsets relative to the currents associated with the x-direction
magnetic fields.

�2,H = �2,G4
8 c2 (34)

�I,�H
= �I,�G

48
c
2 . (35)

• Negligible plasma self-inductance: The plasma self-inductance is low enough that the voltages induced by it
are negligible relative to the other terms.

• Negligible external field effects on driven current: The current induced by the external magnetic field is
neglibile relative to those induced by the RMF. That is,

�4GC � �'"� . (36)

• Large Hall parameters: We assume the electrons are fully magnetized to the rotating magnetic field. This
causes the Hall parameter related resistances in the azimuthal KVL current loop equation to dominate.
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• Ionization time constant: At the beginning of the discharge, most of the particles are neutrals. As current flows
through the antennae, the neutrals are ionized over a finite time scale. This ionization time is assumed to be rapid,
and the plasma density can be defined as

=4 = =4, 5 tanh
( C
g

)
, (37)

where =4, 5 is the final plasma density and g is a characteristic time constant. As a result, �\ requires time to ramp
up as more free electrons are produced and entrained by the RMF.

• Exponentially decaying coupling: We assume the coupling decays over some length scale as the plasma
accelerates away from the thruster. The decay is represented by 4−

I
I0 , where I0 is a characteristic stroke length.

Applying the assumptions and reducing the equations yields the following,

(
!2,G − "0,4 5 5 4

− I
I0

) 32�2,G

3C2
+

©«'2,G − 2
3

(
"0,4 5 5 4

− I
I0

)
3C

ª®®¬
3�2,G

3C

+
©«

1
�C ,G

+
32

(
"0,4 5 5 4

− I
I0

)
3C2

ª®®¬ �2,G = l+0 sin(lC)

(38)

<B
32I

3C2
= U (1 − 8)

[
3�2,G
3C

�2,G
− 2
I0

3I

3C
− 'B

"0,4 5 5

]
tanh

( C
g

)
4
− I

I0 . (39)

Here we have collapsed our original system of 8 to 2. The free parameters are a characteristic mutual inductance,
"0,4 5 5 ; the stroke length, I0; the plasma resistance, 'B; the ionization time constant, g; and an acceleration constant, U.
The coil inductance, capacitance, and resistance can be measured. +0 and l are parameters set by the operator. The
first equation represents the antenna current. The inductance, resistance, and capacitance terms have been modified by
mutual inductance expressions relating how each quantity is perturbed by the plasma. Each of these quantities decays
exponentially as the slug is ejected from the thruster. The second equation is the acceleration of the slug. <B is the
mass of the neutrals initially present in the thruster cone. The terms in the brackets correspond to the azimuthal current
generated in the plasma. The thrust scales with U as well as a hyperbolic tangent function related to the breakdown of
theneutrals over time. Like the mutual inductances in the coil equation, the force acting on the slug decays exponentially.
Our system stands in contrast to other circuit models, such as those of PITs, which present the coil and plasma current as
separate equations [21]. Here, they have been lumped together, providing more insight into how the plasma directly
interacts inductively, restively, and capacitively with the antennae.

D. Physical significance of free parameters
Despite acting as free parameters, the coefficients introduced in the previous section are grounded in the fundamental

physics of the system.
• Stroke length - I0: This parameter is a characteristic stroke length associated with the geometry of the thruster.
The longer the thruster, the longer the plasma will stay coupled to the antennae. Like other IPPTs, the length of
the pulse should be optimized to cease discharge once the plasma has decoupled from the driving coils [21, 22].

• Effective mutual inductance - "0,4 5 5 : This parameter serves as a modified mutual inductance term. It consists
of usual mutual inductance, commonly found derived in inductively coupled circuits, multiplied by a ratio of
resistances,

"0,4 5 5 = "
'Ω2

′

'ΩB
′ , (40)

where " is the classical mutual inductance between the antennae and the axial plasma currents. Essentially,
the larger the cone, the larger the mutual inductance resulting in greater coupling. 'Ω2

'ΩB
reflects a ratio of Hall

parameters between the coil and plasma induced radial magnetic fields,

'Ω2

'ΩB

=

∫
+ ′
Ω′′
�2

2[6\
23+ ′∫

+ ′
Ω′′
�B

2[6\ 23+ ′
, (41)
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where

Ω′′�2

2
=
W2

2 cos \2

([=4)2
(42)

Ω′′�B

2
=
WB

2 cos \2

([=4)2
. (43)

Consequently, 'Ω2
'ΩB

reduces to essentially W2
WB
. The larger the W, the less is needed to generate a given magnetic field.

The larger this ratio, the higher the propensity of electrons to become entrained by the coil generated magnetic
fields, thus increasing the coupling. "0,4 5 5 is purely a function of geometry.

