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We present the initial results from a cavity ring-down sensor for measuring the density of 

sputtered boron atoms originating from the discharge channel of a 6-kW Hall thruster. The 

sensor traps 250 nm light in a high-finesse cavity to greatly increase its sensitivity to boron 

atoms. Measurements were obtained with the thruster operating at seven conditions 

spanning discharge voltages from 150 to 600 V, and anode mass flow rates from 10 to 30 

mg/s. Power level at these operating conditions ranged from 1.5 to 10 kW. Boron density was 

found to vary from <1×10
14

 to ~1×10
15

 m
-3

 with the higher density measurements being 

found near the two channel walls. We apply a simple two-dimensional velocity model to 

obtain boron flux. The boron flux is then correlated to the boron nitride sputter rate, which 

is found to vary from 4×10
-4

 to 6×10
-3

 mm
3
/s. A simple power law equation is formulated to 

correlate the relative sputter rate for the 6-kW Hall thruster as a function of the tested 

operating conditions. Although the uncertainty in this initial result is high, the result clearly 

demonstrates previously untapped potential for the use of cavity ring-down spectroscopy to 

study the problem of Hall thruster channel wall erosion. 

I. Introduction 

LTHOUGH Hall thruster is rapidly maturing as a propulsion technology in terms of performance, there is a 

lack of understanding of the physics that limits the lifetime. In particular, the physics behind the erosion of the 

ceramic channel walls remains an active area of research. Our understanding of this erosion phenomenon is limited 

in large part due to the difficulties associated with obtaining parametric experimental data using traditional 

approaches. We present the initial results of a novel approach that uses a cavity ring-down sensor to detect sputtered 

particle density in near-real-time as well as methods for correlating the results to erosion rates. 

The simplest approach to measuring channel wall erosion rate is to run the thruster for a set number of hours and 

measure the channel wall profile via profilometry.1, 2 Other potential channel erosion diagnostics include quartz 

crystal microbalance3, 4 and emission spectroscopy.3, 5 Weight loss is also regularly used to measure sputter yield.6-8 

Profilometry require extended run times (weeks to months) to obtain accurate results, which translates to large 

amount of resources and time spent. Parametric studies for these two diagnostics are very difficult for any but the 

largest institutions to carry out and the test matrix must be picked out carefully beforehand with little margin for 

error. Quartz crystal microbalance (QCM) has the potential to obtain differential sputtering profile in tens of hours 

to days but has many technical issues associated with thermal stabilization and etching when applied in a Hall 

thruster environment.3 It is also limited to far-field interrogation and gives little information about what is happening 

near the erosion sites. Optical emission spectroscopy (OES) is another technique that can obtain erosion data in 

hours to days but is usually limited to relative density measurements. The accuracy of OES is generally not very 
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high because it requires accurate knowledge of the state of the plasma species in the region where the measurement 

is taken. 

Cavity ring-down spectroscopy (CRDS) provides a novel solution to the problem of obtaining parametric 

experimental sputter rate data. This technique is non-intrusive, spatially resolved in the radial direction, and capable 

of measuring absolute density with extreme sensitivity. The time scale for deploying CRDS diagnostic is on the 

order of hours to days. For this technique, laser light trapped in a high-finesse cavity is resonantly absorbed by 

erosion products. Since the trapped laser light makes many passes through the test sample, CRDS has an 

exceptionally high sensitivity to even minute amounts of erosion products. Since the measurement results yield line-

integrated product density, some form of inversion is needed to obtain radial density profiles. One can then combine 

the CRDS density results with velocity results from modeling or a velocimetry technique like laser-induced 

fluorescence (LIF) to obtain the sputtering flux. Alternately, one can perform control experiments to correlate 

product density to sputter yield given a priori knowledge about the bombarding particles. The main disadvantages of 

CRDS are the high initial cost of associated equipment relative to more traditional diagnostics, the complexity of the 

setup, and the associated implementation challenges. However, CRDS can yield tremendous long-term savings in 

resource by greatly reducing the thruster and facility run time needed to obtain data of fidelity comparable to 

traditional diagnostics. 

The history of the use of CRDS in Hall thruster-related research is fairly short. The first work investigating the 

possibility of the use of CRDS for studying erosion in electric propulsion devices was by Surla, et al., in 2004.9 The 

initial focus was on anode layer Hall thrusters,10 which have metallic wall. Metallic elements have transition lines 

that were easier to access than the ceramic elements found in the walls of magnetic layer thrusters. To study the 

application of CRDS for magnetic layer type thrusters, which are much more common in the U.S. than anode layer 

type, a collaborative program between the University of Michigan and Colorado State University was initiated. 

Initial work focused on the feasibility of generating, delivering, and trapping 250 nm light for probing boron, as well 

as the use of continuous-wave-CRDS over pulsed-CRDS to enhance sensitivity.11, 12 At the same time, basic 

research work was carried out on the sputtering behavior of boron nitride when bombarded by low-energy xenon.4 

The said collaborative research program culminated in the first published demonstration of the use of CRDS to 

measure the channel wall erosion rate in a magnetic layer Hall thruster, which is described in this paper. 

II. Theories 

A. Principles of Cavity Ring-Down Spectroscopy 

Cavity ring-down spectroscopy is a type of absorption spectroscopy. A great review of the topic and recent 

development of CRDS as a diagnostic can be found in an article by Berden, et al.13 CRDS is based on the principle 

that by sending a beam of photons through an absorber and measuring the change in intensity, one can obtain the 

absolute line-integrated density of the absorber. CRDS differs from traditional absorption spectroscopy in that a 

cavity, formed from a pair of highly reflective mirrors, is used to trap light. Instead of one pass, the trapped photons 

make many passes through the absorbing medium. Each time the trapped light strikes one of the mirrors, a small 

fraction of it leaks out. The intensity of the leaked light is measured by a detector. If the light source is a continuous-

wave laser, the laser beam is cut off rapidly (e.g. with an acousto-optical modulator), and then the light intensity 

within the cavity begin to decay. The characteristic time constant of the decay, extracted from the detector signal, 

can then be used to calculate the absolute line-integrated density of the absorber inside the cavity. Figure 1 illustrates 

the operational principles of CRDS. The grey arrow pointing from the detector to the acousto-optical modulator 

(AOM) indicates some form of feedback so the AOM knows when to cut off the laser beam. 

 Equations (1) and (2) govern the ring-down behavior and time constant in a typical cavity, 

 

 ( )[ ]υt/τexpSυ)S(t, 0 −=  (1) 

 
Figure 1. Operational principles of cavity ring-down spectroscopy. 
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where S is the signal intensity, S0 is the initial signal intensity, τ is the characteristic time of decay (also called the 

ring-down time), c is the speed of light, L is the cavity length defined as the distance between the two mirrors, and 

RM is the mirror reflectivity. k(x,υ) is the absorption coefficient at a given laser frequency, υ, and position along the 

cavity optical axis, x. The integral term represents the line-integrated contribution from the absorber. In practice, the 

mirror reflectivity changes in time and there is a scattering effect that decreases the effective reflectivity. To extract 

absolute line-integrated density, the ring-down time is compared to the empty cavity ring-down time, τ0. This is 

shown in Eq. (3), 
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where Abs is the sample absorbance and is unitless. By scanning the laser frequency across an entire transition line, 

one can then integrate for the total absorbance and relate it back to the absolute density of the lower state of the 

transition being studied. Equation (4) shows this relationship, 
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where n is absolute density, g is level degeneracy, υ is transition frequency, A is the spontaneous emission rate, 

subscript 1 denotes lower state, and subscript 2 denotes upper state. Table 1 lists the values of the various constants 

for the 249.848 nm transition. 

