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this system is derived and the physical implications discussed.
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Nomenclature

α = anomalous collision scaling factor

γ = angular growth rate

εiz = ionization energy

εw = electron energy lost to the wall

ζ = damping ratio

η = resistivity

κ = ionization coefficient power factor

Λ = electron relaxation length

ν = total electron collision frequency

νw = electron-wall collision frequency

ξiz = ionization rate coefficient

σ = secondary electron yield

τ = exponential decay time

φw = wall sheath potential

χ = ionization cost

ω = observed angular frequency

ωn = natural angular frequency

Ω = Hall parameter

a = neutral density ratio

b = neutral length ratio

Br = peak radial magnetic field strength

e = electron charge

E = axial electric field

j = current density

` = neutral length

Lch = channel length

Liz = ionization region length

n = plasma density

nint = injected neutral density

nn = neutral density

Te = electron temperature

uB = Bohm speed

ubm = ion beam velocity

ue = electron velocity

uf = ionization front velocity

ui = ion velocity

un = neutral velocity

x = axial position
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I. Introduction

Hall effect thrusters are increasingly becoming an attractive option for in-space propulsion, both in Earth
orbit and for deep space missions.2 However, as these thrusters are scaled to higher power to enable a

greater variety of missions, ground testing becomes more difficult and the ability of laboratory performance
to predict performance on orbit becomes more suspect. Background pressure effects3 and electrical facility
interactions4 have already been identified as influencing Hall thruster operation in laboratory tests. Naturally,
the role of simulation must increase in the design of these devices to accommodate for this shortcoming until
experimental techniques improve. However, the use of simulations is currently limited as several aspects
of the physics governing the operation of Hall thrusters are still unclear. For example, electron mobility
is anomalously high in certain regions of the discharge, and although expensive full particle-in-cell (PIC)
simulations appear to capture this transport as a result of azimuthal turbulence,5 simulations with fluid
electrons must be artificially “tuned” to match experimental performance.6 Similarly, another area where
the modern understanding of Hall thrusters falls short concerns the stability of these devices, particularly with
regard to the ubiquitous so-called “breathing mode”. This instability is characterized by large-scale (∼100%)
oscillations in discharge current, which poses the concern that such strong global changes in the thruster
plasma may correspond to fundamental changes in the operation of the device throughout a breathing
cycle. While many simulations7–12 can reproduce the phenomenon, these codes are neither self-consistent
nor predictive. To date, only empirical scaling laws are available for determining the onset of the breathing
mode. To allow Hall thruster technology to mature, it is important that these unclear phenomena be studied
to improve the fidelity of thruster codes and to determine whether any simple scaling laws for the breathing
mode exist.

Toward that end, there has been progress made with Hall thruster simulations and theoretical analy-
sis. With the former, the breathing mode has been reproduced and its dependence on different operating
parameters has been examined.8,9 This has yielded a rough physical explanation of the process, but it
has not provided insight into the precise physics controlling it, nor the criteria for its growth. Analytical
approaches have leveraged this physical understanding to estimate properties of the breathing mode like its
frequency, but again no coherent description of its growth rate has been formulated.13 These simple models
have ranged in complexity, some only including neutral and ion continuity equations,7 while others include
electron energy conservation and thus depend on electron temperature.1 However, no simple onset criteria
have been yielded by any 0D model to date.

The goals of the work described in this paper were to develop analytical criteria for growth of the breathing
mode instability, and to leverage those criteria to gain an understanding of the mechanisms controlling it.
To accomplish this, this paper is organized in the following way. First we define a simple 0D model based on
previous studies by Hara et al.1 We then gradually introduce time-dependent forms for electron temperature,
electric field strength, and ionization region length, which is equivalent to adding new energy sources that
may drive instability. For each new perturbed quantity, the system is evaluated with a preliminary sample
of numerical simulations, followed by a more extensive map of numerical cases, and concluded with a linear
perturbation analysis.

II. Background

In this section, previous numerical, experimental, and analytical investigations of the breathing mode are
discussed. This review is by no means exhaustive, as many codes are reported recovering the breathing mode
without special attention, and many thrusters operate in oscillatory modes that are considered nominal.

