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Magnetic field guided plasma expansions show up in
the laboratory and in nature.

Plasma thrusters (electrode-
less, magnetic nozzle)

* Solar phenomena

CubeSat Ambipolar Thruster
* Astrophysical plasma jets

e Aurora Borealis

Aurora borealis



Ions can be accelerated during the expansion.

How are ions accelerated in these magnetic field
expansions?




Ions can be accelerated by the electric field created
by fast expanding electrons.

Quasi-neutral
plasma

Vacuum




The magnetic dipole force can accelerate ions along
magnetic field lines.

* Particles accelerated by magnetic dipole force. (14 = magnetic
moment)

Fy=V(u-B)

* Quantity (u - B) acts like a magnetic potential




The Quasi-1D PIC code incorporates 2D effects to a
1D electrostatic PIC code without 2D costs.
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The plasma is heated by an oscillating electric field.
Heated electrons collide with neutral background. _
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The cross-sectional area variation is found by
assuming particles follow field lines.
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Simulation parameters are chosen to compare with

previous simulations.

Parameter Value
Length 10 em
Grid Cells 250
Time Step 5x 1071 g
Total Time 25 us
Heating Current 100 A /m?
Heating Frequency 10 MHz

Macroparticle Weight
Neutral Pressure
Neutral Temperature
Gas
Magnetic Field (Bg)

2 % 10® Particles/Macroparticle

1.23 mTorr
203 K
Argon

300 G

Similar to parameters used by Meige (2005) and Baalrud (2013)



Incorporation of two-dimensional effects leads to
capturing ion acceleration.
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Incorporation of two-dimensional effects leads to
capturing ion acceleration.

- 10"

£

® —_
& ©
@ 13 e
210 §
c o]
210" o
Q

°

“iom}

0 002 004 006 008 0.1 0 002 004 006 008 0.1

Position (m) Position (m)




Incorporation of two-dimensional effects leads to
capturing ion acceleration.
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Ions develop into a beam with some lower energy

particles.
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Magnetic field effects on electrons leads to the
acceleration of the ions.

The light electrons are heated in the heating region

Ny H




Magnetic field effects on electrons leads to the
acceleration of the ions.

The light electrons are heated in the heating region

Ny H

High perpendicular velocities leads to rapid
acceleration of electrons
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Magnetic field effects on electrons leads to the
acceleration of the ions.

The light electrons are heated in the heating region

Ny H

High perpendicular velocities leads to rapid
acceleration of electrons
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Charge imbalance leads to the formation of an electric
field which accelerates the ions out with the electrons
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Magnetic field effects on electrons leads to the
acceleration of the ions.

The light electrons are heated in the heating region

Ny H

High perpendicular velocities leads to rapid
acceleration of electrons
av"'e 1 aB
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Charge imbalance leads to the formation of an electric
field which accelerates the ions out with the electrons

avll,ion _ g E.
4 ; ot m induced

lon beam formation




Conclusions and future work.

* Electrons driven by magnetic field forces create
potential drops which result in ion acceleration.

e Future simulations will investigate HDLT, CAT, and
VASIMR ion acceleration mechanisms.

* Perform further parametric study with this test
problem. (Additional magnetic field topologies,
heating currents, etc)




Acknowledgements

Thank you for your time!

Questions?

This research is funded by a NASA Office of the Chief Technologist Space Technology
Research Fellowship and the DARPA contract number NNA15BA42C. Simulations were
performed on the NASA Pleiades and University of Michigan ARC FLUX supercomputers.

Thank you to the members of PEPL and NGPDL for their discussions about this research.




BACKUP SLIDES




Rapid expansion leads to rapid potential drop and

more ion acceleration.
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Kinetic simulations are necessary to capture
important ion acceleration physics.

Evolution of the ion and electron energy distribution functions

Instabilities in the plasma

Potential structures which form in the plasma plume

Capture most fundamental physics for ion acceleration




Electron temperatures are around 4-5 eV
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Electron distribution only varies slightly spatially.
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Electron temperatures vary greatly through domain
when including two-dimensional effects
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Electron distribution shows significant variation
through the domain.
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Cross-sectional area variation changes density,
Nno major ion acceleration is seen.
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Magnetic field forces result in ion acceleration.
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Full simulations shows characteristics of both
effects.
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Magnetic mirror simulation setup

Goal:
» Validate magnetic field forces

Physics:

* Charged particles moving from
weak magnetic field to strong
magnetic field region are confined
for certain conditions.

Setup:

* One-dimensional domain

* Particles loaded Maxwellian
velocity distribution at center of z
domain.

* |gnore electric field forces,
uncoupled particle motion.




Code correctly reproduces analytical loss cone
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The fraction of particles trapped agrees well with
theory

— _Bmin_\/E
y_\/l Bmax 2

Initial Particles: 10° Particles
Predicted: 7.0710 - 10* Particles
Simulation: 7.0733 - 10* Particles

Error: 0.033%




Quasi-neutral plasma expansion simulation setup

Goal:
* Validate cross-sectional area variation

Physics:
* A quasi-neutral plasma beam expansion is controlled by a strong
magnetic field.

Setup:

 Hydrogen ions and electrons are injected into a domain with a
diverging applied magnetic field.

e Simulations are compared between a 2D r-z simulation (OOPIC) and

QPIC.




OOPIC simulation of quasi-neutral jet expansion
following magnetic field lines
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Results from QPIC agree well with the centerline
number density from OOPIC
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