 A typical Hall thruster can usually be assumed to be axisymmetric (there are cases where this is not true, e.g. 

when an external cathode perturbs the axisymmetry15). To obtain erosion product density as a function of radial 

position, we begin by taking CRDS density measurements across multiple P positions. Here, the P-axis is orthogonal 

to the laser beam axis and parallel to the channel exit plane of the thruster. Figure 2 illustrates the geometry of the P-

axis. Note that due to the way P is non-dimensionalized, P = 0 correspond to the nominal inner wall radius of the 

thruster and not the center of the thruster. The density measurements can then be converted to a function of radial 

position via some form of inversion method like the onion-peeling method16 or the Abel inversion method.17 The 

onion-peeling method is selected for the current work because it is mathematically much simpler than Abel 

inversion for a discretized data set of relatively small size. A comparison of various inversion methods including 

onion-peeling and Abel can be found in a paper by Dasch.16 Detailed description of the onion-peeling method is 

presented in a later section. 

 The cavity used in CRDS is also called a resonator because only light of the right frequencies can resonate with 

the cavity and build up in the cavity. In the simplest analysis, the governing equation for the propagating frequencies 

in a planar cavity can be found by trying to fit a standing wave into the cavity. Since the mirrors are near lossless, 

the boundary condition at the mirror must correspond to a nodal point in the standing wave. These conditions give 

rise to Eq. (5),18 

 

 
...3,2,1,q,

2L

c
qυq ==  (5) 

 

where υq is the frequency of the q-th resonance mode and can only be certain discrete values in a perfectly lossless 

Table 1. Transition parameters for the 

B I 249.848 nm transition.
14

 

Constant Value 

g1 4 

g2 2 

υ21 1.19990e15 Hz 

A21 1.67e8 s-1 

 

 
Figure 2. Diagram illustrating the 

geometry of the P-axis. 
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cavity. In a lossy cavity, transmission can happen over a narrow range of frequencies centered on each resonance 

frequency. The FWHM value of each transmission peak is described by Eqs. (6) to (8),18 

 

 Fυδυ F∆≈  (6) 

 

M

M

R-1

Rπ
F =  (7) 

 

2L

c
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c
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where δυ is the spectral width of the individual resonance mode, ∆υF is the frequency spacing between resonance 

peaks (also called the free spectral range), F is the cavity finesse, RM is the mirror reflectivity, n is the refractive 

index of the medium between the mirrors, and θ is the angle of incidence with respect to the mirror surface normal. 

Both n and cos θ are typically equal to 1. From these equations we can see that the finesse increases rapidly as 

reflectivity approaches 1. Note that RM = 1 represents a lossless mirror. From Eq. (2), we see that we want the mirror 

to have a reflectivity as close to 1 as possible because then the (1-RM) term becomes negligible and the ring-down 

time is sensitive only to the absorber. Furthermore, as the finesse increases, the spectral width decreases and one can 

obtain higher resolution scans.  

 Our approach for BN erosion rate measurement is to scan the ground state boron transition at 249.848 nm to 

measure boron density. For this wavelength, commercial mirrors can achieve a typical reflectivity of ~0.997, which 

corresponds to a finesse of ~1000. This reflectivity is poor compared to that available for reflectors in the visible and 

infrared, which makes sensitive detection challenging compared to standard CRDS. Equation (9) shows the two 

primary attributes of a CRDS sensor that determines its minimum detection threshold.13 
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where ∆τ is the uncertainty in the measured ring-down time. To improve the sensor’s sensitivity, one can either 

increase the mirror reflectivity or decrease the ring-down time measurement uncertainty. For a cavity length of ~1 

m, ∆υF equals 150 MHz, so δυ equals 150 kHz. It is difficult for a commercial laser to achieve a frequency width 

that narrow (typical diode laser can achieve ~1 MHz), so only a portion of the input laser beam power couples into 

the cavity. Increasing mirror reflectivity increases measurement sensitivity but can also decrease the beam power 

that can be coupled into the cavity, which decreases the signal. Furthermore, the mirror reflectivity, the laser power, 

and the laser linewidth are limited by technology. Alternately, one can improve the CRDS sensor’s sensitivity by 

decreasing the ring-down time measurement uncertainty. This uncertainty is limited by the amount of signal 

compared to the amount of noise, and the size of the data sample. Typically, the sample size is the easiest to 

influence and is determined by the ring-down rate, the sampling rate, and the sampling time. 

 The governing equations for cavity transmission shown in this work are for the TEMq00 modes, which are 

called the fundamental modes. Other non-fundamental modes of transmission are also possible and require wave-

optics treatment of the problem.18 For our purpose, we want to couple light into only the fundamental modes 

because higher peak intensity can be achieved with those modes than non-fundamental modes and the sets of modes 

have different ring-down time. To be more precise, we are coupling into only one of the fundamental modes at any 

given time because Eq. (5) can only be satisfied for one value of q if the laser is monochromatic. Thus, the TEMq00 

modes are often collectively referred to as the TEM00 mode. The process of coupling light into only the TEM00 mode 

is called mode-matching, the theory of which is described in work by Kogelnik and Li.19 
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B. Onion Peeling 

The onion-peeling method is based on the idea that one 

can divide the axisymmetric data zone into concentric rings 

of constant property. The distance that the CRDS cavity 

beam travels through each of these concentric rings can be 

calculated by geometry. A matrix can then be formed that 

relates the measured line-integrated density to the density 

within each ring. Figure 3 illustrates this concept. This 

method is intuitively simple and computationally 

inexpensive when the number of data points is relatively 

low. The matrix formed for this method is an upper 

triangular matrix and the solution can be obtained by 

Gaussian elimination. Equation (10) shows the matrix 

representation of the onion-peeling method. 

 

 nnK =⋅  (10) 

 

where K is the geometry matrix and is upper triangular, n is the density column vector, and n is the line-integrated 

density column vector. Equation (11) shows the formula that governs how K is calculated. 
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where the subscript i is both the column index of K and the position index for r, the radial coordinate in dimensional 

form, and the subscript j is both the row index of K and the position index for p, which is the vertical coordinate and 

the dimensional form of P from Fig. 2. Note that r and p have a one-to-one correspondence at the 12 o’clock position 

of the thruster when viewed face-on. Also, the position ri is associated with the density ni while the position pj is 

associated with the line-integrated density nj. More details regarding the mathematical implementation of the onion-

peeling method can be found in a paper by Dasch.16 

C. Sigmund Thompson Distribution 

The velocity distribution function of sputtered particles from bombardment of single-component target is a well-

studied subject. This distribution function is described by the Sigmund-Thompson distribution,20, 21 shown in Eq. 

(12) and (13), 
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where u is the velocity, vb can be calculated from the binding energy, Eb, using Eq. (13), φ is the polar angle of the 

emitted particle with respect to the surface normal, m is an energy-dependent parameter and is close to 0 for low 

inbound energy (<1keV), and M is the mass of the sputtered particle. The binding energy is a constant that depends 

on the material and the surface condition. This distribution is insensitive to bombardment angle and not very 

sensitive to bombardment energy at low bombardment energy (<1keV). Note that the Sigmund-Thompson 

distribution function show in Eq. (12) is flux-based as oppose to number density-based. 

 
Figure 3. Illustration for the onion-peeling 

concept. 
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symmetric about the thruster channel 

centerline. Magnetic field magnitude is 

set to maximize thruster efficiency. 

