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Magnetic field guided plasma expansions show up in 
the laboratory and in nature.
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• Plasma thrusters (electrode-
less, magnetic nozzle)

• Solar phenomena

• Astrophysical plasma jets

• Aurora Borealis

Aurora borealis

CubeSat Ambipolar Thruster



Ions can be accelerated during the expansion.

How are ions accelerated in these magnetic field 
expansions?
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Ions can be accelerated by the electric field created 
by fast expanding electrons.
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Quasi-neutral 
plasma

Vacuum



The magnetic dipole force can accelerate ions along 
magnetic field lines.

• Particles accelerated by magnetic dipole force. (𝜇 = magnetic 
moment)

𝑭𝑑 = 𝛻(𝝁 ⋅ 𝑩)

• Quantity (𝝁 ⋅ 𝑩) acts like a magnetic potential 
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The Quasi-1D PIC code incorporates 2D effects to a 
1D electrostatic PIC code without 2D costs.

6

• Ion and electron particles

• Constant background neutral 
density

• Ion and electron collisions 
with neutral background

• Constant magnetic field in 
source region (1D)

• Decreasing magnetic field in 
expansion region



The plasma is heated by an oscillating electric field.  
Heated electrons collide with neutral background.
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𝐽𝑦,𝑡𝑜𝑡 = 𝜖0
𝜕𝐸𝑦

𝜕𝑡
+ 𝐽𝑐𝑜𝑛𝑣

𝐽𝑦,𝑡𝑜𝑡 = J0sin(2𝜋 × 𝑓 × 𝑡)

𝑓 = 10 𝑀ℎ𝑧

Based on Meige (2005)



The cross-sectional area variation is found by 
assuming particles follow field lines.
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Simulation parameters are chosen to compare with 
previous simulations.
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Similar to parameters used by Meige (2005) and Baalrud (2013)



Incorporation of two-dimensional effects leads to 
capturing ion acceleration.
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Incorporation of two-dimensional effects leads to 
capturing ion acceleration.

11



Incorporation of two-dimensional effects leads to 
capturing ion acceleration.

12



Ions develop into a beam with some lower energy 
particles.
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Magnetic field effects on electrons leads to the 
acceleration of the ions.
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The light electrons are heated in the heating region

𝑣⊥,𝑒 ↑



Magnetic field effects on electrons leads to the 
acceleration of the ions.
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The light electrons are heated in the heating region

𝑣⊥,𝑒 ↑

High perpendicular velocities leads to rapid 
acceleration of electrons



Magnetic field effects on electrons leads to the 
acceleration of the ions.
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The light electrons are heated in the heating region

𝑣⊥,𝑒 ↑

High perpendicular velocities leads to rapid 
acceleration of electrons

Charge imbalance leads to the formation of an electric 
field which accelerates the ions out with the electrons
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Magnetic field effects on electrons leads to the 
acceleration of the ions.
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The light electrons are heated in the heating region

𝑣⊥,𝑒 ↑

High perpendicular velocities leads to rapid 
acceleration of electrons

Charge imbalance leads to the formation of an electric 
field which accelerates the ions out with the electrons
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Ion beam formation



Conclusions and future work.

• Electrons driven by magnetic field forces create 
potential drops which result in ion acceleration.

• Future simulations will investigate HDLT, CAT, and 
VASIMR ion acceleration mechanisms. 

• Perform further parametric study with this test 
problem. (Additional magnetic field topologies, 
heating currents, etc)
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BACKUP SLIDES
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Rapid expansion leads to rapid potential drop and 
more ion acceleration.



Kinetic simulations are necessary to capture 
important ion acceleration physics.

• Evolution of the ion and electron energy distribution functions

• Instabilities in the plasma

• Potential structures which form in the plasma plume

• Capture most fundamental physics for ion acceleration
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Electron temperatures are around 4-5 eV
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Electron distribution only varies slightly spatially.
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Electron temperatures vary greatly through domain 
when including two-dimensional effects
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Electron distribution shows significant variation 
through the domain.

26



Cross-sectional area variation changes density, but 
no major ion acceleration is seen.
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Magnetic field forces result in ion acceleration.
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Full simulations shows characteristics of both 
effects.
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Magnetic mirror simulation setup

Physics:

• Charged particles moving from 
weak magnetic field to strong 
magnetic field region are confined 
for certain conditions.
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Setup:
• One-dimensional domain 
• Particles loaded Maxwellian

velocity distribution at center of 
domain.

• Ignore electric field forces, 
uncoupled particle motion.

Goal:
• Validate magnetic field forces

Z



Code correctly reproduces analytical loss cone
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Magnetic mirror velocity distribution 
and loss cone (blue)
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The fraction of particles trapped agrees well with 
theory
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𝛾 = 1 −
𝐵𝑚𝑖𝑛

𝐵𝑚𝑎𝑥
=

2
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𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠: 105 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑: 7.0710 ⋅ 104 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 7.0733 ⋅ 104 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝐸𝑟𝑟𝑜𝑟: 0.033%



Quasi-neutral plasma expansion simulation setup

Physics:

• A quasi-neutral plasma beam expansion is controlled by a strong 
magnetic field.
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Setup:
• Hydrogen ions and electrons are injected into a domain with a 

diverging applied magnetic field.
• Simulations are compared between a 2D r-z simulation (OOPIC) and 

QPIC.

Goal:
• Validate cross-sectional area variation



OOPIC simulation of quasi-neutral jet expansion 
following magnetic field lines
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Results from QPIC agree well with the centerline 
number density from OOPIC
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