• Acceleration coefficient - U: The acceleration coefficient lumps together the magnetic field element of the
Lorentz force, the azimuthal current density distribution, the mutual inductance, and geometry,

U =

∫
+ ′
6\�A ,4GC3+

′ "0,4 5 5

Γ2,0 − ΓB'0
∗ . (44)

Greater physical insight can be gained if we consider U in the context of the entirety of the acceleration equation

<B
32I

3C2
=

∫
+ ′
6\�A ,4GC3+

′ (1 − 8)

"0,4 5 5

3�2,G
3C
− 2
I0
"0,4 5 5

3I
3C
�2,G − 'B �2,G(

Γ2,0 − ΓB'0
∗) �2,G

 tanh
( C
g

)
4
− I

I0 , (45)

where we have substituted our definition for U and rewritten the equation in a more intuitive form. The terms in
the brackets represent the azimuthal current in the plasma. The numerator is in units of + . It characterizes the
axial electric fields experienced by the plasma. The denominator is the gyrator term caused by the radial magnetic
fields. It has units of Ω. Physically, this ratio represents an � × � drift. Thus, U lumps together the external radial
magnetic field, geometry, and geometric scaling related to the � × � drift that results in the azimuthal plasma
current. Indeed, if we assume sinusoidal currents, we can rewrite 45 as,

<B
32I

3C2
= U (1 − 8)

[
l − 2

I0

3I

3C
− 'B

"0,4 5 5

]
tanh

( C
g

)
4
− I

I0 , (46)

where we see that the thrust, and thus the azimuthal current, scales linearly with the RMF frequency. This result
parallels the simplified current density expression discussed at the beginning of this section which showed 9\
scaling with l as well. Thus, the acceleration is independent of the magnitude of the RMF assuming it is strong
enough to fully entrain the electrons (i.e. the Hall parameters are large).

• Ionization time constant - g: As the antennae discharge into the plasma, more neutrals will become ionized. The
process will be rapid but finite. The higher the ionization fraction, the more electrons are available to be entrained
by the RMF, thus increasing the Lorentz force. This phenomenon is reflected by the fact that U is proportional to
the plasma density. g is used as a characteristic ionization time.

• Slug resistance - 'B: 'B represents losses due principally to electron-ion, electron-neutral collisions, ionization,
unused thermal energy, and radiation.

In the following section, we discuss how the waveform and other performance data were obtained before moving on
to actual model calibration.

III. Experimental Setup
To determine the validity of the model outlined in Sec. II, we use performance data from the PEPL RMF thruster v2.

The full details of the experiment can be found in Ref. [12]. For our purposes, we only provide a brief overview of the
experimental setup to frame the methodology for calibrating the model. The thruster is shown in Fig. 4 before and
during operation.

A. Thruster Test Article
The PEPL RMF thruster v2 is a 5-kW class device. It operates on xenon gas at flow rates up to 200 sccm. The

thruster consists of a LaB6 hollow cathode pre-ionizer that produces into a thruster cone angled at approximately 14°.
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Fig. 4 a) PEPL RMF thruster v2 experimental setup b) 10 s exposure image of RMFv2 thruster operating at
the 45 sccm Xe flow, 1.95 kA peak antenna curent,120 G centerline bias field condition at 75 Hz repetition rate.

Three electromagnets produce a steady diverging field. The thruster is powered by a custom pulsed power unit (PPU)
built by Eagle Harbor Technologies that produces a steady waveform for each antenna with amplitudes up to 2 kA
peak-to-peak. The antennae currents were measured using Pearson coils and recorded via an oscilloscope. The PPU
pulses for 200 `s at 75 Hz. It can fire for approximately 5 minutes at a time before heating becomes an issue.
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We measured thrust using an inverted pendulum thrust stand operating in null mode. Although originally intended
for use with steady state thrusters, the stand can be operated with pulsed devices so long as its natural frequency (1-2
Hz) is significantly less than the pulse rate [23]. An optical sensor was used to measure the displacement caused by the
thruster. The measurements were adjusted to account for inclination as well as EMF effects caused by the discharging
antennae. All measurements were taken in the PEPL Large Vacuum Test Facility (LVTF) [24].

The experimental setup provides two critical pieces of data. The first is the thrust. Using this measurement, we can
calculate the impulse and efficiency of the pulses. The impulse is calculated by dividing the measured thrust, ) , by the
pulse frequency, 5 ,

� =
)

5
. (47)

The kinetic energy of the accelerated plasmoid is then

 � =
1
2
�2

<18C
, (48)

where <18C is the mass of the plasma in the cone at the time of discharge. The total energy discharged by the RMF
antennae, �?D;B4 is

�?D;B4 =
%

5
, (49)

where % is the average power. Thus, the impulse efficiency, which effectively serves as a correction for the duty cycle, is

[ =
 �

�?D;B4
=

�2 5

2<18C%
=

)2

2<18C 5 %
. (50)

The second piece of data that we collect is the antenna current discharge waveform. The waveform is used to tune
the model introduced in Sec. II using a least-square-fit. We discuss the procedure for this in the following section.