These settings were obtained through the 

use of an inverse pendulum thrust stand. 

At the conclusion of the CRDS test 

described in this paper, the 6-kW Hall 

thruster has been operated for a total of 

543 hours. Table 2 shows the percentage 

of run time for each tested operating 

condition. The miscellaneous entry in the 

table includes operating conditions 

spanning discharge voltages from 105 V 

to 550 V and anode mass flow rates from 

5 mg/s to 17.5 mg/s. Profilometry 

measurement was taken at this point in 

time using a Brown & Sharpe MicroVal 

343 coordinate measuring machine. 

Figure 5 shows the measured channel profiles. 

B. Facility and Test Matrix 

Experiments were performed in the Large Vacuum Test Facility (LVTF) of the Plasmadynamics and Electric 

Propulsion Laboratory (PEPL) at the University of Michigan. The LVTF is a ∅6 m × 9 m stainless steel-clad 

cylindrical iron chamber. The thruster plume expands un-impeded until termination at a beam dump ~4 m 

downstream. Pumping is provided by seven cryopumps with a nominal xenon pumping speed of 245,000 l/s. 

Facility pressure is monitored by two hot-cathode ionization gauges. The base pressure is approximately 2×10−7 

Torr. The pressure during thruster operation at 30 mg/s anode mass flow rate is approximately 2×10−5 Torr, 

corrected for xenon. 

During the experiments, the 6-kW Hall thruster was mounted on an Aerotech motion stage that has ~2 m of 

vertical travel and a positioning accuracy of ±0.1 mm. The absolute position is monitored by an incremental 

encoder. The optical cavity was fixed to the chamber floor. 

Research-grade xenon propellant (99.999% pure) was supplied to the thruster by commercially available flow 

meters and controllers, having an accuracy of ±1%. Calibration of the flow system was done by the constant volume 

method taking into account the effects of compressibility. 

The data locations for the CRDS test will be reported using the non-dimensionalized coordinate P. The radial 

position is reported using the non-dimensionalized coordinate R, where R = 0 at the nominal inner channel wall 

radius and R = 1 at the nominal outer channel wall radius. At the 12 o’clock azimuthal location when viewing the 

thruster face-on, the values of P are the same as the values of the non-dimensional radial coordinate R. In other 

words, P = 0 when the CRDS laser beam is directly in front of the nominal inner channel radius at the 12 o’clock 

position and P = 1 when the beam is directly in front of the nominal outer channel radius at the 12 o’clock position. 

Figure 2 illustrates this concept.  

The locations at which data traces were taken for all operating conditions range from P = -0.2 to P = 1.2 at an 

interval of 0.1 for a total of 15 locations. Additional traces are taken at P = 2, which is sufficiently far away from the 

thruster plume along the channel exit plane that there should be no boron signal. A trace is a series of ring-down 

time measurements taken over a range of wavelengths. It is graphically represented as the ring-down time plotted 

against the wavelength. Thus, if there is no boron signal, the trace is a horizontal line. Taking P = 2 traces help the 

user check the alignment of the cavity. The P = 2 traces are taken at least once prior to the start of a data set and 

once afterward for a given operating condition. If both traces look like horizontal lines, then the cavity was assumed 

to be aligned during the acquisition of the entire data set. 

At each data location, 101 wavelength values are scanned to construct the shape of the B I 249.848 nm 

transition. The total scan range is 70 GHz centered on the transition. The ring-down time obtained at each 

wavelength is an average of ~150 ring-downs, though the exact number can vary from 100 to 200 depending on how 

many ring-downs were deemed necessary to obtain good statistics. 

C. Air-Side Setup 

 
Figure 5. Profilometry measurements for the channel inner wall 

(left) and outer wall (right). 
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 Figure 6 shows the air-side experimental setup for the CRDS study. The DAQ computer, labeled as DAQ PC, 

uses a custom Labview v9 program along with some manufacturer software to control various components. The 

DAQ PC communicates through a USB hub (not shown in figure) with four TST001 stepper motor controllers that 

control the mirror motors on the cavity. Through an Ethernet hub, the DAQ PC communicates with the Aerotech 

Ensemble MP10 vertical stage controller via the software Motion Composer v3 from Aerotech. Through the same 

Ethernet hub, the DAQ PC communicates with a laptop computer inside of the laser room, which is the enclosure on 

the left side of Fig. 6. The communication between the two computers is handled by standard Ethernet protocols 

programmed into custom Labview programs. Housing the UV laser in the laser room is necessary to protect the laser 

from the dust and vibration in the rest of the facility. 

The laptop computer inside of the laser room controls a Measurement Computing USB-3101 analog output 

device, which controls the scanning voltage of the piezoelectric element in the laser. There is an additional RC low-

pass filter (not shown) between the analog output device and the UV laser controller. This filter is designed to filter 

out as much high frequency noise as possible while maintaining ~0.1 s rise time. The reason such a complicated 

setup was used to control the UV laser is because the distance between the DAQ PC to the UV laser controller is 

long enough that the signal line suffers from electromagnetic interference. The amount of noise is actually very 

small, but large enough to influence the stability of the second frequency-doubling stage of the laser. If the 

electronic noise in the scan control signal is too high, the laser power randomly drops to zero. The solution to this 

problem is to use the laptop computer as a communication relay. Since the laptop computer uses an in-line regulated 

power source (i.e. wall power goes to battery, then battery power goes to laptop), its USB output exhibits very low 

noise level. Combined with the RC low-pass filter, the fluctuation in the scan control signal is small enough to be 

barely noticeable in the final output power of the UV laser. 

The UV laser is a Toptica TA-FHG-110 frequency-quadrupled diode laser. The laser is composed of three major 

components. The first component is a taper-amplified diode laser that typically outputs ~500 mW of 1000-nm light. 

The second component is a frequency doubling cavity in a bow-tie configuration that takes the 1000-nm light and 

frequency-doubles it to ~170 mW of 500-nm light. The third component is another frequency doubling cavity in a 

bow-tie configuration that frequency-doubles the 500-nm light to ~10 mW of 250-nm light. The average linewidth 

of the 250-nm laser output is ~4 MHz. 

A small amount of the ~1000 nm laser light generated by the taper-amplified diode laser is split off and 

outputted in a port separate from the main output. This infrared beam is coupled into a High Finesse WS-7 Fizeau-

type wavemeter, which has an accuracy of ±60 MHz at 1000 nm, or ±0.2 pm. The wavelength of the frequency-

quadrupled light is calculated from this reading by simply dividing by 4, which gives an accuracy of ±0.05 pm at 

250 nm, or ±240 MHz in frequency space. The wavemeter also has a resolution of 10 MHz and updates at a rate of 

up to 150 Hz. It communicates with the DAQ PC via a powered USB hub instead of directly due to the physical 

distance to the DAQ PC. During the CRDS test, to excite resonance in the CRDS cavity, the UV laser is 

continuously executing triangular sweeps at a rate of ~1 pm/s over a range of ~1 pm. This wavelength sweeping 

normally generates an oscillatory reading in the wavemeter, but the wavemeter software is set to perform floating 

average of 50 measurements so the actual value recorded into the raw CRDS data is a time-averaged value of the 

 
Figure 6. Diagram illustrating the air-side experimental setup. 
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laser wavelength. 

