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Nomenclature

A = acceleration vector/profile

C3 = launch vehicle/orbital energy

C (U) = constraint vector that defines a feasible trajectory

cw = Chebyshev coefficient for coordinate w

δU = the control update found at iteration of the feasible trajectory solver

F (C3) = launch vehicle payload mass as a function of C3

J = cost function used to optimize the trajectory

M = number of control segments

m = number of heliocentric revolutions

mi = mass of spacecraft at node i

ṁ = mass flow rate

µsun = the gravitational parameter of the sun

Px = orbital period of planetary body x

Pmax = maximum power allowed by power system and dynamics

φ = elevation angle as defined in spherical coordinates

φi = the throttle setting of the thruster on segment i. φ must be between ±

qi = thrust constraint on segment i

r = heliocentric distance of spacecraft in spherical coordinates

Si = thruster state constraint on segment i

si = thruster state, on or off, on segment i

T j = thrust vector on segment j

Tj = Chebyshev polynomial or order j

TT (φi) = thrust provided by thruster at throttle setting phii, on segment i

θ = the polar angle as defined in spherical coordinates

t0 = launch date of spacecraft

tf = arrival date of spacecraft

U = the control set that defines the feasible trajectory problem

zi = the power system constraint on the segment i

I. Introduction

Electric propulsion (EP) offers the potential for significant mass savings over chemical propulsion when
the proper thruster, trajectory, and power system are selected. Selecting the appropriate technology and
finding the optimal trajectory is a difficult process due to the large number of possible combinations and
the different disciplines involved in the process. In order to make EP more attractive to scientists and
mission designers, new tools are required that are easy to use and enable trade studies over a wide range of
conditions. Ideally, a user should be able to describe the mission of interest and the software should identify
the best possible mission times and the key systems that should be used. While the ideal situation does not
currently exist, it is possible to work toward that goal and create tools that enable informed decisions about
EP mission and systems.

The use of impulsive transfers (chemical propulsion) allows for the decoupling of the propulsion system
and trajectory. The decoupling enables Lambert Solvers1, 2 to search over a wide range of launch and arrival
dates and identify the cost of each trajectory. Typically, this information can be displayed in a “pork chop
plot” as shown in Fig. (1). The advantage of this type of presentation is that it allows for the selection
of the launch and arrival dates and informs the user of the cost, all without knowing anything about the
propulsion system. Furthermore, because a trajectoryis computed for each data point, the user can have
confidence in the fact that the costs are reasonable and accurate.

Obtaining that type of data quickly is advantagous because it informs decisions early in the design
process and allows designers to focus on the more detailed issues. Unlike chemical propulsion, EP couples
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the propulsion, power system, and trajectory. Solving for an EP based trajectory is much more difficult due
to the large number of system possibilities and non linear dynamics. For example, the shape of an impulsive
trajectory is a conic section, Fig. (2), while the shape of an EP trajectory greatly varies over time, as shown
in Fig. (3). Furthermore, EP trajectories do not have the equivalent of a Lambert Solver which makes it
more difficult to find trajectories. For instance, in the case of an Interstellar Probe Study3 it took over 20
attempts before a single viable trajectory was found.

Significant effort has been focused on optimizing EP trajectories.4–10 However, most direct optimizers
require an initial guess, which can be difficult to generate due to the large number of choices, from thrust
directions, to thruster selection, and power source size. In some cases optimizers may require trajectories
that are feasible in order to ensure adequate performance.10 In order to avoid this problem and reduce
computational times it would be beneficial to autonomously generate feasible trajectories. Directly using an
optimizer to generate an EP pork chop plot would result in the process shown in Fig. (4), which could be
tedious and error prone because a user would be required to supply an initial guess for each point in the
search space.

One attempt at simplifying the process of generating EP trajectories was the use of the shape based
base approach.11–15 In particular, Anastassios, successfully used the exponential sinusoid,11, 14–17 r (θ) =
k1e

k2 sin(k3θ+k4), to model gravity assist trajectories. He created a program called STOUR-LTGA11, 14, 15, 17

which generates candidate EP trajectories over a wide range of launch and arrival dates. The solutions
from the STOUR-LTGA program could then be used as initial guesses for GALLOP,16, 18–20 a trajectory
optimization program. The coupling of STOUR-LTGA to GALLOP changed the trajectory generation
process from Fig. (4) to Fig. (5). The coupling of the two programs demonstrated that it is practical to use
auto-generated trajectories as an initial guess for optimizers.