IV. Methodology
In this section, we provide details on how we run the model, calibrate it, and estimate performance.

A. Model Calibration
The model assumes initial current and the time derivative of the current are both zero and that the plasma slug is

initially stationary at I = 0. The experimental waveform provides current through the x-coil as at several times over the
course of the discharge. Using Mathematica, a least-square-fit is performed to match the discharge envelope from the
model current to the measured current by varying the free parameters.

Initially, the coil parameters are unknown. To measure the properties, the model is first calibrated using the coil
resistance, inductance, and capacitance as well as free parameters and the discharge waveform taken from a vacuum
shot (i.e. not plasma-loaded). +0 was 150 V. The fit is shown in Fig. 5. Physically, we see that the peak antenna current
rings up to a certain level before remaining relatively constant over the duration of the discharge. This is expected as the
PPU works to constantly oscillate the LC circuit close to resonance to produce the desired sinusoidal current. Applying
our fitting procedure yields a reistance, inductance, and capacitance of 0.19 Ω, 3.4 `�, and 42 =� respectively.

Now that the antennae properties are known, we can fit the model to plasma-loaded cases. To reduce the number of
free parameters, I0 is assumed to be the characteristic length of the thruster, 0.15 <. Since it is a geometric term, we
expect it to remain constant for all cases. A sample fit is shown in figure 6. The antenna current was 1.95 :�, the flow
rate was 45 sccm, and there was a 80 G peak centerline background magnetic field. Here, we see that the current begins
to rise before decreasing over most of the discharge. This reflects the plasma load on the circuit. After some time, the
current rises again as the plasma is ejected out of the thruster. The resulting fit yielded a "0,4 5 5 of 298 =�, 'B of 0.79
Ω, an U of 3.6 ×10−7:6</B, and a g of 358 `B. The calculated exhaust velocity was 1722 </B compared to a measured
value of 3242 </B.

B. Predicted performance metrics from model
Ultimately, the goal of the model is to determine the exhaust velocity of the slug. The velocity as a function of time

for the case illustrated in Fig. 6 is shown in Fig. 7. D4G is the final axial velocity at the end of the pulse. The calculated
exhaust velocity for this case was 1722 </B compared to a measured value of 3242 </B.
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Fig. 5 Sample vacuum shot ringdown envelope at 150 V.

Fig. 6 Sample plasma loaded waveform for thruster operating at 1.95 kA, 45 sccm, and 80 G peak centerline
magnetic field.

The impulse is then

� 5 8C = <18CD4G , (51)

leading to a kinetic energy of,

 � 5 8C =
1
2
� 5 8C

2

<18C
. (52)

The calculated model efficiency is

[ 5 8C =
 � 5 8C

�?D;B4
. (53)
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Fig. 7 Samplemodel slug velocity over time for thruster operating at 1.95 kA, 45 sccm, and 80G peak centerline
magnetic field.

We can compare the experimental and theoretical efficiency and impulse to assess the validity of our model. In the
following section, we present results over a wide range of operating conditions before discussing our findings in the
context of thruster performance.

V. Results
In this section, we present the results of fitting the model to thruster data obtained across a wide range of operating

conditions. The flow was varied from 45 to 60 sccm with 80 and 120 G peak centerline magnetic fields. The antenna
was discharged at 1.5, 1.7, and 1.95 kA, all at a 75 Hz pulse rate. Fitting the model yielded the following results for
specific impulse and efficiency.

A. Fit parameters as a function of operating conditions
In Figs. 8 - 11, each fit parameter is presented as a function of flow rate, magnetic field, and peak antenna current.

"0,4 5 5 remains relatively constant across the operating conditions. However, U, g, and 'B tend to decrease with peak
antenna current. Larger flowrates also tend to contribute to higher U, g, and 'B .

B. Comparison to performance measurements
The model tends to underpredict specific impulse and efficiency, however, it does mirror the trends seen in the

experimental data. Both the experimental data and model show that specific impulse and efficiency increase with
specific energy. The implication of these trends are discussed in the following section.