The UV laser light is directed by high reflectivity mirrors to a laser platform that sits next to the vacuum 

chamber. The UV beam passes through a Neos 35110-2-244-BR acousto-optical modulator (AOM), which is 

powered by a 31110-4DS AOM controller. Roughly 70% of the input beam power is coupled into the first order 

mode of the AOM output when the AOM is on. This first order beam propagates at a slightly different angle than the 

original laser beam that comes into the AOM. An iris is used to block off all of the light coming out of the AOM 

except the first-order beam. This first-order beam is then injected into the vacuum chamber via two external steering 

mirrors with fine-tuning knobs. The rough alignment of this UV beam is monitored using a video camera and a pair 

of irises built into the injection lens train of the physical cavity. 

The output from the CRDS cavity is returned via optical fiber to a Hamamatsu R9110 photomultiplier (PMT) 

through a band-pass interference filter with a 10-nm bandwidth centered at 250 nm. This PMT is powered by an 

Oriel 70705 PMT power supply. The output of the PMT is converted from current to voltage by a FEMTO DHPCA-

100 preamplifier operating at a gain of 104 in low noise mode, which has a bandwidth of 14 MHz. Preparatory ring-

down tests show that this is the highest gain setting that does not affect the value of the measured ring-down time 

constant (i.e. higher gain settings have smaller bandwidth, which starts to change the measured ring-down time). 

The output from the preamplifier is fed to one of the channels on an AlazarTech ATS460 125-MHz DAQ card in 

the DAQ PC. The DAQ card was operated at only 100 MHz as a precaution against over stressing the card. The 

preamplifier output is also fed to a LeCroy 314 oscilloscope for live monitoring and a custom voltage comparator 

circuit built into a Schmitt trigger configuration. The model of the voltage comparator chip is LM361 with a 

switching time of 20 ns. It is powered by an Instek GPS-3303 laboratory power supply. Switching and stabilizing 

capacitors were added to improve the performance of the Schmitt trigger against random noise. The power lines 

between the power supply and the circuit were kept short for the same reason. The reference voltage was provided 

by a potentiometer-based voltage divider with a 9-V battery as the voltage source. The non-inverting output of the 

circuit was used to complete the Schmitt trigger configuration while the inverting output was used to drive the 

triggering of a pulse generator. 

The BK Precision 4030 pulse generator has an insertion delay of 60 ns (i.e. it takes 60 ns from the time when the 

triggering condition is met to when the pulse generation starts). The pulse width is set to 12 µs, which is more than 

ten times the typical ring-down time. Output of the pulse generator is fed into the AOM controller to initiate ring-

down when the voltage comparator decides the signal in the cavity is high enough. This output signal is also fed into 

the DAQ PC to trigger the start of data acquisition and the oscilloscope for live monitoring.  
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D. Vacuum-Side Setup 

Figure 7 shows the vacuum-side experimental setup for the CRDS study. Figure 8 shows a composite 

photograph of the injection lens train being rough aligned. It is a composite photo because the camera cannot focus 

on the near and the far part of the lens train at the same time. There are no optics shown if Fig. 8. They are installed 

once the cavity has been properly positioned inside the vacuum chamber. 

The first order beam from the output of the AOM is deflected by the external steering mirrors though a pair of 

alignment irises. The alignment irises are made of fluorescing discs that turn red when interacting with UV light. 

Precisely-drilled holes of 2±0.05 mm diameter are drilled into the center of each disc. The discs are mounted on 

two-axis translating mounts to help with the positioning of the alignment irises. The UV laser beam is usually 

slightly bigger than 2 mm in diameter by the time it reaches the first alignment iris. Parts of the beam beyond 2 mm 

fluoresce the iris and help with alignment. Fluorescence from the irises is monitored by an external camera through a 

viewport.  

 
Figure 7. Diagram illustrating the vacuum-side experimental setup. 

 
Figure 8. Photograph of the injection lens train being rough aligned. 
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At this point, the beam going into the focusing lens is of known diameter and is approximately collimated. The 

focusing lens has a nominal focal length of 300 mm and is made of uncoated UV-grade fused silica. Its purpose is to 

bring the UV laser light down to a point of known diameter and location to aid in mode-matching. 

The mode-matching lens, which comes next, matches the known position and diameter of the post-focusing-lens 

UV beam with the position and diameter of the TEM00 mode of the CRDS cavity. This lens has a nominal focal 

length of 125 mm and is made of uncoated UV-grade fused silica. Details on mode-matching can be found in work 

by Kogelnik and Li.19 

Next in the injection lens train is the input cavity mirror. The input and output cavity mirrors are custom 

fabricated by MLD Technologies. These mirrors are made from 1” diameter, 1/4” thick super-polished fused silica 

substrate. One side of each mirror is concave with a 1-m radius-of-curvature and coated for high reflectivity at ~250 

nm. The other side is flat and uncoated. The CRDS cavity beam resides at 4.0±0.5 mm downstream of the thruster 

channel exit plane and has a beam waist of 0.2-0.25 mm, roughly matching the theoretical value calculated from 

equations in Kogelnik and Li’s work.19 The mirrors sit on kinematic stages that have been modified to have 

motorized pitch and yaw axes. The input mirror mount is actuated by a pair of Thorlabs ZST6 micro stepper motors, 

while the output mirror mount is actuated by a pair of ZST13 motors. 

There are also protection iris tubes between the Hall thruster plasma and each cavity mirror. These tubes have 

openings on each end that are 3.6 mm in diameter and are ~80 mm long. The open space between the iris and the 

mirror mounts as well as along the rest of the lens train is sealed with transparent tape to protect against sputtered 

particles that are floating around the chamber during testing. In addition, there are two protection covers that extend 

axially downstream from the platform that holds the Hall thruster. Since we are assuming the thruster is 

axisymmetric, CRDS results can be obtained by scanning only half of the thruster in the vertical direction. When the 

CRDS sensor is not in use, the entire thruster platform can be raised so that the protective covers sit right over the 

holes of the two protection iris tubes. Although not shown this way in Fig. 7, the covers sit at only 5 mm in front of 

their respective protection iris openings when in place. These covers also act as an additional position reference 

since we will know a priori the P-position at which the covers cut off the cavity beam. All materials that sit near the 

thruster are made of non-magnetic material and do not perturb the thruster’s magnetic field. 

Vertical position of the thruster platform is controlled by an Aerotech ATS62150 motion stage with a travel of 

1.5 m and is powered by a VS-U33 stepper motor. The resolution of this motion stage is 0.01 mm. The accuracy of 

this stage is ±0.1 mm, determined by how readily the cutoff of the UV beam by the protection covers can be 

detected. The position of this vertical stage is monitored by an HS25 1024-line relative encoder from BEI Sensors. 

The thruster sits on an adjustable platform the lower half of which is supported by the vertical stage. The tilt of this 

platform is adjusted so that the channel exit plane of the thruster is parallel to the travel axis of the vertical stage to 

within ~1°. 

The light that comes out of the output cavity mirror is collected by the collimation lens and focused into the 

collection optical fiber. The collimation lens has a nominal focal length of 50 mm and is made of uncoated UV-

grade fused silica. The collection optical fiber has a 550-µm core diameter, is 9 m in length, and has a total 

attenuation of ~25% at 250 nm. This fiber was in use for a total of about 40-50 hours while showing no noticeable 

signs of degradation. Output from this optical fiber is fed into the PMT on the air-side for signal collection. 

With the optical parts of the CRDS cavity described, we now turn to the structure that holds the optics in place. 

Figure 9 shows a photograph of the actual vacuum-side experimental setup. The physical cavity is made of four 

aluminum members welded together. Each member has a 2” × 2” hollow square cross section. The walls of the 

members are 1/4” thick. This design provides good rigidity while meeting thermal driven criterion. The two legs 

used to support the physical cavity are made of carbon fiber rods connected by custom aluminum connections. Each 

leg is supported by three urethane vibration isolators. In Fig. 9, the protective covers are sitting right in front of their 

respective protection iris tube openings. The transparent tape that protects the lens train from sputtered particles is 

somewhat visible in this photograph. 
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Figure 9. Photograph of the vacuum-side experimental setup. 