While successful, the shape based approach is a holonomic constraint; therefore, it is best suited for
problems where the path is known and the forces and timing along the path are unknown. However, in orbital
rendezvous and intercept problems the timing is usually known, and the forces and path are unknown. This
disconnect in the problem type complicates the implementation and utility of the shape based approach.
Also, the trajectories generated from STOUR-LTGA did not necessarily satisfy the boundary conditions, and
they were not feasible because they did not take into account launch vehicle, thruster, or power constraints.

In this paper we expand on previous work and develop a process and methodology that allows for the
generation of feasible interplanetary trajectories. We do not optimize the trajectories here because there
are a plethora of trajectory optimization programs.4–10, 16, 18–21 Instead, we focus on generating feasible
trajectories that can be used as initial guesses for optimization. This creates a pipeline that allows for the
autonomous generation of trajectories. We first modify the trajectory generation process by introducing an
additional step, as shown in Fig. (6). The major difference in our process is that we add an additional
step that converts the “simple problem” into a feasible solution before the optimization step. This ensures
that in the worst case the problem and solution at every stage is well defined. Furthermore, we replace the
shape based approach, instead modeling the trajectory in time using a polynomial and then searching for
the polynomial coefficients that minimize the cost function. Finally, we introduce a method for converting
the polynomial trajectory into a feasible trajectory by incorporating thrust, power, and launch vehicle
constraints. Combining our broad search method with the feasible trajectory solver creates a pipeline that
can autonomously generate feasible EP trajectories.

II. Phase 1: Automated Broad Search Algorithm

In the first phase, the program searches over a wide range of launch times, t0 and flight times, ∆t, to
find good candidate mission times. The user specifies a range of launch dates, range of flight times, and
the departure and destination body. For each flight time the computer computes the range of possible
heliocentric revolutions, m, using Eq. (1). With the search space fully defined by the launch dates, flight
times, and heliocentric revolutions the program can begin a search for good trajectories.

⌊

∆t

max (Pdeparture, Pdestination)

⌋

≤ m ≤

⌊

0.7 ∗
∆t

min (Pdeparture, Pdestination)

⌋

+ 1 (1)

The trajectory is parameterized by a set of coefficients and Chebyshev polynomials. The coefficients
are the free parameters that are varied to generate different trajectories. The Chebyshev polynomials are
the underlying functions that represent the trajectories. Each position coordinate is modeled separately; in

3
The 31st International Electric Propulsion Conference, University of Michigan, USA

September 20–24, 2009



Figure 1. A pork chop plot showing the C3 cost of Earth to Mars trajectories over a wide range of launch and

arrival dates. This chart allows for the identification of launch and arrival dates that will satisfy a particular

flight time and the associated C3 cost.
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Figure 2. Chemical trajectories can be modeled as an impulsive burn followed by a coast arc, which is a conic

section.
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Figure 3. The right hand side shows an Earth to Jupiter trajectory over 10 years. The trajectory makes

several heliospheric revolutions without much change in the trajectory then it quickly spirals out to Jupiter.

The left hand portion is a zoom in of the trajectory showing the numerous changes in the thrust direction and

magnitude.

Figure 4. The process for directly using an trajectory optimizer to conduct trade studies. The process relies

on a user defined initial guess which is a road block due the potential difficulty in generating a good initial

guess.
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cartesian coordinates the position coordinates would be x, y, z, while in spherical coordinates the position
coordinates are r, θ, φ. Chebyshev polynomials were chosen because they are flexible and have been used
in to model trajectories.22 To demonstrate the flexibility and realism of the Chebyshev polynomials in
representing EP trajectories, we show two different Earth to Jupiter missions. The first mission, Fig. (7(a)),
is a short timescale ( 5 years) mission with a low number of heliocentric revolutions. The second mission,
Fig. (7(b)), is a longer timescale ( 10 years) mission with a larger number of heliocentric revolutions. Both
figures show that the polynomials have the flexibility to model EP trajectories over a wide range of timescales
and heliocentric revolutions. Because the Chebyshev polynomials can handle different timescales and large
changes in the state variables, they are a good basis function for modeling EP trajectories.