VI. Discussion
In this section, we compare the model results to the the measured experimental values, discuss the dependency of

the performance on the model parameters, and consider the implications of our conclusions on future RMF thruster
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Fig. 8 "0,4 5 5 as a function of flow rate and peak current at a) 80 G and b) 120 G peak centerline background
magnetic field

Fig. 9 'B as a function of flow rate and peak current at a) 80 G and b) 120 G peak centerline background
magnetic field

Fig. 10 U as a function of flow rate and peak current at a) 80 G and b) 120 G peak centerline background
magnetic field

operation and design.
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Fig. 11 g as a function of flow rate and peak current at a) 80 G and b) 120 G peak centerline background
magnetic field

Fig. 12 Model parameters as a function of specific energy a) mutual inductance b) acceleration coefficient c)
plasma resistance d) ionization time constant
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Fig. 13 Specific impulse versus specific energy for experiment and model.

Fig. 14 Efficiency versus specific energy for experiment and model.

A. Observed trends
The specific impulse and efficiency plots show that the model consistently underpredicts performance. The lower

exhaust velocity reduces the efficiency determined by the model. The discrepancy may point toward a missing
acceleration mechanism. Three theories have been put forth to explain the thrust generation mechanism in RMF
thrusters. The model presented in this study considers only the Lorentz force caused by the interaction between the
azimuthal current and applied magnetic field. In principle, however, a self-generated radial field may also contribute to
this Lorentz force. Additionally, the magnetic nozzle can convert the thermal energy into kinetic energy via adiabatic
expansion. Either of these two processes can add impulse during the discharge, thus boosting the overall performance
of the thruster. Previous work may also support this hypothesis. Weber calculated that the electrodless Lorentz force
(ELF) thruster, operated by MSNW, was able to convert approximately 50% of the total thermal and magnetic energy
deposited into the plasma by the RMF antennae into useful kinetic energy [13]. Incorporating thermal expansion into
our model could close the gap we see between the theoretical and measured impulse values. Nevertheless, despite the
discrepancies, the model accurately reflects the general trend presented by the experimental data that both impulse and
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efficiency increase with specific energy.

B. Explanation of trends in model parameters
We can extract information from the scaling of the free parameters with performance to identify potential pathways

for increased performance.
• Effective mutual inductance - "0,4 5 5 : "0,4 5 5 is a critical parameter for the operation of the thruster. It
characterizes how energy is transferred from the antennae to the plasma. A larger mutual inductance represents
greater coupling. Fundamentally, "0,4 5 5 depends on the geometry of the device as well as the current distribution
in the plasma. In this study, "0,4 5 5 is insensitive to the operating conditions, reflecting the mutual inductance’s
dependency primarily on geometry of the thruster.

• Plasma resistance - 'B: The plasma resistance tends to be on the order of or above that of the antenna resistance.
This indicates that energy is being readily coupled to the plasma but not converted to kinetic energy. This tracks
with the efficiency scaling as a function of specific energy presented in Fig. 14. The plasma resistance decreases
with increased specific energy. Fig. 11 shows that the plasma resistance specifically reduces with peak antennae
current. Physically, this is because a higher antennae current results in better coupling with the plasma. More
neutrals are ionized and the bulk plasma temperature is higher. Consequently, electron-ion and neutral collisions
decrease, leading to fewer losses in the plasma.

• Ionization time constant - g: Per Fig. 11, the ionization constant decreases with peak antennae current. The
trend mirrors the plasma resistance. A higher current results in better coupling, and thus specific energy, which
ionizes the plasma faster.

• Acceleration coefficient- U: Fig. 12b shows that U decreases with specific energy. Physically, this is due to U
scaling linearly with plasma density. More free electrons translates to more electrons becoming entrained by the
RMF, thus leading to higher thruster.

C. Pathways for Increased Performance
Using the model and the resulting fits to data, we can determine a number of ways to increase overall performance

of the thruster. First, following the scaling of other IPPTs [6], the RMF thruster has increased performance for higher
specific energies. The model shows that a key benefit of higher pulse energies is a faster ionization time and a lower
plasma resistance. A faster ionization means more electrons will be available earlier in the pulse. These electrons will
contribute to the azimuthal current necessary to produce thrust. Lower plasma resistances translate to fewer energy
losses in the plasma. More energy can be coupled to the plasma by increasing the mutual inductance, which can be
achieved by increasing the physical size of the thruster. Increasing the U parameter yields increased thrust. From Eq.
44, we see that the acceleration coefficient can be increased by increasing the background magnetic field strength and
flow rate. Increasing the magnetic field strength is straightforward. A higher field results in a higher rate of converting
the magnetic energy to directed kinetic energy. However, increasing the mass flow rate is slightly more nuanced. More
mass flow will result in more thrust but will decrease specific energy. Thus, the energy must be similarly increased if
specific impulse is to remain above a desired level. It is also physically possible that a pulse energy beyond what is
necessary to entrain the electrons will lead to efficiency losses. Beyond this, the power input by the antennae does not
contribute to the Lorentz force action. However, it likely is deposited as thermal energy which can be directed to kinetic
energy via adiabatic expansion. Although the model in this study does not include this thermal-to-kinetic conversion, it
would follow that the scaling should be similar to other magnetic nozzle thrusters which increase in performance with
flow rate and input energy [25]. Additionally, a limitation that thus far appears to be unique to the RMF is the possibility
of reversing the azimuthal current over the course of the acceleration. The acceleration is defined by a Lorentz force and
is repeated here,

