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Boron nitride in the cubic phase has been considered a potential candidate for use as 

electron field emitters.  This paper highlights results and challenges in characterizing boron 

nitride’s suitability for use in electric propulsion applications and in designing and 

fabricating the gated electrodes needed to extract and accelerate the electrons. 

Nomenclature 

A = aspect ratio I = emission current 

Ae = emission area J = current density 

AFN, BFN = Fowler-Nordheim coefficients mFN = Fowler-Nordheim slope 

d = gap distance R = emission channel radius 

D = emission channel diameter  = field enhancement factor 

Es = emission surface electric field w = work function 

H = emission channel height  

I. Introduction 

 variety of space applications can benefit from cold cathode electron emission, particularly applications such as 

miniature electric propulsion, where the power or propellant cost of state-of-the-art electron emitters (e.g., 

thermionic or hollow cathodes) are too high for a viable system design.  Cold cathode emitters extract electrons by 

the application of high electric fields at a conducting surface.  They utilize microfabrication techniques to achieve 

gate proximity and emission tip geometry that allow the necessary field strength to be created at modest voltages.  

Requiring no heaters or ionizable gas sources, cold cathode neutralizers can significantly improve the efficiency of 

low-power Hall thrusters.
1
 

 The current state-of-the-art for cold cathode electron emission is the field emitter array, which is composed of 

millions of silicon or molybdenum nanotips per square centimeter on a semiconductor substrate with an integrated 
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gate structure.  These devices provide very efficient electron emission but are fragile.  The tips have poor sputter 

resistance and reactive surfaces that limit their lifetime.  Consequently, the use of them in a miniature electric 

propulsion system’s plasma environment is troublesome, since ion bombardment of the array would quickly degrade 

the array tips.
2
  Recently, boron nitride in the cubic phase has emerged as a candidate material that could make 

practical field emission cathodes realizable.
3
 

II. Cubic Boron Nitride 

The last decade has seen a marked increase in the research effort towards engineering of the III-V compound 

semiconductors.  Many of these materials exhibit interesting synergies between semiconducting behavior and 

thermal, mechanical, chemical, and other properties.  Cubic boron nitride (c-BN) is one such member of the III-V 

compound semiconductor family. 

Under equilibrium conditions, boron nitride (BN) stabilizes in a hexagonal phase as a soft, insulating material 

with a crystallographic structure similar to that of graphite.
4
  However, when BN is nucleated in the cubic phase, the 

resulting metastable material is a semiconductor with a wide, indirect band gap of 6.3 eV.  With physical properties 

resembling diamond, c-BN is a candidate material for field emission cathodes (FECs) in electric propulsion (EP) and 

Low Earth Orbit (LEO) environments. 

In these environments, the survivability of FECs in the presence of ion bombardment or contamination is an 

important concern.  The sputtering threshold of c-BN, estimated to be greater than 150 eV, is larger than that of 

common refractory metals and field emission materials.  In addition to having improved sputtering resistance, the 

chemical inertness of c-BN would make it more tolerant than other prospective emitter materials to atomic oxygen 

and other contaminants in the operating environment. 

Cubic BN has other advantages as a FEC material.  Its mechanical toughness would lower ion bombardment 

damage and inhibit the formation and migration of emitter surface nanoprotrusions that could otherwise lead to 

destructive arcing of the array.  A low estimated work function (~2 eV) would enable lower operating voltages to 

further decrease potential sputtering damage. 

Unfortunately, c-BN is a difficult material to synthesize.  A number of methods to grow c-BN thin films have 

been developed in the past decades with limited success.  The major challenge is inducing the nucleation of the 

cubic phase while optimizing the stress buildup in the film. 

A. Film Growth Process 

Cubic BN films were grown using ion-assisted sputtering.
5
  Silicon (001) substrates doped to a resistivity of 1-20 

-cm were heated to 1,100 ºC prior to film growth to desorb the native oxide layer.  After thermal desorption, the 

temperature was gradually ramped down to ~975 ºC for film deposition.  Direct heating of the substrate was 

achieved by passing current (~12 A) through the substrate.  To improve film uniformity despite the inherent bias 

gradient (~9 V) due to the current flow, the backsides of the silicon substrates were coated with platinum on a 

titanium layer.  This coating facilitated driving the silicon into the intrinsic generation regime during the initial 

temperature ramp up and also provided good electrical contact when testing the c-BN films’ electrical 

characteristics. 

Hot pressed pyrolitic BN of 4N purity in the hexagonal phase (h-BN) was used as the sputtering target in a radio-

frequency magnetron sputtering gun. The deposition process was performed in a low pressure (~2.5 mTorr) argon 

(8-sccm flow) and nitrogen (6-sccm flow) environment.  To maintain the proper stoichiometry and promote the 

nucleation of the cubic phase, an electron cyclotron resonance nitrogen ion source was used.  The kinetic energy of 

the incident nitrogen ions was controlled using a voltage bias (~140 VDC) applied to the substrate.  Since both cubic 

and hexagonal phases nucleate simultaneously, the bias favored the selective etching of the softer h-BN while 

leaving the c-BN material intact. 