For a generic position coordinate, w, the time evolution of the coordinate is

w (t) =

N−1
∑

j=0

cw,jTj (t) (2)

and the time rate of change of the coordinate is

ẇ (t) =

N−1
∑

j=0

cw,jṪj (t) (3)

where cw,j is a coefficient that parameterizes the coordinate w and Tj is the jth order Chebyshev polyno-
mial.23 The order of the polynomial, N , is also the number of degrees of freedom for that coordinate. In this
formulation, only the positions are parameterized. The model here differs from the shape based approach
in two ways. First, the Chebyshev polynomials can be directly differentiated to compute the velocity and
accelerations on the trajectory. Secondly, the timing is known a priori in this model, where as the timing
for the shape based approach is undetermined until the time history of the control is specified.

Chebyshev polynomials can be computed recursively with Eq. (4).

Tj (τ) =















1, if j = 0

τ, if j = 1

2τTj−1 (τ) − Tj−2 (τ) , if j ≥ 2

(4)

and

Ṫj (τ) =















0, if j = 0

τ̇ , if j = 1

2τ̇Tj−1 (τ) + 2τṪj−1 (τ) − Ṫj−2 (τ) , if j ≥ 2

(5)

where τ is computed by

τ = 2
t − t0
tf − t0

− 1 (6)

τ̇ =
2

tf − t0
(7)

and t is bounded by
t0 ≤ t ≤ tf (8)

Here t0 is the time when the spacecraft begins it’s interplanetary journey, and tf = t0 +∆t is the time when
the spacecraft reaches its destination. If there are enough degrees of freedom in the trajectory model, the
parameterization can satisfy the boundary (departure and arrival) constraints. For a rendezvous problem,
the parameterization requires a minimum of four degrees of freedom per coordinate. Two degrees of freedom
are needed to ensure that the spacecraft leaves the departure body and arrives at the destination body.
Another two degrees of freedom are needed so the spacecraft’s departure and arrival velocity matches the
departure and destination body.

For the rendezvous problem, the trajectory leaves the departure body at a particular time, t0 and ren-
dezvous with the destination body at a specified time, tf . The position and velocity of the departure and
destination body can be obtained from an ephemeris. With the states of the departure and arrival body
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Figure 5. The process for directly using an trajectory optimizer to conduct trade studies. The process relies

on a user defined initial guess which is a road block due the potential difficulty in generating a good initial

guess.

Figure 6. The process for directly using an trajectory optimizer to conduct trade studies. The process relies

on a user defined initial guess which is a road block due the potential difficulty in generating a good initial

guess.

(a) A 5.4 year Earth to Jupiter trajectory repre-
sented by a 10th order polynomial. This trajec-
tory makes slightly more than one full revolution
before rendezvousing with Jupiter, indicating that
the polynomials can model a large change in the
states over a short time scale. The arrows indicate
direction and magnitude of the thrust vector.

(b) A 10 year Earth to Jupiter trajectory repre-
sented by a 10th order polynomial. This trajectory
makes multiple heliocentric revolutions near 1 AU
before rendezvousing at Jupiter. This indicates that
the polynomials can model a large change in the
states over a wide time scale. The arrows indicate
direction and magnitude of the thrust vector.

Figure 7. A Chebyshev representation of two different Earth to Jupiter trajectories.
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known, a constraint problem can be set up that restricts the coefficients such that the trajectory will satisfy
boundary conditions.

The states of the departure body at t0 in polar coordinates are r0, θ0, φ0, ṙ0, θ̇0, φ̇0, and the states of the
arrival body are tf in polar coordinates are rf , θf , φf , ṙf , θ̇f , φ̇f . The constraint for the departure body is
given by Eq. (10), and the constraint for the arrival body is given in Eq. (11).