<B
32I

3C2
= U (1 − 8)

[
3�2,G
3C

�2,G
− 2
I0

3I

3C
− 'B

"0,4 5 5

]
tanh

( C
g

)
4
− I

I0 . (54)

The terms in brackets define the direction of the azimuthal current. Assuming the resistance contribution is
negligible, we can see that it is possible for the current to reverse if 3I

3C
is large enough. Physically, this represents the

change in magnetic flux being dominated by the axial translation of the slug, not the frequency of the discharge. We can
define a simple operation criteria provided we substitute the exhaust velocity, D4G for 3I3C ,
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D4G <
2
I0

3�2,G
3C

�2,G
≈ 1

2
I0l. (55)

Physically, this expressions shows that the the slug is losing energy to the RMF antennae as flux is conserved
throughout the discharge. The relationship places an upperbound on achievable specific impulse and suggests the
thruster needs to operate with longer geometries or higher frequencies. For our geometry and RMF frequency, the
theoretical maximum achievable exhaust veloicty is 198 :</B.

Overall, the trends in the free parameters over several operating conditions coupled with the underlying physics of
the model shows that increased performance can be achieved by increasing the specific power, background magnetic
field, flow rate, and physical size of the thruster.

VII. Conclusion
The goal of this work is to put forth a simple model that can be calibrated against data to provide more insight into

the performance scaling characteristics of RMF thrusters. To accomplish this, we derived an equivalent circuit model
for the system. We used a simplified geometry consisting of a cylindrical, semi-infinite plasma slug in conjunction with
Ohm’s law to derive governing equations for the various current loops and how they interact with each other. Coupled
with Newton’s second law to describe the acceleration of the slug, a system of governing equations was derived. To
reduce their complexity, we applied several physically relevant assumptions. Namely, we assumed equivalent geometric
factors for the x- and y-direction coils, a constant electrical phase offset between antennae discharges, large Hall
parameters, neglibible plasma self-inductance, and neglibile external magnetic field effects on driven plasma current.
These assumpstions reduced the number of equations from eight to two. One equation defines the antennae current while
the other describes the slug translation. There are five free parameters. The stroke length, I0, was assumed to be fixed at
0.15 m. The rest were determined by calibrating the model from operational data using the PEPL RMF v2. The model
tends to underpredict performance but mirror scaling trends. We used our model to discuss pathways for increasing
performance. In particular, higher specific energies, background magnetic fields, and flow rates will all lead to increased
specific impulse and efficiency. Also, a limitation for exhaust velocity was identified. D4G must be below 1

2 I0l lest the
azimuthal current is reversed resulting in negative thrust. These scaling can help inform future thruster design.
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IX. Appendix
Here, we provide a more detailed derivation of the model.

1. Geometry and assumptions
For simplicity, we assume the plasma has a cylindrical shape and is semi-infinite in length (i.e. length� radius).

The coils are arranged in a similar way to the setups shown in Fig. 3. One coil produces a magnetic field primarily in
the x-direction and the other produces a field primarily in the y-direction. Other assumptions are,

• Constant plasma slug geometry
• Neglect thermal effects
• Electrons are inertialess
• Ions do not contribute to current
• Neglect electron pressure

2. Deriving Axial Plasma Current Loop Equations
The two antennae couple to the axial currents in the plasma. We can use Ohm’s law to describe the axial plasma

currents induced in the plasma by the coils,
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�I −
�\�A

=4
= [�I . (56)

Here, �I is the axial electric field, �A is the radial magnetic field, and �I and �\ are the z- and \-direction plasma
current densities respectively. We assume that one coil produces a magnetic field purely in the x-direction while the
other produces a coil only in the y-direction,

�2,G = W2,G �2,G (57)
�2,H = W2,H �2,H . (58)

Here, the W terms are geometric factors that relate the coil currents to the magnetic fields they produce. They are a
function of A and \. Similarly, the plasma slug creates magnetic fields due to the mirror currents induced in it by the
coils,

�B,G = WB,G �B,�G
(59)

�B,H = WB,H �B,�H
. (60)