A growth rate of ~20 nm/hr was achieved.  Throughout the deposition process, the substrate temperature was 

monitored with an optical pyrometer.  Because of the high strain in the film, the samples were gradually cooled at 

less than 10 ºC/min to minimize delamination.  Afterwards, Fourier transform infrared spectroscopy and energy 

dispersive spectroscopy were used to evaluate the film composition.  Figure 1 shows the deposition chamber setup. 
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Figure 1. Growing c-BN films.  (Left) Schematic of deposition chamber setup.  (Right) View of heated c-BN 

sample during deposition. 

While the flux of nitrogen ions was relatively directional in the deposition chamber, the flux of sputtered BN 

target material varied due to the asymmetric position of the sputtering source relative to the deposition substrate.  

Grown samples have been observed with a factor of two difference in film thickness across the sample.  As shown in 

Figure 2, film uniformity was greatly increased by rotating (~1 rev/hr) the substrate during the deposition process. 

 

  

Figure 2. Effect of substrate rotation during film growth.  (Left) Poor film uniformity without rotation.  (Right) 

Good film uniformity with rotation. 

B. Electron Emission Testing 

Field emission characteristics of grown BN films were determined via emission testing in an ultra-high vacuum 

(UHV) chamber with an operating pressure less than 10
-8

 torr.  Figure 3 shows the emission test setup.  The BN film 

on its silicon substrate was offset, using 25-μm spacer made of kapton or Duralar film, from the phosphor screen 

used to visualize electron emission.  The spacer covered up nonuniform regions of the BN film at the edges of the 

silicon substrate and exposed the remainder of the film (~1-2 cm
2
) as available emission area.  Vent paths were 

provided to permit escape of outgassed material from the BN surface during vacuum operations.  A glass slide with 

indium tin oxide (ITO) coating provided electrical contact to the emission sample through the platinum coating.  

Clamps between the ITO slide and the phosphor screen anode provided planar alignment. 
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Figure 3. Field emission characterization setup in UHV chamber.  (Left) Schematic (not to scale) of test setup.  

(Right) Top view of test setup. 

 During electron emission characterization, the voltage bias between the BN film and the collection anode was 

increased until ~1 μA of emission current was obtained from the Keithley 2410 sourcemeter.  A series of voltage 

sweeps, as shown in Figure 4, was conducted to evaluate emission consistency and stability.  Negative voltage 

sweeps were conducted to confirm that measured currents were due to field emission rather than electrical shorts in 

the system. 
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Figure 4. Voltage bias profile for BN films during emission characterization.  Units of time during plateau 

regions are in minutes (m). 

 Figure 5 shows a typical scanning electron microscopy (SEM) image of the BN film.  Previous test results 

suggested that thin BN films less than 100 nm in film thickness are promising candidates for electron emission due 

to their greater surface roughness.
6
  For these thin films, the BN composition is a mixture, with c-BN nucleation on a 

wetting layer of amorphous and hexagonal BN.  These “islands” of c-BN nucleation sites have not yet coalesced, 

and their sharp edges are promising candidates for field emission sites.  Although these favorable sites are prevalent 

throughout the film, Figure 5 shows that only a few isolated sites are activated during emission testing, possibly due 

to non-uniformities (e.g., concentration of h-BN) not visible in the SEM scans.  Non-uniformities in the applied 

electric field due to compression of the dielectric spacers and surface roughness on the phosphor screen have been 

evaluated and are not considered significant contributors to the results.  Diagnostics to map the chemical and phase 

compositions of the BN film are being pursued to understand this phenomenon. 
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Figure 5. Typical emission characterization results.  (Left) SEM image of BN film.  (Right) Emission spots 

imaged on phosphor screen. 

C. Plasma Environment Survivability 

The survivability of c-BN in an EP thruster’s operating environment was tested during thrust characterization of 

the H6 laboratory model Hall thruster, a 6-kW system jointly developed by the Air Force Research Laboratory, 

NASA Jet Propulsion Laboratory, and the University of Michigan’s Plasmadynamics and Electric Propulsion 

Laboratory (PEPL).
7
  Testing was conducted in the Large Vacuum Test Facility (LVTF) at PEPL.  Vacuum levels of 

the order 10
-5

 Torr were achieved during the thruster firings. 