B (τ) =

[

T0 (τ) . . . TN−1 (τ)

Ṫ0 (τ) . . . ṪN−1 (τ)

]

(9)





















r0

ṙ0

θ0

θ̇0

φ0

φ̇0





















=







B (−1) 0 0

0 B (−1) 0

0 0 B (−1)













































cr,0

...

cr,N−1

cθ,0

...

cθ,N−1

cφ,0

...

cφ,N−1







































(10)





















rf

ṙf

θf

θ̇f

φf

φ̇f





















=







B (1) 0 0

0 B (1) 0

0 0 B (1)













































cr,0

...

cr,N−1

cθ,0

...

cθ,N−1

cφ,0

...

cφ,N−1







































(11)

Any solution that satisfies the linear constraints given by Eq. (10) and Eq. (11) will meet the boundary
constraints. In order for a solution to Eq. (10) and Eq. (11) to exist, the order of the polynmials,N , must
be greater than or equal to 4. Because Eq. (10) and Eq. (11) are linear, they can be solved with a variety of
numerical methods. This formulation easily satisfies linear state boundary conditions, which ensures that the
appropriate boundary conditions are met. With a method for parameterizing the path defined two critical
elements still remain, a cost function for identifying good trajectories out of the infinite solutions that satisfy
Eq. (10) and Eq. (11) and an algorithm for conducting the search.

When the order of the polynomials are greater then four, there exists an infinite number of trajectories
that satisfy the rendezvous problem. In order to select a good trajectory, a cost function is needed that can
measure the value of a particular trajectory. The cost function is

J =

∫ tf

t0

|A|
2
dt (12)

Eq. (12) is used because it is smooth and quadratic, which usually implies that the optimization problem
is numerically simple to solve. Although the cost function used here does not minimize the propellant cost,
this is not a major concern at this stage because the trajectories are only being approximated.

The dynamics for a point mass in a central gravity field (spacecraft orbiting the sun) are given as

r̈ = −
µsun

|r|
3 r + A (13)

where A is the acceleration required to maintain the path, and r is the position of the spacecraft. Solving
for the acceleration, A, is

A = r̈ +
µsun

|r|
3 r (14)
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Eq. (14) shows that the acceleration is now a function of the position of the spacecraft, r, and its time
derivatives. This is useful because the position of the spacecraft is parameterized by Eq. (3), which means
that the derivates can be computed simply by differentiating T , the basis function. Substituting in the
trajectory function, the acceleration is

A =









∑N−1
i=0 cx,iT̈i + µsun

|r|3

∑N−1
i=0 cx,iTi

∑N−1
i=0 cy,iT̈i + µsun

|r|3

∑N−1
i=0 cy,iTi

∑N−1
i=0 cz,iT̈i + µsun

|r|3

∑N−1
i=0 cz,iTi









(15)

|r| =

√

√

√

√

(

N−1
∑

i=0

cx,iTi

)2

+

(

N−1
∑

i=0

cy,iTi

)2

+

(

N−1
∑

i=0

cz,iTi

)2

(16)

The acceleration is now a function of the path coefficients, cx,i, cy,i, and cz,i. Since the cost function is a
function of the trajectory coefficients, this implies that the cost function can be minimized. With the cost
function and constraints defined, the path coefficients can be found such that the constraints are satisfied
and the cost is minimized. Next, an algorithm is needed that can compute trajectories over the search space.

Now we need to implement a method for optimizing the Chebyshev trajectory without requiring a user
specified initial guess. The optimization algorithm used is a Sequential Quadratic Programming8, 9, 24 al-
gorithm. The Sequential Quadratic Programming method approximates the constraints to the first order
and the cost function to the second order. Because the constraints are linear, the Sequential Quadratic
Programming method will explicitly satisfy the constraints during every iteration.