There is also an external, steady magnetic field,

®�4GC = �4GC,A ®A + �4GC,I®I. (61)

Thus, the total magnetic field, written in cylindrical coordinates, is

�A =
(
�2,G + �B,G

)
cos \ −

(
�2,H + �B,H + �4GC,H

)
sin \ + �4GC,A (62)

�\ =
(
�2,G + �B,G + �4GC,G

)
sin \ +

(
�2,H + �B,H

)
cos \ ®\. (63)

Per Faraday’s law, time varying magnetic fields will produce electric fields. For our case, we can relate the \-direction
magnetic fields to the axial electric field,

m�A

mI
− m�I

mA
= −3�\

3C
. (64)

Applying the semi-infinite plasma column assumption (all axial derivatives go to zero) and solving for �I yields

�I =
m

mC

∫
�2,G sin \3A + m

mC

∫
�B,G sin \3A + m

mC

∫
�2,H cos \3A + m

mC

∫
�B,H cos \3A. (65)

Now, the relevant electric and magnetic fields have been defined. Consequently, our Ohm’s law is now

m

mC

∫
�2,G sin \3A + m

mC

∫
�B,G sin \3A + m

mC

∫
�2,H cos \3A + m

mC

∫
�B,H cos \3A−

�\

=4

[ (
�2,G + �B,G

)
cos \ −

(
�2,H + �B,H

)
sin \ + �4GC,A

]
= [�I

. (66)

We have the axial current density, however, in order to obtain Kichoff’s voltage law (KVL) equations for the plasma,
we need to consider the plasma current that couples to each of the coils. Per figure 3, the x-coil produces a magnetic
field in the x-direction. It couples into the plasma which drives a current in the axial direction. That resulting plasma
current induces its own x-direction magnetic field that couples back on to the coils. We can define a conductor geometry
per 3c) which illustrates the plasma current that couples to the coil. We multiply equation 66 by the axial plasma current
distribution, 6I,�G

, and integrate over the conductor volume, + ′ to obtain

3
(
"G �2,G

)
3C

+
3

(
!B,�G

�2,G
)

3C
−

[
Γ2,G �2,G − Γ2, (G,H) �2,H + ΓB,G �B,�B,G

− ΓB, (G,H) �B,�B,H
+ Γ4GC,�G

]
�\ = 'B,�G

�B,�G
. (67)
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where "G is the mutual inductance between the x-direction coil and the plasma, !B,�G
is the plasma self-inductance

for the x-direction magnetic field, 'B,�G
is the plasma resistance, and the Γ terms are lumped circuit terms related to the

Lorentz force between the axial and azimuthal plasma currents.
The various currents have also been related to current densities by

�I,�G
= 6I,�G

�I,�G
(68)

�I,�H
= 6I,�H

�I,�H
(69)

�\ = 6\ �\ . (70)

Note that terms related to the mutual inductance caused by the y-coil as well as the self-inductance related by
y-direction fields do not manifest in the equation. This is because those terms are related to the y-direction fields and
thus integrate out. That is, they do not contribute to the current that generates the x-direction magnetic field necessary to
couple with the x-coil. In fact, �I,�G

is simply equation 66 without the electric field contributions from �2,H and �B,H ,

m

mC

∫
�2,G sin \3A + m

mC

∫
�B,G sin \3A − �\

[=4

[ (
�2,G + �B,G

)
cos \ −

(
�2,H + �B,H

)
sin \ + �4GC,A

]
= [�I,�G . (71)

Similarly, KVL for the current that couples to the y-coil, �I,�H
and the current density, �I,�H

,

3
(
"H �2,H

)
3C

+
3

(
!B,�G

�2,G
)

3C
−

[
Γ2, (G,H) ,�H

�2,G − Γ2,H �2,H + ΓB, (G,H) ,�H
�B,�B,G

− ΓB,H �B,�B,H
+ Γ4GC,�G

]
�\ = 'B,�G

�B,�H
.

(72)

m

mC

∫
�2,H cos \3A + m

mC

∫
�B,H cos \3A − �\

=4

[ (
�2,G + �B,G

)
cos \ −

(
�2,H + �B,H

)
sin \ + �4GC,A

]
= [�I,�H

. (73)

Indeed, if we add equations 71 and 73, we see that we can rewrite the total current density, �I , as

�I = �I,�G
+ �I,�H

+ �\
=4

[ (
�2,G + �B,G

)
cos \ −

(
�2,H + �B,H

)
sin \ + �4GC,A

]
. (74)

3. Deriving Azimuthal Plasma Current Loop Equations
KVL for the azimuthal plasma current can be found in much the same way as the axial plasma currents. We start

with the generalized Ohm’s law for the azimuthal current density,

�\ +
�I�A

=4
= [�\ (75)