BN samples were first characterized for field emission properties in the UHV chamber before being partially 

masked with a tantalum sleeve.  Therefore, only part of each BN sample was exposed to the Hall thruster 

environment, thus facilitating characterization of morphology changes due to plasma exposure.  The BN samples 

were then placed near the H6 thruster, electrically grounded to the chamber walls, and passively exposed during 

thruster firings.  Langmuir probes in the vicinity of the BN samples provided localized plasma diagnostics.  

Following completion of thruster firings, the BN samples were removed from the LVTF and their field emission 

properties were reevaluated in the UHV chamber.  Of the nine BN samples tested in this manner, five of the samples 

exhibited better field emission performance following plasma exposure than before.  This behavior was surprising, 

since the expectation was that emission performance would degrade due to the three days of exposure to the LVTF 

test environment (i.e., plasma and sputtered contaminants from the thruster, outgassing, etc.).  

As a case study, Figure 6 shows one such BN sample with better field emission characteristics following the 

LVTF test.  Near the sample, Langmuir probe data indicated ion densities on the order of 10
15

 m
-3

, and Faraday 

probe data suggested ion energies of ~20 eV.  Note that the portion of the BN film exposed to the plasma appeared 

to have been stripped away.  However, post-LVTF emission is visible in the exposed region of the film, despite the 

dramatically different surface morphology. 

Figure 7 shows the electron emission data for the BN sample under consideration.  Although the sample exhibited 

variance over different voltage sweeps as different emission sites turned on and off, the emission threshold 

systematically shifted to lower voltages after the BN sample had been placed in the LVTF.  As indicated by the 

linear nature of the Fowler-Nordheim (F-N) plots, electrons are being emitted via a field effect process, which obeys 

the following relations (with c0, c1, and c2 being constants dependent on the cathode material and configuration): 

 J =
I

Ae
= AFNEs

2 exp
BFN
Es

, (1) 

 AFN = c0
1

w

exp
c1

w

, (2) 
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 BFN = c2 w

3
2 , (3) 

 Es =
V

d
. (4) 

 

 

 

 

 

Figure 6. BN sample that exhibited better field emission characteristics following exposure to Hall thruster 

environment.  (Upper left) Pre-LVTF.  (Upper right) Post-LVTF; lower portion of sample was not covered by 

tantalum sleeve and exposed to plasma. (Bottom) SEM view of emission region showing different surface 

morphology than typical BN films. 

In a F-N plot of V
-1

 versus ln(I/V
2
), the slope is thus 

 

 mFN = c2
w

3
2d

, (5) 

and the y-intercept is 
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 yFN = ln c0
Ae

w

2

d 2
+

c1

w

. (6) 

 

 

Figure 7. Pre-LVTF and post-LVTF electron emission data.  Each marker symbol (blue for pre-LVTF and red 

for post-LVTF) represents a single voltage sweep.  (Top) Voltage-current measurements.  (Bottom) FN 

transformation of voltage-current data with corresponding linear fits. 

 In the F-N plot in Figure 7, the slopes are comparable, but the y-intercepts for the post-LVTF data set are 

generally larger than those for the pre-LVTF data set.  This trend suggests, if BN is assumed to be the emission 

material in both cases, that both the field enhancement factor and the work function may have decreased following 
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plasma exposure; emission may then be due to residual c-BN clusters on the textured substrate surface.  Additional 

testing and diagnostics (e.g., x-ray photoelectron spectroscopy) are required to verify if alternative causes (e.g., 

emission due to the textured silicon itself or contaminants deposited by thruster firing) may explain the behavior.  

Other samples from the LVTF test showed similar results, though additional testing is required to acquire a 

sufficient statistical average across samples to verify the effect.  To address the apparent film degradation, 

observations of thicker BN films (> 100 nm thickness) in a similar plasma environment are being planned. 

III. MEMS Gates 

To form functional FECs, microelectromechanical (MEMS) gate electrodes were developed to extract and 

accelerate electrons from the BN emission substrates.  These MEMS gates are attractive for field emission 

applications because they are able to achieve micron-scale or smaller gap distances, thus permitting generation of 

large electric fields at modest bias voltages.  MEMS gates can also be used to form scalable arrays to satisfy current 

requirements while providing size and shape flexibility.  Finally, the use of existing microfabrication techniques that 

are routinely used in the semiconductor and MEMS industries, along with the economies of scale associated with 

mass production, make MEMS gates potentially economically attractive. 

A. Gate Design 

Figure 8 shows a cross-section schematic of a FEC using a field emission substrate integrated with a MEMS 

gate.  Each MEMS gate consists of a conductive layer placed over a dielectric spacer with channels arrayed 

throughout the structure to permit passage of electrons.  A voltage bias applied between the conductive layer and the 

emission substrate generates the electric fields needed to extract and accelerate electrons.  The thinner the dielectric 

spacer is, the lower the bias voltage needed to generate the necessary electric fields; the limit is imposed by the 

breakdown strength of the dielectric material and the structural integrity of the overall gate.  Both the conductive and 

dielectric gate layers are structurally supported in bulk silicon, and viewing windows are periodically etched in the 

bulk silicon to expose the emission channels. 
 