The method used here to generate an initial guess that satisfies the boundary conditions, Eq. (10) and
Eq. (11), is to initially set the Chebyshev polynomial order to N = 4. Because the number of coefficients
is equal to the number of free parameters, there exists only one solution to Eq. (10) and Eq. (11), which
define the rendezvous problems. Next, N is increased by 1 to 5, and the new higher order coefficients,
cr,N−1, cθ,N−1, cφ,N−1 are set equal to 0. Now the N = 5 trajectory is equivalent to the N = 4 trajectory,
but the N = 5 trajectory has additional degrees of freedom that can be optimized. The N = 5 trajectory
is then used as an initial guess to the sequential quadratic programming method, which returns the optimal
solution. This process can be generalized to generate higher order trajectory approximations. The generalized
algorithm is Alg. (1). The major benefit of the approach outlined here is that the user only has to specify
the search space and the algorithm will return an optimized trajectory.

Alg. (1) represents a self contained method that can generate an initial guess and minimize the cost
function. Alg. (1) is self contained because it begins with a unique solution to the rendezvous problem.
This unique trajectory is then used as an initial guess to find subsequent optimal trajectories represented by
higher order polynomials. A tool to generate feasible trajectories is coded up in C++ and Objective C on
an Apple computer. The program uses the CSPICE libraries for ephemeris and time calculations. Because
Alg. (1) does not require a user supplied initial guess, each point in the search space can be solved for
independently. We take advantage of this by running the calculations concurrently, which reduces the wall
time required to span the search space.

The user interface for the proof of concept broad search program is shown in Fig. (8). The program
requires the departure body, arrival body, launch dates, and times of flight. The program then searches
over the entire space and stores all potentially valid solutions. The limited input requirement makes broad
searches easy to conduct. The program interface, shown in Fig. (8), allows for the use of multiple processors.
Because each subproblem generates its own initial guess, the subproblems can be solved independent of the
each other, allowing the methods to be used in a parallel or distributed environment, which reduces the
computational time. The data from the program can then be used to generate plots like Fig. (9). This type
of plot allows the user to easily identify low cost launch dates and flight times, similar to the Fig. (1), that
can be utilized in the next phase to generate feasible trajectories.

III. Phase II: Converting Chebyshev Approximations to Feasible Trajectories

While Chebyshev approximated trajectories are useful for identifying launch dates and flight times, as
shown in Fig. (9), they do not incorporate the thruster, power system, and launch vehicle limitations,
which strongly influences the trajectory and sensitivity of the optimal solution space. However, because
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Algorithm 1: High level overview of Chebyshev trajectory generation algorithm

Select departure body
Select destination body
Select launch dates
Select flight times
Pd = [Orbital period of departure body, Orbital period of destination body]
switch Problem Type do

case Rendezvous to Rendezvous problem
Nmin=4

end
case Rendezvous to Intercept problem or Intercept to Rendezvous problem

Nmin=3
end
case Intercept to Intercept problem

Nmin=2
end

end
for t0 ∈ Launch Dates do

for ∆t ∈ flight times do

mmin =
⌊

∆t
max(Pd)

⌋

mmax =
⌊

0.7 ∗ ∆t
min(Pd)

⌋

+ 1

for m = mmin to mmax do
N = Nmin

Find coefficients that solve rendezvous problem (only one solution)
for N = Nmin + 1 to Nmax do

Set the 0 to the (N − 2)th coefficients to the previously set of coefficients

Set the (N − 1)
th

coefficients to 0

Minimize
∫ t0+∆t

t0
|A|

2
dt s.t. boundary conditions are satisfied

end
Store trajectory solution

end

end

end
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Figure 8. The user interface for the proof of concept broad search tool. The program has a simple interface

and only requires only a few user inputs. It then computes a trajectory for each point in the search space.
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Figure 9. A contour plot of the propellant cost for and Earth to Mars transfer assuming an Isp = 3000 sec.

This type of plot can be used to narrow down the search space by identifying low cost launch dates and flight

times. Over 2000 trajectories were computed to create this plot with an average wall time of 0.1 seconds per

trajectory using only 2 cores. Because we can employ parallel computing, the wall time is less than the total

CPU time.
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the Chebyshev polynomials have been optimized and do replicate the shape of EP trajectories, they can be
converted easily into feasible trajectories, which could then be used as an initial guess for optimizers.