�\ is only composed of the time varying electric field caused by the time varying axial magnetic field produced by
the azimuthal current,

�\ = −
m

mC

1
A

∫
A�B,I3A = −

m

mC

1
A

∫
AWB,I �\3A. (76)

We plug in equations 63, 70, 74, and 76 into equation 75,

− m

mC

1
A

∫
AWB,I �\3A +

1
=4

(
6I,�G

�I,�G
+ 6I,�H

�I,�H
+ 6\ �\
[=4

[ (
W2,G �2,G + WB,G �B,�G

)
cos \ −

(
W2,H �2,H + WB,H �B,�H

)
sin \ + �4GC,A

] )
( (
W2,G �2,G + WB,G �B,�G

)
cos \ −

(
W2,H �2,H + WB,H �B,�H

)
sin \ + �4GC,A

)
= [6\ �\

(77)
We multiply by 6\ and integrate over the slug volume, + ′. The resulting KVL equation for the azimuthal plasma

current is
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(
Γ′2G ,B �2,G + Γ

′
B,�G

�I,�G
+ Γ4GC,�G

) (
�I,�G

+ �I,�H

)
−

(
Γ′2H ,B �2,H + Γ

′
B,�H

�I,�H
− Γ4GC,�H

) (
�I,�G

+ �I,�H

)
=
3

(
!B, \ �\

)
3C

+ ('�4GC + 2'′�4GC ,�2,G
�2,G + 2'′�4GC ,�B,G

�I,�G
− 2'′�4GC ,�2,H

�2,H − 2'′�4GC ,�B,H
�I,�H

+ '′′�2,G
�22,G + '′′�2,H

�22,H

+ '′′�B,G
�2I,�G

+ '′′�B,H
�2I,�H

+ 2'′′�2,G ,�B,G
�2,G �I,�G

− 2'′′�2,G ,�B,H
�2,G �2,H − 2'′′�2,G ,�B,H

�2,G �I,�H
− 2'′′�2,H ,�B,G

�2,H �I,�G

+ 2'′′�2,H ,�B,H
�2,H �I,�H

− 2'′′�B,G ,�B,H
�I,�G

�I,�H
+ 'B, \ )�\

(78)
In addition to recovering many of the same gyrator parameters we see in the axial plasma current KVL equations,

we get new electrical parameters. Notably, we have additional resistance values that scale with the square of the Hall
parameters associated with each radial magnetic field. For the non-classical resistance values in the azimuthal KVL
equation, we first define a number of Hall parameters,

Ω�4GC

2 =
�4GC,A

2

([=4)2
(79)

Ω′�4GC ,�2,G

2
=
W2,G�4GC,A cos \
([=4)2

(80)

Ω′�4GC ,�2,H

2
=
W2,H�4GC,A sin \
([=4)2

(81)

Ω′�4GC ,�B,G

2
=
WB,�G

�4GC,A cos \
([=4)2

(82)

Ω′�4GC,�B,H

2
=
WB,�H

�4GC,A sin \

([=4)2
(83)

Ω′′�2,G

2
=
W2,�G

2 cos \2

([=4)2
(84)

Ω′′�2,H

2
=
W2,�H

2 sin \2

([=4)2
(85)

Ω′′�B,G

2
=
WB,�G

2 cos \2

([=4)2
(86)

Ω′′�B,H

2
=
WB,�H

2 sin \2

([=4)2
(87)

Ω′′�2,G ,�B,G

2
=
W2,�G

WB,�G
cos \2

([=4)2
(88)

Ω′′�2,G ,�2,H

2
=
W2,�G

W2,�H
cos \ sin \

([=4)2
(89)

Ω′′�2,G ,�B,H

2
=
W2,�G

WB,�H
cos \ sin \

([=4)2
(90)

Ω′′�2,H ,�B,G

2
=
W2,�H

WB,�G
cos \ sin \

([=4)2
(91)

Ω′′�2,H ,�B,H

2
=
W2,�H

WB,�H
sin \2

([=4)2
(92)

Ω′′�B,G ,�B,H

2
=
WB,�G

WB,�H
cos \ sin \

([=4)2
. (93)

These hall parameters are used to define a series of effective resistances that describe the diffusion of the electrons
across the total radial magnetic field,
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'�4GC =

∫
+ ′
Ω�4GC

2[6\
23+ ′ (94)

'′�4GC ,�2,G
=

∫
+ ′
Ω′�4GC ,�2,G

2
[6\

23+ ′ (95)

'′�4GC ,�2,H
=

∫
+ ′
Ω′�4GC ,�2,H

2
[6\

23+ ′ (96)