I

I

Plasma Anode

Igate

Icathode

(a)

(b)

(d)

Emission Substrate

e-e-

(c)

II

II
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(b)

(d)

Emission Substrate

e-e-

(c)

  

Figure 8. Proposed use of MEMS gates on FECs.  (Left) Cross-section (not to scale) of MEMS-gated FEC 

emitting into ambient plasma with (a) electrical contact pad to gate, (b) bulk silicon structural layer, (c) sub-micron 

conductive gate layer, and (d) dielectric spacer.  (Right) Geometric design variables for single emission channel in 

MEMS gate. 

As electrons are emitted through the channels, some electrons impact either the conductive layer or the dielectric 

spacer due to non-uniformities in the electric field or emission substrate as well as space charge spreading of the 

electron beam. This collected gate current is an efficiency loss for the system, so a good gate design seeks to 

minimize gate current.  A way to optimize the gate design is to adjust the aspect ratio of the emission channel height 

to its diameter, 

 

 A
H

D
=
H

2R
. (7) 
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Previous particle-in-cell simulations have suggested that when all other geometric design variables are fixed and 

both the emission current and the nominal gap electric field V/H are constant, the gate current is minimized when the 

aspect ratio is in the approximate range between 1 and 1.5 (Reference 6).  At very high aspect ratios, gate current is 

higher because of beam spreading before the beam passes the gate.  At low aspect ratios, the electric field at the 

emission surface is not uniform and has a significant radial component that spreads the beam and thus contributes to 

a higher gate current.  This behavior can be seen in Figure 9, which contains electric field maps for single emission 

channels at various aspect ratios.  The channel diameter is fixed at 2 μm while the channel height is adjusted. 

 

  

  

  

  

Figure 9. Electric field maps for various emission channel aspect ratios.  Maps are axisymmetric about the 

channel centerline r = 0, and the vectors are for the total electric field.  In the simulation domain, the left side 

boundary (emission surface) is grounded while the right side boundary is kept at the same potential as the gate 

electrode.  This potential bias is scaled linearly with the channel height to maintain a 25 V/μm nominal gap electric 

field.  The upper boundary is an insulator at free space permittivity. 

 Uniform fields at the emission substrate’s surface are achieved above a unity aspect ratio.  Above an aspect ratio 

of 1.5, beam-spreading effects begin to dominate while the beneficial effect of additional field uniformity in the 

emission channel becomes negligible. 
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B. Gate Fabrication 

The MEMS gates’ fabrication process has been previously described (Reference 6).  Doped (1-20 -cm) silicon 

wafers are used, with one side of the wafer subjected to ion implantation (4 10
16

-cm
-2

 boron at ~0.5-μm-thick) to 

create the conductive gate electrode.  Low-stress silicone oxide nitride (~2-μm-thick) acts as the dielectric layer, and 

emission channels are formed via reactive ion etch.  A final wet etch opens up emission windows in the bulk silicon 

to expose the emission channels.  Figure 10 shows SEM images of fabricated gates.  When nominally designed for a 

unity aspect ratio using channel diameters of ~2 μm, which is near the limit of optical lithography, these gates 

resulted in reduced aspect ratios between 0.5 to 0.7 as a result of the final wet etch process.  Future processing runs, 

if wet etches are still used, should be able to compensate by nominally designing for a greater than unity aspect 

ratio; to permit proper growth of the correspondingly thicker dielectric film, stacked film (i.e., alternating layers of 

silicon oxide and nitride) approaches would be pursued.  While current gate designs are stand-alone configurations 

that must be mounted and integrated with emission substrates, efforts are underway to directly deposit gate layers on 

BN films to create fully integrated cathode designs.  The chief challenges are ensuring proper gate layer adhesion to 

the BN film and adequate etch selectivity to create the emission channels without damaging the underlying emission 

substrate. 

 

  

Figure 10. SEM images of MEMS gate.  (Left) Isometric view of viewing window with many emission channels.  

(Right) Cross-section view of an emission channel with less than unity aspect ratio.  

IV. Conclusion and Future Work 

While BN films have been successfully grown and tested for electron emission in vacuum and following 

exposure to a hall thruster environment, more work is needed to improve the film uniformity and to better 

understand how the film reacts to ambient plasma.  Forming regular BN nanotips rather than simply relying on BN 

films’ inherent nanostructure is a potential approach to reduce the threshold electric field for emission, increase the 

current density, and promote more consistent emission performance.  Modeling, fabrication, and testing lessons 

learned are being applied and extended to other applications, such as the Nanoparticle Field Extraction Thruster 

(nanoFET)
8
 requiring MEMS gates. 
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