The process outlined here for converting the Chebyshev trajectories into feasible trajectories relies on
numerically simple methods, so it can be implemented quickly and easily. In order to generate a feasible
trajectory, the acceleration profile of the Chebyshev trajectory has to be converted into a thrust profile
that can be used as an initial guess for the feasible trajectory solver. In order to convert the acceleration
profile into a thrust profile the user has to select the launch vehicle(s), thruster(s), power level(s), and the
number of control segments, M . From the thruster, the maximum exhaust velocity, ue, is found, and from
the launch vehicle, the initial mass is set. Using the exhaust velocity, initial mass, and the acceleration
profile a thrust profile can be generated using Alg. (2). The initial thrust profile, T i, will not satisfy the

Algorithm 2: Algorithm for converting the acceleration profile of the Chebyshev trajectory into a
thrust profile based on thruster and launch vehicle specifications. ue is the maximum exhaust velocity
of the specified thruster and dc is the duty cycle of the thruster.

m0 = F (0);
for i = 0 to M − 1 do

ti = i
M (tf − t0) + t0;

∆Vi =
∫ ti+1

ti
|A| dt;

mi+1 = mie
−∆Vi/ue ;

T i = (mi−mi+1)ue

dc(ti+1−ti)
A(ti)
|A(ti)|

;

end

thruster limitations or the rendezvous problem however the miss distance should be small enough such that
the feasible trajectory solver should converge.

With the thrust profile defined, we need to implement a solver that will satisfy the dynamics, thrust
constraints, power system constraints, and launch vehicle constraints. The equations of motion are

r̈ = −
µsun

|r|
3 r + sT /m (17)

ṁ = −ṁ (φ) s (18)

where φ is the throttle, s is the engine state (on= 1 or off= 0), and T is the thrust. The control constraints
are defined as

qi = 0 = 0.5 [TT (φi)]
2
− 0.5 |T i|

2
(19)

and
Si = 0 = 0.5si (si − 1) (20)

In Eq. (19) TT (φi) is the thrust that the propulsions system provides as a function of the throttle. The
control inequality constraint is

− 1 ≤ φi ≤ 1 (21)

The launch vehicle constraint is
0 ≥ m0 − F (C3) (22)

and the power system constraint is

zi = 0 ≥ P (φi) − Pmax (r, t) (23)

The equality constraints are converted into equality constraints using a slack variable method.24 The full

12
The 31st International Electric Propulsion Conference, University of Michigan, USA

September 20–24, 2009



constraint vector, C, and control vectore, U are

C =












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



































q0

...

qM−1

S0

...

SM−1

−1 ≤ φ0 ≤ 1
...

−1 ≤ φM−1 ≤ 1

0 ≥ m0 − F (C3)
...

0 ≥ P (φi) − Pmax (r, t)
...

xf − xM

ẋf − ẋM

































































(24)

and

U =



































T 0

...

T M−1

φ0

...

φM−1

s0

...

sM−1



































(25)

The constraints represent the state boundary conditions, the launch vehicle limitations, the thruster limita-
tions, the power system limitations. The control represent the directional thrust profile, the thruster throttle
settings, and engine state.

A. Linear Subproblem

For a trajectory to be feasible it must satisfy

C (U) = 0 (26)

Generally, the controls, U , will not satisfy Eq. (26), so we need to define a method that can modify U such
that Eq. (26) will be true. The standard approach to a problem of this type is to take a first order Taylor
series expansion of the constraint equations, C, with respect to the controls, U , and set that equation equal
to zero. Taking the first order expansion gives

0 = C (U) +
∂C (U)

∂U
δU (27)

The control update is
Uupdate = U + δU (28)

If δU satisfies Eq. (27), then it linearly satisfies the constraint equations, and if the initial control vector, U

is close to a feasible solution, then the linear method will converge to a feasible solution. With the constraints
and control vector defined, Alg. (3) is used to satisfy the constraints. The trajectory that is generated will
depend on how Eq. (27) is solved.
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Algorithm 3: Algorithm for satisfying the constraints. ǫ is a small positive number

while |C|
2

> ǫ do
solve C + ∂C

∂U
δU ;

update U = U + δU ;
end

B. Pseudoinverse Solution to the Linear Subproblem

The easiest and perhaps simplest method for solving Eq. (27) is to use the pseudoinverse25 to construct
δU . The psuedoinverse minimizes the δU

T
δU while satisfying the constraint equation, Eq. (27). Defining

CU = ∂C(U)
∂U

, the pseudoinverse, CU
+, of CU is

CU
+ = CU

T
(

CUCU
T
)−1

(29)

Using the pseudoinverse, the control update is

δU = −CU
+
C (U) (30)

The pseudoinverse selects the “smallest” change in control such the constraint equation is satisfied. Because
of the way the pseudoinverse generates the control update, it tends to converge quickly.