 

E. Curve-Fit Algorithm for the Ring-Downs 

Curve-fitting the raw data for the ring-down time constant is accomplished by using an exponential fit sub-

routine in Labview v9. This sub-routine uses the bisquare weights method to perform a curve-fit of the data to Eq. 

(15). The bisquare method is good at rejecting outliers, which may show up as a result of noise spikes. 

 

 ( ) 210 CtCexpSS +=  (15) 

 

where S is the signal intensity, S0 is the signal amplitude, C1 is inverse of the decay time constant, and C2 is an offset 

constant. Only negative values of C1 are allowed in the curve-fit so the raw output for time constant is always 

negative. Lehmann, Berden, and Engeln23 suggest using ten times the time constant worth of data when there is a 

possibility of the offset constant varying from trace to trace. This is the driving factor for setting the pulse width to 

12 µs (highest ring-down time is 1 µs). All data were taken at 100 MHz. The number of data points that comprise 

each ring-down varies depending on how many points are needed to get approximately 10 times the time constant 

worth of data. The number of points changes because the ring-down time constant decreases as the mirrors degrade 

during a test. Also, to ensure that the ring-down has actually begun at the start of data recording, there is a time 

delay between when the DAQ PC receives the AOM trigger and when it starts recording data. A time delay of 0.55 

µs was experimentally found to guarantee that the data recording starts after the ring-down has begun. 
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Figure 10 shows an example of a single ring-down with 

the associated curve-fit performed by the DAQ PC. This 

particular trace was obtained prior to the pump-down of the 

vacuum chamber for the first round of CRDS testing. The 

data in this figure is representative of data obtained at the 

start of each round of CRDS testing. 

During an actual test, the custom Labview program that 

controls the data acquisition only records the time constant 

extracted from each scan. From the 100-200 time constants 

recorded this way per wavelength, statistical calculations 

are carried out on-the-fly and displayed. The alignment of 

the cavity can in part be judged by the average of and the 

spread in the ring-down time. Benchmark testing of the 

Labview program showed that it is capable of curve-fitting 

up to ~700 traces per second and is not a bottleneck for data 

acquisition. 

IV. Data Reduction 

A. Computing the Line-Integrated and Absolute Boron 

Density 

To calculate the line-integrated boron density, one needs to know the empty cavity ring-down time. Normally, 

this value remains constant throughout a test, but the degradation of mirrors in a Hall thruster environment is rapid 

enough that the value is not a constant. To calculate the empty cavity ring-down time it is assumed that the 

degradation is due to accumulation of some kind of material on the mirrors’ reflective surfaces. This material is 

treated as an added absorber that grows linearly with time for a given experimental geometry. The exact growth rate 

may vary with geometry, but is a constant for a given geometry. Mathematically, this constant rate deposition is the 

same as adding a growth rate times time term into the bracket of Eq. (2). The empty cavity ring-down can the be 

modeled by Eq. (16), 

 

 

bat

1
τ0

+
=  (16) 

 

where a is a constant that represents the growth rate of the deposition and b is a constant that correlates with the 

mirror reflectivity at the start of the scan. Data points on the edges of the scan range are assumed to be out of 

resonance and are used to perform the curve-fit for the constants a and b. (Also see Section IV.D) The data points in-

between are assumed to be a part of the 249.848 nm transition 

lineshape and integrated to find the total line-integrated 

density. The exact range of integration is the same for all 

CRDS data analyzed and is 12.4 pm wide centered at 249.848 

nm based on the wavemeter measurements. The location of the 

249.848 nm marker from the wavemeter measurements 

corresponds well with the location of peak signal for all 

obtained data.  

Figure 11 shows an example of how the curve-fitting to 

find the empty cavity ring-down time works. This particular 

trace comes from 300 V, 20 mg/s operating at a cavity position 

of P = 0.5. As the figure shows, the curve-fit is pretty much 

shaped like a line due to the small change in ring-down time 

relative to the amplitude of the ring-down time. Additional 

data analysis shows that using a linear fit also works fine. 

As a side note, the mirrors were cleaned between each 

round of CRDS testing (there were three rounds with 2-3 

conditions tested per round), and each time the mirror 

 
Figure 10. An example of curve-fitting to raw data 

to extract the ring-down time constant. 

 
Figure 11. An example of how the empty cavity 

ring-down time is found. 

Black dots are data points, red circles near the two 

edges are data points used to perform curve-fit, 

and blue line is the resulting fit. 
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where ρi is the distance from the i-th source (i = 1 or 2) to the interrogated location. The average axial velocity of the 

sputtered boron particles at the interrogated point can then be calculated using Eq. (19). 

 

 Z,22Z,11Z VfVfV +=  (19) 

 

The boron flux can now be calculated by combining the density data with the modeled axial velocity. Then, the 

area of each onion ring can be calculated from simple geometry. Lastly, the total rate of boron sputtering, for the 

ground state measured, can be derived. 

An important assumption in the above simple boron velocity model is that the sources are points in the R-Z 

plane. In reality, there is contribution to the particles at the interrogated point from neighboring azimuthal locations. 

The axial velocity of the particles from these locations will be lower than the axial velocity calculated in the model 

because the arrival angle, θi, is always greater when the particles come from out-of-plane. Thus, the calculated 

velocity is a rough estimate of the axial velocity upper bound. 

Additionally, the sputtered boron generally do not radiate isotropically. However, incorporating the anisotropy 

will not change the answer much because the outer-wall-source contributes very little to the axial velocity near the 

inner wall, and vice versa. For example, at R = 0, the contribution from the outer-wall-source is 2%, while at R = 

0.1, it is 5%. As will be seen in the plotted results later, the majority of the sputtered boron is located very near their 

respective walls and contribution from the other wall can be approximated as a higher order effect. 

In theory, the lineshape obtained in the CRDS data can be used to check some of the assumptions made in the 

velocity modeling since the CRDS laser beam is affected by Doppler shift. This is left for future work. 

C. Correlating Boron Flux to Sputter Rate 

The conversion from specific-ground-state boron flux to sputter rate can be performed with Eq. (20), 
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where SR is the sputter rate in m3/s, ρBN is the mass density of the BN that the channel walls are made from in 

kg/m3, mBN is the mass of a single BN molecule in kg, g1/2 is the degeneracy of the 2p[1/2]2 ground state of boron, 

g3/2 is the degeneracy of the 2p[3/2]4 ground state of boron, and ΦB,3/2 is the flux of boron in the 2p[3/2]4 ground 

state in s-1. The mass density of BN is given by the manufacturer as 2.0 g/cm3. The above equation is applicable 

when the following assumptions apply,  

 

1. All sputtered boron are in the ground states.24 This means they are not part of a BN molecular complex,25 in 

an excited state, or in a charged state.  

2. A Boltzmann distribution can be used to characterize the population of the fine structure levels within the 

ground state multiplet. Past research has shown the aforementioned assumption to be a good approximation 

even though the sputtered particles are not generally at thermal equilibrium.24 This assumption means that the 

ratio of total ground state population to the 2p[3/2]4 ground state (lower state of the 249.848 nm transition) is 

given by ratio of the total degeneracy to the degeneracy of the 2p[3/2]4 state. The value of this ratio is 1.5 

because the degeneracy is 2 and 4 for the 2p[1/2]2 and 2p[3/2]4 states, respectively.  