Early hybrid-PIC simulations by Fife et al. reproduced breathing-like oscillations at frequencies compa-
rable to those observed experimentally.7 These 2D simulations described the breathing process as a cyclical
depletion and replenishment of neutrals in the discharge channel. A 1D hybrid-kinetic code created by
Boeuf and Garrigues similarly demonstrated breathing as being a cycle involving neutrals getting depleted
upstream as ionization shifts in that direction, and then the channel refilling with neutrals once the enhanced
ionization region collapses.8 This study also showed that discharge current oscillation amplitude increased
with voltage, with the discharge quiescent at low voltages. Similar 2D hybrid-PIC codes also showed in-
creasing oscillation strength with increasing magnetic field strength.9 The general breathing mode process
described here has also been demonstrated with 1D fluid codes,10 full PIC codes,11 and 2D hybrid-kinetic
models.12
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There exists considerable literature describing the breathing mode experimentally across a wide variety
of thrusters. Even though the trends that can be gleaned from these accounts are not always consistent,
some trends do seem to hold true for many modern thrusters. For example, it has been observed with the
H6, H6MS, and NASA-300MS-2 that decreasing magnetic field strength increases oscillation amplitude.14

Background pressure studies have shown that discharge current oscillation amplitude increases with pressure,
and that breathing frequency varies non-monotonically with pressure but increases with voltage.3 Mapping
of oscillation strength over discharge current, discharge voltage, and magnetic field strength for the 12.5-
kW HERMeS thruster showed the discharge current oscillation amplitude increased with discharge voltage,
increased with flow rate (discharge current), and decreases with background pressure,? which is echoed in
studies of the H6.15 Of particular interest are the results of time-resolved laser-induced fluorescence studies,
which show periodic changes in the peak ion velocity, suggesting that the electric field profile is distorting
as an “ionization front” travels throughout the channel.16

The breathing mode is often referred to as “loop” or “circuit” oscillations in older Russian literature due
to its perceived dependence on the thruster electronics.13 However, one of the first attempts at describing it
analytically to complement hybrid-PIC simulations, performed by Fife et al.,7 disregarded electrical effects
and used a 0D Lotka-Voltera (predator-prey) model with neutral and ion continuity equations. With this
formulation, they estimated the frequency of the oscillations as,

ω =

√
uiun
Liz

. (1)

However, this model neither predicts growth nor does it capture outflow of neutrals from the discharge
channel. Additionally, it relies on an ill-defined “ionization length” that cannot be modeled without one-
dimensional considerations. Barral and Ahedo used a fluid model to describe the breathing mode as the
combination of a standing wave and a traveling wave, with the predicted frequency closely matching that of
Fife.17 Hara et al. added a dependence on electron temperature to the predator-prey model and observed
the possibility of growth in numerical experiments.1

In summary, the breathing mode is captured by many different codes, although studies of trends in oscil-
lation amplitude with operating parameters is limited. Experimental evidence suggests that breathing mode
is sensitive to a wide range of operating parameters, including discharge voltage, magnetic field strength,
and background pressure. Analytical models are either too limited or rely on numerical results, preventing
them from giving insight into the onset criteria of the instability.

III. 0D Model

In this section, the 0D model with which we investigated the breathing mode is outlined. First, the
complete set of governing equations are presented. Next, the general approach with which different subsets
of these equations are explored is described. Finally, the specific numerical setup used in the simulation of
different subsets of equations is detailed.

A. Governing Equations

In this work, we consider a 0D Hall thruster discharge channel, encompassing the ionization and acceleration
regions. This is illustrated in Fig. 1, where particle fluxes are shown at the boundary of the 0D system.
The fundamental equations are neutral continuity, ion continuity, ion momentum conservation, and electron
energy conservation, shown as Eqs. (2)-(5).

dn

dt
= ξiznnn −

uin

Lch
− 2uwn

R
(2)

dnn
dt

= −ξiznnn −
unnn
Lch

+
unnint
Lch

(3)

dnui
dt

=
e

mi
nE − ui

2n

Liz
(4)

d

dt

(
3

2
nTe

)
= −5

2

nTeue
Liz

− nueE − nεwνw − nnnξizεizχ (5)
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Figure 1. A physical picture of the temperature-dependent model, where the 0D system is contained within
the dashed box. Neutral (dark blue), ion (light blue), and electron (red) fluxes are shown at the borders of
the 0D box.