An Earth to Mars mission is considered to demonstrate the utility of the pseudoinverse method, with a
flight time of 500 days. The initial trajectories are provided by the Chebyshev approximation method. For
the 500 day example, the launch date is July 23, 2009, and the launch vehicle is the Atlas V 501 (Table (1)).
For solar electric power sources the power output scales as

P (t)

P (t0)
=

(

r0

r (t)

)2

(31)

The results are shown in Fig. (10(a)), Fig. (10(b)), Fig. (10(c)), and Fig. (10(d)). The results in the figures

are not optimized, and solar arrays provide power that vary with |r|
−2

. Although the trajectories are not
optimized, the figures provide some interesting results. The BPT-4000 thruster performs the best when it
is fully powered over the entire trajectory. Because of the NEXT thruster’s high power requirements and
higher specific impulse, the final mass increases as power increases, but for low powers the BPT-4000 delivers
a larger mass to Mars. The final mass delivered to Mars by the NSTAR thruster rapidly decreases as power
decreases because the thruster is fully utilized, resulting in a trajectory that is marginally feasible.

Table 1. Table of launch vehicle properties. The table shows the launch vehicle name, C3 = 0 launch mass and

maximum C3

Launch Vehicle C3 = 0 mass (kg) Maximum C3 (km/s)

Atlas V 401 3445 90

Atlas V 501 2680 70

Atlas V 511 3765 90

Atlas V 521 4545 90

Atlas V 531 5210 110

Atlas V 541 5820 120

Atlas V 551 6330 120

Delta IV 4040-12 2735 30

Delta IV 4050-19 9305 60

Delta IV D4450-14 4580 25

The examples demonstrate the solver can reuse a single Chebyshev trajectory to generate feasible tra-
jectories with different thrusters and power constraints.
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(a) The final mass for a series of feasible trajectories
for a 500 Earth to Mars mission. The x axis is the
initial power at 1 AU. Solar arrays are used as the
power source. Two thrusters are used.
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(b) Initial mass for a 500 day Earth to Mars trajec-
tories. The x axis is the initial power at 1 AU. Solar
arrays are the power source. The example utilizes 2
thrusters.
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(c) The C3 as a function of the initial power for
an Earth to Mars 500 day mission. The example
utilizes 2 thrusters.
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Figure 10. A series of feasible solutions over a range of thrusters and power levels.
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C. Alternative Solutions to the Linear Subproblem

While the pseudoinverse approach does converge quickly and is simple to use, it is not the only approach
to finding feasible trajectories. An alternative approach to the psuedoinverse method demonstrates that the
solution to Eq. (27) can be customized to different needs. In the following examples, Eq. (27) is solved such
that an alternative cost function is minimized for several iterations. The cost function used is

M−1
∑

i=0

|T i| + 2πδr
T
i δri (32)

Here, δri is the deviation in the position of the spacecraft. δri is included in the cost function to stabilize
the algorithm and prevent the control update from causing large changes to the control. In addition to
modifying the cost function, a multiple shooting method9, 24 is also employed. This does not fundamentally
change the underlying problem. It is used here to demonstrate that there exist multiple a variety of methods
for obtaining feasible trajectories depending. The multiple shooting method breaks the trajectory into M −1
segments. The states are now treated as control variables, and the continuity conditions are added to the
constraint set. The continuity conditions require that the solution does not have any discontinuities in the
mass, position, and velocity of the spacecraft.