3. Boron and nitrogen are sputtered in a one-to-one ratio, which is true at steady state according to known 

sputtering physics and there has been no evidence to the contrary. For every ground-state boron detected, the 

total mass leaving the thruster is equal to the mass of one boron atom plus one nitrogen atom. 

D. Uncertainty and Sources of Error 

The uncertainty in the extracted boron density comes from spread in the average ring-down time. One can use 

Eq. (9) to compute the minimum detectable absorbance for each data trace. Assuming the signal is roughly 

triangular in nature (i.e. that it has a single peak) one can calculate the signal-to-noise ratio of a data trace. The 

signal-to-noise ratio (SNR) is defined as the magnitude of the peak signal divided by the root-mean-square of the 

noise. The relative uncertainty in the line-integrated density corresponding to the minimum detectable absorbance is 



 
 

16 

American Institute of Aeronautics and Astronautics 

 

just the inverse of the SNR. Since the uncertainty in the ring-down time is computed with a 95% confidence interval, 

the relative uncertainty in the line-integrated density derived as previously described also comes with a 95% 

confidence interval. Further statistical analysis can then be carried out using the nature of the onion-peeling method 

to compute the uncertainty in each boron density data point. To simplify the analysis, an average relative uncertainty 

for line-integrated density is computed for each operating condition. The relative uncertainty in the boron density is 

the same by standard error propagation. 

The uncertainty in the relative sputter rate should be dominated only by the uncertainty in the boron density 

measurement. Uncertainty in the velocity modeling should have only a higher order effect on the relative sputter rate 

as long as it is consistent for all operating conditions. This is because the experimental data from work by Tao and 

Yalin22 show that the sputtered velocity is not strongly dependent on the energy of the bombarding particle and the 

LIF data from a previous work26 show that the variation in the average angle of incidence near the exit plane for 

different operating conditions is small (~10° spread for 300 and 600 V operation). With that said, it is possible that 

the axial velocity of the sputtered boron is sensitive to even such a small spread in bombardment angle and will 

require comparison to control experiments and finite-element analysis to check. This is left for future work. For the 

purpose of this paper it is assumed that the uncertainty in the relative sputter rate caused by variation in the axial 

velocity of the sputtered boron due to differences in operating conditions is negligible compared to the uncertainty 

propagated from the boron density measurement. 

The uncertainty in the absolute sputter rate, on the other hand, is strongly influenced by the velocity modeling. 

The computed average speed of the Sigmund-Thompson distribution is strongly sensitive to the fitting parameters. 

For instance, a change in the value of m by 0.1 can cause a 10% change in the computed average speed. Similarly, 

the exact boundary of integration has a strong influence on the value of the computed average speed. Indeed, the 

best approach to obtaining the axial boron velocity is most likely to measure it directly with boron LIF, but boron 

LIF in a Hall thruster environment is a completely untested diagnostic. For the purpose of this paper, 50% is 

assigned as the contribution of uncertainty in the absolute sputter rate due to the simplicity of the velocity model 

used. Refinement of the velocity model through kinetic simulations should greatly reduce this uncertainty, as would 

boron LIF velocimetry experiment. The CRDS lineshape can further be predicted by the use of a refined velocity 

model for comparison to measured CRDS lineshape. This comparison could potentially give a more accurate 

estimate of the uncertainty. These activities are left for future work.  

Another source of error contributing to the uncertainty in the absolute sputter rate is the possibility of under-

capturing the full lineshape in certain high SNR scans. Some lineshapes do not appear to have completely flattened 

out by the edge of the scan range. This is often difficult to discern because the lineshapes seem to terminate pretty 

close to the edges of the scan range. The short scan range is an unfortunate artifact of using direct beam injection to 

deliver the UV laser light. The slight change in beam angle at the UV laser output leads to variation in the mode-

match at the CRDS cavity. If too large of a scan range is used, at the edges of the scan range, the laser light will 

couple to higher-order modes. Note the laser mode-hop-free range was not a limiting factor in the scan range. While 

it is unclear if all of the 249.848 nm lineshape is captured from these select scans, it is assumed that the majority is 

captured since other scans show proper flattening out at the extreme ends. Under-capturing the lineshape will lead to 

under-estimate of the sputter rate, but this under-estimation should be systematic because all of the lineshapes 

appear to be roughly triangular with similar widths. The similarity in the lineshape is not surprising since the 

lineshape is driven by similar geometries and the same Sigmund-Thompson-VDF-based Doppler broadening. The 

maximum systematic error is tentatively listed as 20%. 

Other sources of error contributing to the uncertainty in the absolute sputter rate include uncertainty in the mass 

density of the BN and uncertainty in the correlation ratio between the total sputtered boron density and the boron 

density of the 2p[3/2]4 ground state. The former uncertainty is expected to be a few percent at most, which is 

negligible compared to the potential error in the axial velocity. The latter uncertainty depends on how much of the 

boron is in the excited states, the charged states, molecular complex, or the 2p[1/2]2 ground state. No quantitative 

data about the amount of sputtered particles that are ejected as molecular complex is currently published, though 

past QCM sputtering studies, including X-ray photoelectron spectroscopy (XPS) measurements, indicate that 

sputtered boron is primarily in atomic form.27 The ratio of 2p[1/2]2 to 2p[3/2]4 ground states is assumed to be 

calculable by assuming thermal equilibrium distribution of states. Confirmation is left for future works. A rough 

analysis of the fraction of excited and ionized state boron to the total boron population was performed using the 

cross section data collected by Kim and Stone28 combined with plasma density measurement inside the 6-kW 

collected by Reid.29 The main results were that negligible amount of excited and ionized boron came off of the 

channel walls from xenon bombardment, but a non-negligible amount of boron ions may be formed as boron 

neutrals travel through the channel before reaching the cavity laser beam. The fraction of ionized boron at the CRDS 
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measurement plane was estimated to have a systematic error of 20%. That is to say, the absolute sputter rate can be 

underestimated by up to 20%. 

V. Results 

A. Density Plots 

Figure 15 shows sample raw CRDS traces for the 300 V, 30 mg/s operating condition. This data set has the 

lowest uncertainty of all of the data set and nicely illustrates the kind of signal to expect when the CRDS diagnostics 

is working properly. In the figure, P is the non-dimensionalized vertical coordinate. In contrast, Fig. 16 shows 

sample raw CRDS traces for the 150 V, 30 mg/s condition, where the measured sputter rate was about the same as 

the minimum detectable sputter rate. While sputtering information can still be extracted for this condition once the 

data is put through the data reduction methods previous described, the extracted sputter rate is close to the detection 

threshold. The offsets between traces shown in Figs. 15 and 16 are a result of continuous degradation in the mirror 

reflectivity as the test proceeded. 

 
Figure 15. Sample raw CRDS traces for the 6-kW Hall thruster operating at 300 V, 30 mg/s 

 

 
Figure 16. Sample raw CRDS traces for the 6-kW Hall thruster operating at 150 V, 30 mg/s. 
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for this set). Also note that the density plot for the 600 V, 10 mg/s condition shown in Fig. 24 does not quite come 

down to zero at the edges of the measurement domain. This feature suggests the possibility that boron exists beyond 

R = -0.2 and R = 1.2 at this operating condition. If this is true, the real sputtered rate is under-estimated in the 

measurement. However, the error is unlikely to be large because the geometry of the thruster does not really allow 

boron to show up far away from the channel. The uncertainty contributed is assumed to be smaller than the sensor 

uncertainty at this operating condition. 