'′�4GC ,�B,G
=

∫
+ ′
Ω′�4GC ,�B,G

2
[6\

23+ ′ (97)

'′�4GC ,�B,H
=

∫
+ ′
Ω′�4GC ,�B,H

2
[6\

23+ ′ (98)

'′′�2,G
=

∫
+ ′
Ω′′�2,G

2
[6\

23+ ′ (99)

'′′�2,H
=

∫
+ ′
Ω′′�2,H

2
[6\

23+ ′ (100)

'′′�B,G
=

∫
+ ′
Ω′′�B,G

2
[6\

23+ ′ (101)

'′′�B,H
=

∫
+ ′
Ω′′�2,H

2
[6\

23+ ′ (102)

'′′�2,G ,�B,G
=

∫
+ ′
Ω′′�2,G ,�B,G

2
[6\

23+ ′ (103)

'′′�2,G ,�2,H
=

∫
+ ′
Ω′′�2,G ,�2,H

2
[6\

23+ ′ (104)

'′′�2,G ,�B,H
=

∫
+ ′
Ω′′�2,G ,�B,H

2
[6\

23+ ′ (105)

'′′�2,H ,�B,G
=

∫
+ ′
Ω′′�2,H ,�B,G

2
[6\

23+ ′ (106)

'′′�2,H ,�B,H
=

∫
+ ′
Ω′′�2,H ,�B,H

2
[6\

23+ ′ (107)

'′′�B,G ,�B,H
=

∫
+ ′
Ω′′�B,G ,�B,H

2
[6\

23+ ′ (108)

(109)

4. Slug Acceleration
The acceleration of the slug is defined by Newton’s second law. The force acting on the slug is the Lorentz force

caused by the azimuthal current interacting with the external radial magnetic field. We can express this Lorentz force as
an acceleration constant, V multiplied by the current,

<B
32I

3C2
= V�\ . (110)

Here, I is the axial position of the slug and <B is its mass.

5. Governing system of Equations
Including KVL for the antennae being driven by sinusoidal forcing functions, the full system of equations is
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+�C,G
+ !2,G

3�2,G

3C
+ '2,G �2,G −

3"2,G

3C
�I,�G

− "2,G
3�I,�G

3C
= +0 cos (lC)

(111)

+�C,H
+ !2,H

3�2,H

3C
+ '2,H �2,H −

3"2,H

3C
�I,�H

− "2,H
3�I,�H

3C
= +0 sin (lC)

(112)
3+�C,G

3C
=
�2,G

�C ,G
(113)

3+�C,H

3C
=
�2,H

�C ,H
(114)

3
(
"G �2,G

)
3C

+
3

(
!B,�G

�2,G
)

3C
−

[
Γ2,G �2,G − Γ2, (G,H) �2,H + ΓB,G �B,�B,G

− ΓB, (G,H) �B,�B,H
+ Γ4GC,�G

]
�\ = 'B,�G

�B,�G

(115)
3

(
"H �2,H

)
3C

+
3

(
!B,�G

�2,G
)

3C
−

[
Γ2, (G,H) ,�H

�2,G − Γ2,H �2,H + ΓB, (G,H) ,�H
�B,�B,G

− ΓB,H �B,�B,H
+ Γ4GC,�G

]
�\ = 'B,�G

�B,�H

(116)(
Γ2,G �2,G − Γ2, (G,H) �2,H + ΓB,G �B,�B,G

− ΓB, (G,H) �B,�B,H
+ Γ4GC,�G

)
�I,�G

+
(
Γ2, (G,H) ,�H

�2,G − Γ2,H �2,H + ΓB, (G,H) ,�H
�B,�B,G

− ΓB,H �B,�B,H
+ Γ4GC,�G

)
�I,�H

=
3

(
!B, \ �\

)
3C

+ ('�4GC + 2'′�4GC ,�2,G
�2,G + 2'′�4GC ,�B,G

�I,�G
− 2'′�4GC ,�2,H

�2,H − 2'′�4GC ,�B,H
�I,�H

+ '′′�2,G
�22,G + '′′�2,H

�22,H

+ '′′�B,G
�2I,�G

+ '′′�B,H
�2I,�H

+ 2'′′�2,G ,�B,G
�2,G �I,�G

− 2'′′�2,G ,�B,H
�2,G �2,H − 2'′′�2,G ,�B,H

�2,G �I,�H
− 2'′′�2,H ,�B,G

�2,H �I,�G

+ 2'′′�2,H ,�B,H
�2,H �I,�H

− 2'′′�B,G ,�B,H
�I,�G

�I,�H
+ 'B, \ )�\

(117)

<B
32I

3C2
= V�\ .

(118)

This is the full system of equations before assumptions are applied.
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