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Introduction

• Optimizing the magnetic field topography is key to maximizing the
system performance of Hall thrusters.  To first order, the equipotentials
follow the B-field lines, so a map of the B-field gives some indication of
how ions are accelerated out of the thruster.  The magnetic field also
contributes to the azimuthal ExB drift experienced by the electrons and
must be of sufficient magnitude to confine electrons within the
discharge chamber while not confining ions.

• Although key to the performance of the Hall thruster, very little has
been published on the subject of B-field topography primarily due to the
proprietary nature of many of the designs used by the various
manufacturers.  It is the objective of this research to examine the
various aspects of designing Hall thruster magnetic circuits and make
recommendations of how to improve system performance.  This data
should also prove useful to researchers designing other laboratory Hall
thrusters.
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Objectives

• Validate the 3D magnetostatic solver Magnet 6 by comparing
with experimental Hall probe data.

• Modify the existing magnetic circuit of the P5 using the 3D
magnetostatic solver to predict field topographies.

• Test the new magnetic circuit configurations by measuring the
divergence angle of the ion beam using a Faraday probe.
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U-M/AFRL P5 5 kW Hall Thruster

• Laboratory thruster developed
by PEPL & AFRL

• At design point of 5 kW: 2330 s
specific impulse, 246 mN thrust,
and 57% efficiency.

These performance values are
comparable to commercial
thrusters.

• Operating Conditions for these
experiments:

4.515.0300

3.010.0300

1.65.4300

Power (kW)Current (A)Voltage (V)
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Current Design - Experimental vs. Numerical
Radial Magnetic Field Profiles
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•Experimental data taken with a Hall probe at
atmospheric conditions
•Numerical data computed using Magnet 6, a 3D
unstructured mesh magnetostatic solver
•Peak fields over predicted by ~20%.  Most likely
because the BH curve of the iron used in the
thruster is not precisely known.
•Curvature of the field lines is closely
approximated as shown in the normalized plot.
•Conclusion:  Magnet is capturing the field shape
adequately enough to be used as a design tool.
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Current Design - Experimental vs. Numerical
Radial Magnetic Field Contours
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Current Design – Numerical
Axial Magnetic Field Profiles & Contours
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Numerical B Field Simulation

3kW, Magnitude of B
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Numerical Solid Model Geometry
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Magnetic Circuit Modification Schematics
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Inner Pole Chamfer, Extended Outer Pole
Radial and Axial Magnetic Field Contours
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Extended Inner Pole
Radial and Axial Magnetic Field Contours
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No Magnetic Screens
Radial and Axial Magnetic Field Contours
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Current Design and Inner Chamfer, Ext. Outer
Pole Magnetic Field Lines

Current Design – aligned poles Inner pole chamfer, extended outer pole
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Extended Inner Pole and No Magnetic Screens
Magnetic Field Lines

No magnetic screensExtended Inner Front Pole
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Faraday Probe Experimental Results
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Faraday Probe / Divergence Angle

Divergence Half-Angle
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Current Design
Inner Chamfer, 
Ext. Outer Pole Ext. Inner Pole No Screens SPT-140**

1.6kW, 1.0m 26 42 28 40 32***
3.0kW, 1.0m 26 35 33 45 28
4.5kW, 1.0m 28 31 33 46 23
*Divergence calculated as 90% of the integrated current between +/- 90 degrees

Divergence* Half-Angle (Degrees)

** Fife, Hargus, Haas, Gallimore, et al, "Spacecraft Interaction Test Results of the High 
Performance Hall System SPT-140", To be presented at the 36th JPC Huntsville, Alabama.  
SPT-140 data collected at the University of Michigan.

*** Data taken at 2 kW

• Current design is flat within
measurement error of +/- 2o, and
compares favorably with the
SPT-140.

• Inner chamfer, extended outer pole
appears to be over focused.  A
decrease in divergence is observed
with increasing power, much like the
SPT-140.

• Extended inner pole gives slightly
higher divergence than the current
design.  May suggest that slightly
divergent B field lines can minimize
beam divergence by extending the
beam focal point.

• No magnetic screens gave the
expected result of poor performance at
all power levels.
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Conclusions and Future Work

• The current design of the PEPL/AFRL P5 Hall thruster, with pole pieces aligned, resulted
in the lowest beam divergence of any configuration and also gave a flat profile with power.
Such a profile would be advantageous to a flight model, allowing the thruster to operate
safely over a range of power levels.  Researchers looking to build simple laboratory models
could also use this configuration to minimize cost and complexity.

• Other PEPL data (LIF, MBMS, LP) of the P5 has previously suggested that the focal point
of the thruster beam was already within a few centimeters of the exit plane.  The resulting
beam divergence is thought to be in part due to the beam crossing itself.  The use of the
convergent field lines here (inner pole chamfer, extended outer front pole) seems to have
decreased the focal point further still, as evidenced by increased divergence.

• The above suggested that outwardly focused field lines could actually decrease
divergence by extending the focal point.  However, the configuration tested in this research
did not find a decrease in divergence over the current design.  Further testing is planned to
examine the use of outwardly focused field lines by considering other designs.

• Magnetic screens have been shown to decrease the divergence of the P5.  The
symmetry of the screen less configuration results in a broader beam that contributes more
current at higher angles than the current design.