 Figure 25 shows the sputtered boron flux as a function of non-dimensionalized radial position for the 300 and 

600 V operating conditions. Flux plot for 150 V operating conditions are not shown since we already know the 

corresponding signals are close to or below the minimum detectable threshold of the sensor. Figure 25 shows a 

higher boron flux near the inner channel wall than near the outer channel wall. However, the respective area of 

boron emission is not the same due to changing radius. In comparison, Fig. 26 shows the sputtered boron particle 

rate (flux times area) of each onion ring for the same operating conditions. The total amount of boron being 

 
Figure 25. Boron flux as a function of non-dimensionalized radial position for the 6-kW Hall thruster 

operating at 300 and 600 V discharge voltage. 

 

 
Figure 26. Boron particle rate of each onion ring as a function of non-dimensionalized radial position for the 

6-kW Hall thruster operating at 300 and 600 V discharge voltage. 
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sputtered off of the inner and outer channel walls appears to be about equal. However, these profiles may contain a 

large amount of error since the simple velocity model is used in the calculations. It is therefore difficult to draw any 

definitive conclusions regarding the relative amount of boron sputtered from one channel wall versus the other. 

 Figures 25 and 26 show that the detected boron is largely concentrated near the two walls. Recall the nominal 

wall radii are at R = 0 and R = 1. Due to enlargement of the channel at the exit plane, the actual radial location of the 

intersection between the two channel walls and the channel exit plane is at R = -0.09 and R = 1.09, measured by 

profilometry. While the boron peak over the inner channel wall appears to be well defined, the boron peak over the 

outer channel wall is much more diffused and may be more susceptible to noise. It is unclear whether this difference 

is real or an artifact of noise. 

B. Relative and Absolute Sputter Rate 

Table 3 lists the relative and absolute channel wall material sputter rate calculated from the CRDS data for the 6-

kW Hall thruster at various operating conditions. This table shows how close the signals for the various 150 V 

conditions are to the minimum detectable threshold. The uncertainties of 62% and 100% for the 150 V, 10 mg/s and 

150 V, 20 mg/s conditions, respectively, show that any signal present is drowned out by the noise. The minimum 

detectable sputter rate, shown in parentheses, is listed in place of the sputter rate for these two operating conditions. 

The true sputter rate is around or less than the value in parentheses. 

The relative sputter rate is normalized against the sputter rate for the 300 V, 10 mg/s operating condition. The 

sputter rate appears to rise with both discharge voltage and anode mass flow rate. In particular, doubling the 

discharge voltage from 300 V to 600 V while maintaining an anode mass flow rate of 10 mg/s roughly quadrupled 

the sputter rate. On the other hand, increasing the mass flow does not seem to have as dramatic of an effect. The 300 

V, 20 mg/s and the 600 V, 10 mg/s operating conditions have almost the same discharge power but have very 

different relative sputter rates. The sputter rate appears to vary non-linearly with the discharge voltage and almost 

linearly with the anode mass flow rate. 

C. Comparing CRDS and Profilometry Results 

Table 4 compares the CRDS data to the profilometry results. To make this comparison, we multiplied the CRDS 

sputter rate by the amount of time spent at each operating condition and sum them up to obtain the total volume of 

BN ejected from the channel walls after 543 hours of thruster operation. The volume of ejected material is calculated 

from profilometry data by using geometry. 

Profilometry is about seven times more accurate than CRDS. The CRDS measurement shows the right order of 

magnitude but is still off by 50%. However, profilometry took much more operational time and resources to obtain 

results than CRDS did. 

Several important observations can be made from the comparison in Table 4. First, the CRDS results appear to 

Table 3. Relative and absolute sputter rate calculated from the CRDS data for the 6-kW Hall thruster. 

Discharge 

voltage, V 

Anode mass 

flow rate, mg/s 

Discharge 

power, kW 

Relative 

sputter rate 

Associated 

relative 

uncertainty 

Sputter rate, 

mm
3
/s 

Associated 

relative 

uncertainty 

150 10 1.36  0.4   62% (3.7×10-4) - 

150 20 3.23 -0.1 100% (5.7×10-4) - 

150 30 5.30  0.7   39% 1.1×10-3 63% 

300 10 2.68  1.0   39% 1.5×10-3 63% 

300 20 6.03  1.6   17% 2.3×10-3 53% 

300 30 9.98  2.5     7% 3.7×10-3 51% 

600 10 5.62  4.2   21% 6.0×10-3 54% 

Table 4. Comparison of total sputtered volume by diagnostics. 

*Calculated using standard error propagation from a spatial measurement uncertainty of 0.05 mm. 

**Calculated using standard error propagation from the uncertainty at each operating condition. 

Methodology Total volume of sputtered BN, mm
3
 Relative uncertainty 

Profilometry at 543 hours 8437 8%* 

CRDS measurement 4249 56%** 



 
 

23 

American Institute of Aeronautics and Astronautics 

 

under predict the ejected BN volume. Some possible 

reasons have already been discussed in Section IV.D and 

include poor velocity modeling, ionization of neutral boron 

before they are detected, boron that exits the thruster in BN 

molecular complex, and possible incompleteness in the 

scanned lineshape. Also, it is possible that the record of 

operating hours is incomplete as the timing record is only 

accurate to a few minutes per entry. With that said, the total 

uncertainty in the operating hours should be no more than 

10 hours or ~2%.  

Another major possibility is that the erosion rate has 

changed between when the thruster was fresh and when it 

achieved 543 hours of operation. Erosion rate data from the 

SPT-10031 replicated in Fig. 27 clearly show a rapid 

decrease in erosion rate during the first 800 hours of thruster 

operation.  It would therefore not be surprising if a similar 

phenomenon is happening in the 6-kW thruster thus giving 

rise to under-prediction when using the CRDS data at 543 

hours to calculate the total ejected volume of BN. A more 

rigorous study involving taking CRDS and profilometry 

data at short regular intervals is needed to ascertain the 

influence of the above phenomenon and to validate the use of CRDS for absolute erosion rate measurement. 

With all of the above said, the authors believe the results shown in Table 4 are a very good sign. The fact that 

CRDS result is in the same order of magnitude as the profilometry results and the fact that we know many of the 

shortcomings and physical effects that can potentially account for the difference in results mean that CRDS really 

does have the potential to become a unique and highly accurate tool for studying Hall thruster channel wall erosion. 

D. Scaling Equation 

We will now study the relationship between the discharge power, anode mass flow rate, and sputter rate, by 

fitting the CRDS data to a general power-law form shown in Eq. (21), 

 

 yx mV~SR &  (21) 

 

where the discharge voltage, V, is raised to the power of x and the anode mass flow rate, m� A, is raised to the power 

of y. Note that this equation form has no dependence on the magnetic field so is only applicable if the magnetic field 

obeys certain scaling to the discharge voltage and anode mass flow rate. In the case of the 6-kW Hall thruster, the 

magnetic field is symmetric about the channel centerline and set to maximize the anode efficiency for a given 

operating condition. To find the value of x, we perform power-law curve-fit on data from pairs of operating 

conditions having the same anode mass flow rate (i.e. 150 and 300 V at 30 mg/s and 300 and 600 V at 10 mg/s). The 

value of x calculated this way is then averaged. The data from 150 V, 10 and 20 mg/s conditions are not used 

because they do not represent positive boron detection. The value of y is found by performing power-law curve-fit 

on the data from the 300 V operating conditions. Figure 28 shows the curve-fit for the coefficient x, and Fig. 29 

shows the curve-fit for the coefficient y. The final result is shown in Eq. (22). 