The initial Chebyshev trajectory is provided by Fig. (7(a)) and Fig. (7(b)). In these two figures, the
initial thrust varies over the entire trajectory, and the thruster is always on. For this example, the specific
impulse is set to 6400 seconds, the maximum thrust is 514.7 mN. The launch mass is 3885 kg, and the initial
C3 is constrained to 0. The power system is assumed to provide a constant power over all time; the mass
of the power system is not considered in this example. The goal of these examples is to demonstrate that
custom approaches to solving Eq. (27) can be developed depending on the need.

Applying the Eq. (32) and Alg. (3) to the trajectories in Fig. (11(a)) and Fig. (11(b)) result inFig.
(7(a)) and Fig. (7(b)) respectively. The major difference between the initial guess and the final feasible
trajectory is the appearance of coast-arcs.

D. A Method for Handling Over Constrained Problems

Assuming that M is large enough, Eq. (27) is a linear equation and will always have a solution, however C

may actually be over constrained such that no solution exists. For the over constrained case, it is beneficial
to know how infeasible the trajectory is relative to an engineering metric. For example, a useful metric might
be the thrust or power required to make the trajectory feasible. Normally, the infeasibility is quantified as
C

T
C.8, 19 Because C is a mixture of constraints, this does not provide any real insight as to how far the

infeasible solution is from being feasible.
Instead of returning the norm of the constraint violations,8, 19 C, when the solver fails, it attempts to

answer the question, “How much thrust or power is required for a successful mission?” The solver uses a
homotopy method to decrease the maximum thrust/power level until an infeasible solution found. When an
infeasible solution is found, the last feasible solution is the minimum thrust/power required for the mission.

In this example, a solar power source is utilized and the specific impulse specified is 3100 seconds. The
maximum initial jet power requested is 1.14 kW and scales with Eq. (31). The time of flight for the Earth
to Mars trip is 600 days, the C3 is zero, and the launch mass is 500 kg. The C3 and launch mass are fixed
to prevent the solver from reducing the launch mass or increasing the C3 to satisfy the constraints. The
requested thrust level is 75 mN. The solver fails to find a feasible trajectory with a thrust level of 75 mN and
returns Fig. (12). This shows that the thrust level for a feasible trajectory is about 85 mN, so the thruster
needs to provide 10 mN of extra thrust to make the mission feasible. In this case, the solver starts with a
maximum thrust level of 119 mN then decreases the thrust in 1 mN increments. The solver fails at 84 mN
so the 85 mN trajectory is the minimum thrust solution.

IV. Conclusions

In this paper, we have demonstrated that it is possible and relatively simple to generate feasible EP tra-
jectories without requiring a user to supply an initial guess. The algorithms described bootstrap themselves
up, generate their own initial guess, and only require the user to supply the mission or system constraints,
which defines the trade space. This reduces the burden on the user and allows non trajectory specialists
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(a) Fully integrated 5.5 year Earth to Jupiter trajectory.
Initial guess is provided from Fig. (7(a)). The jet power
is 32.28 kW. The power system is assumed to provide a
constant source of power.
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Departure Planet: Earth      
Arrival Planet: Jupiter      
Launch Date: October 15, 2015
Time of Flight: 3650 days    
Max Thrust: 0.5147 Newtons   
Isp: 6400 seconds            
Launch Mass: 3885 kg         
                             

(b) Fully integrated 10 year multi revolution Earth to
Jupiter trajectory. Chebyshev approximation is provided
Fig. (7(b)). The jet power is 32.28 kW. The power system
is assumed to provide a constant source of power.

Figure 11. The final fully integrated trajectories using the Chebyshev trajectories as initial guesses

to easily find EP trajectories. Furthermore, the algorithms use simple numerical methods, so they can be
implemented on almost any platform without requiring specially licensed software. Also, in the case where a
feasible solution does not exist, we demonstrate that the solver returns a feasible solution and measures the
infeasibility in terms of engineering parameters like the power/thrust required. This provides a useful metric
that can easily be used to iterate the design. While the trajectories generated in this section are feasible,
they are not optimal. In order to complete the design look, the feasible trajectories would need to be fed
into an optimizer.
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and zero respectively. The power is supplied by solar arrays. Using the psuedoinverse approach the solver
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