 

 8.09.1 mV~SR &  (22) 

 

The exponent on the discharge voltage is found to be almost two. This is believed to be driven by a combination 

of the sputter yield and erosion zone length increasing with the discharge voltage. The increase in sputter yield with 

incident ion energy is predicted by a number of sputter yield models. Two of these models have been plotted for 

various angle-of-incidences (AOIs) in Fig. 30. The models predict that the rise in sputter yield is roughly linear with 

the ion energy to a first order estimate thus contributing a value of one to the exponent of the discharge voltage in 

Eq. (22). The other dominant contribution to the exponent on the discharge voltage, the increase in erosion zone 

length with discharge voltage, has been experimentally observed in a number of near-wall experiments,26, 32 though 

this phenomenon is not well studied in the community due to a lack of experimental data. We can tentatively 

conclude that for the 6-kW Hall thruster over the tested operating conditions, the contribution of the erosion zone 

 
Figure 27. Erosion rate versus operating hours for 

the SPT-100.
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length effect to the exponent on the discharge voltage is roughly one. That is to say the erosion zone length scales 

linearly with the discharge voltage. 
 

Interestingly, the curve-fit produced a value for the exponent of the anode mass flow rate at 0.8, less than 1, 

which implies that the sputter rate increases a bit less slowly than linear with the anode mass flow rate. This may 

provide evidence that the erosion zone is being pushed downstream as the anode mass flow rate increases. The 

uncertainty in the values of x and y is large and, due to the limited quantity of the data available, it is not meaningful 

to try to establish the value of the uncertainty. Furthermore, it is unclear how the scaling equation may be affected 

by higher order effects like plume divergence and presence of multiply-charged species. Nevertheless, the results 

show how the CRDS diagnostics can be used to obtain an engineering scaling equation that relates the sputter rate to 

the discharge voltage and anode mass flow rate. 

 

VI. Application Ideas 

This section is included in this paper to describe other ways to utilize CRDS density measurement besides 

 
Figure 28. Curve-fit for the exponent of the discharge 

voltage in the relative erosion rate equation. 

 
Figure 29. Curve-fit for the exponent of the anode 

mass flow rate in the relative erosion rate equation. 

 
Figure 30. Sputter yield versus ion energy for two sputtering models at different angles of incidence. 

Rubin 2009 refers to the model described in work by Rubin, et al., 
33

 and Gamero 2005 refers to the model described 

in Gamero and Katz.
34 
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parametric scientific study. It is mainly written to share ideas. 

The ultimate goal of studying the channel wall erosion problem is to develop predictive tools that can aid in the 

design of long life Hall thrusters. The purpose of performing CRDS measurement is to obtain data that can help such 

development. However, it may be possible to use CRDS results itself as a predictive tool. Two applications of 

CRDS data for flight qualification come to mind. 

The first application is to use the CRDS data to project the life of the channel walls from one operating condition 

to another. By performing boron density measurements in near-real-time, a thruster that has been qualified can 

potentially be re-qualified for another operating condition depending on how much difference there is between the 

conditions. At the very least, one can establish upper engineering limits for how much erosion to expect at the new 

operating condition. 

The second application is to use the CRDS data with LIF measurements to perform accelerated life test. For 

example, we begin by obtaining data on the bombarding particles and the erosion rate for thruster X, then use that 

data to make a short time step (~500 hours) prediction of what the channel walls will become. We now manufacture 

a new set of channel walls with the predicted profile and repeat the measurements. Depending how rapidly the walls 

are eroding, we can change the size of the time step. Five hundred hours of thruster operation would normally take 3 

weeks. Since the CRDS and LIF data can be taken in 1-2 days once set up, the turnaround time for accelerated life 

test would only depend on how quickly new channels can be manufactured. As such, this approach may only work 

well if there is channel wall shaping capability on-site. However, even if it takes 1 week to shape a new ring, that 

will still be 3x time and operation resource savings. If the channel wall erosion rate drops over time, the time step 

can be made longer and the savings will increase. Of course, this approach is not a replacement for full-flight 

qualification, which tests other components besides the channel walls, but it is a more cost-efficient way to re-

qualify the channel walls or just to study how the erosion of the channel walls progress. 

VII. Conclusion and Future Works 

We have successfully demonstrated the first use of boron CRDS to study channel wall erosion in a Hall thruster 

environment to measure the channel wall erosion rate. Like all novel diagnostics, the first batch of data contains 

large amount of uncertainty, but the major sources of uncertainty have been identified. This experiment clearly 

demonstrated the potential of CRDS for obtaining in-situ near-real-time sputter rate measurement for studying the 

Hall thruster channel wall erosion problem. It further demonstrated how a simple engineering equation can be 

formulated to correlate relative erosion rate across different discharge voltages and anode mass flow rates for the test 

article. 

There are many areas of possible improvement for the use of CRDS to study Hall thruster channel wall erosion, 

most of which relates to the sources of uncertainty previously described in the paper. The specific areas of 

improvement will be discussed in a future paper. For this paper, it is sufficient to say that the near-term focus of 

CRDS research should be on suppressing the degradation of the mirrors, improving the sensor sensitivity, and 

improving the boron velocity model. 

In terms of future scientific studies, two avenues of investigation would be very helpful in continuing the 

research described in this paper. First, it is imperative that more data be collected at different high-voltage operating 

conditions (300+ V) because the creation of a better engineering scaling relationship for erosion requires more high-

voltage data. This need was demonstrated in this paper when an attempt was made to create such a scaling 

relationship. 

Second, more studies of the type described in this dissertation should be performed on various thrusters and at 

various stages of life. By comparing the erosion data across different thrusters we can determine whether the scaling 

relationship for predicting erosion rate at different operating conditions is universal across thrusters. By comparing 

the erosion data across different stages of life for the Hall thruster, we can determine whether and how the erosion 

physics changes as the channel erodes. These data will be very useful for developing models and design tools for 

Hall thrusters. 

In addition, a wide variety of scientific investigations has now been enabled by a developed boron CRDS erosion 

diagnostic that was previously impractical to perform. For example, we can now measure the channel wall erosion 

rate as a function of changing magnetic field topology in an attempt to search for a topology that minimizes erosion 

rate (as opposed to maximizes performance). We can study the effect of different wall materials (this may require 

multiple lasers and mirror sets) to identify materials that are optimal from an erosion standpoint. There is a vast 

number of possible scientific ventures now available for exploring. 

 Furthermore, it would be interesting and highly valuable to Hall thruster erosion research to investigate how 

exactly the Hall thruster magnetic circuit erodes once exposed to plasma. The community has repeated cited the 



 
 

26 

American Institute of Aeronautics and Astronautics 

 

erosion of the channel walls and subsequent exposure of the magnetic circuit to plasma as a primary failure mode in 

the Hall thruster. However, little is known about the duration of time between the beginning of circuit exposure to 

plasma and actual failure of the thruster. A simple experiment to study the behavior of this failure mode could be 

performed by shaping the channel based on existing channel profiles such that the magnetic circuit is exposed. 

 Ultimately, the study of the Hall thruster channel wall erosion needs to be tied back to the basic underlying 

physics so that accurate, predictive models can be built to help future design works. In particular, a very important 

next step forward is to decipher the physical basis by which the erosion zone length increases with the discharge 

voltage. There is also the important question of how the erosion zone length changes with the magnetic field 

topology. Understanding these mechanisms are the keys to creating a model that can correlate erosion rate across 

different operating conditions for a Hall thruster, and eventually will lead to a model for predicting absolute erosion 

rate. 
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