The ion continuity equation accounts for convection out of the thruster, radial losses to the walls, and
ionization. The neutral continuity equation includes inflow from the anode, convection out of the thruster,
and ionization. The ion momentum equation considers acceleration by a constant electric field, E, and
convection out of the thruster. In the steady state, this equation dictates that the ion velocity is equal to the
beam velocity (the ion velocity after acceleration through the entire discharge volage). The electron energy
equation includes convection of electrons into the thruster, Joule heating, wall collision losses, and inelastic
collision losses. The final term considers ionization collisions but is scaled by a cost factor χ to account for
excitation. The wall collision frequency νw, the electron energy lost to the wall per collision εw, and the wall
sheath potential φw follow forms used by Barral and Ahedo18 and are given by Eqs. (6)-(8). Additionally, an
effective ionization length is defined by comparing Eq. (3) to the predator-prey form neglecting wall losses,
and this definition is shown in Eq. (9). As a result, Liz has a dependence on Te and ui, which in the steady
state are themselves dependent on other operating parameters.

νw =
uw
R

1

1− σ
(6)

εw = 2Te + (1− σ)φw (7)

φw = −Telog

 1− σ√
2πme

mi

 (8)

Liz = Lch

(
1 + 2

uB
ui

Lch
R

)−1
(9)

To capture fluctuations in E, a simple Ohm’s law ignoring pressure terms can be included in the model:

E = ηΩ2j =
−eueB2

r

νme
. (10)

The collision frequency is the sum of electron-neutral, Coulomb, and anomalous collisions, where the last
contribution was Bohm-like and scaled with parameter α. In this way, α and either E or ue become the
independent variables for this model.

Finally, changes in ionization region length can be accounted for. To do this, first it is assumed that
the breathing mode occurs in the ionization region, which oscillates over time in density and spatial extent.
The width of the ionization region is strongly dictated by one-dimensional effects, but changes in size due to
the breathing mode can be modeled separately. Allowing the ionization region to deform may also be used
to capture spatial effects although in this implementation it does not depend on any steady-state plasma
gradients except for that of neutral density.

To model changes in ionization length, one can imagine the ionization region being an isolated block of
plasma, where the upstream edge (“ionization front”) is a transition from pure neutral gas to a mixture of
plasma and neutrals. This is depicted in Fig. 2, where there is a front that merges into a region of constant
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ion density that eventually accelerates out of the thruster. A 0D neutral continuity equation can be written
in the frame of reference of this upstream ionization edge. However, the transformation to this new frame
of reference must first be considered.

constant 

neutral stream

ionization 

front (ℓ)

constant density 

ionization region (Liz)
acceleration region + 

neutral expansion

x

a
n

o
d

e
ion densityneutral density

Figure 2. Growth rate as a function of the neutral density ratio a and neutral-ionization length ratio b.

The edge is expected to accelerate since it presumably oscillates back and forth, and thus this frame
of reference is non-inertial. As a result, a Galilean transformation is not appropriate. The transformation
required to describe the time rate of change of scalar quantity r in the ionization front frame of reference
(denoted with subscript “f”) can be shown as,

(dr)f = dt
∂r

∂t
+ dt

dx

dt

∂r

∂x
, (11)(

dr

dt

)
f

=
∂r

∂t
+ uf

∂r

∂x
. (12)

Intuitively, this transformation indicates that the rate at which a quantity changes is a combination of the
laboratory frame rate (the first term on the righthand side) and the change due to moving through the
laboratory frame gradient (the second term on the righthand side).

In the frame of reference of the ionization front, the time rate of change of neutral density can be
expressed as Eq. 13. Given that neutral continuity in the laboratory frame can be expressed as Eq. 14,
Eq. 13 becomes Eq. 15, which represents neutral continuity in the ionization front frame. Since the front
is imagined traveling along an undisturbed stream of neutrals, the first term is zero. If the drop in neutral
density across the front is assumed to be exponential, a gradient length ` can be assigned, simplifying the
second term. The front velocity can be solved for explicitly, yielding Eq. (16).(

dnn
dt

)
f

=
∂nn
∂t

+ uf
∂nn
∂x

= 0 (13)

∂nn
∂t

= −un
∂nn
∂x
− nnnξ (14)(

dnn
dt

)
f

= −un
∂nn
∂x
− nnnξ + uf

∂nn
∂x

= (uf − un)
∂nn
∂x
− nnnξ = 0 (15)

uf = un − nξnn
(
∂nn
∂x

)−1
≈ un − nξ` (16)

This form for the front velocity has a simple physical interpretation. The speed at which the ionization
region moves upstream is the difference between the speed at which “fuel” enters, un, and the speed at which
it is consumed by ionization, nξ`.

The ionization length Liz can be described as in Eq. (17), where it is assumed that small perturbations
in plasma density are sinusoidal in time such that n = n0 + n′ where n′ = ñ exp(−iωt) and ñ is the small
oscillation amplitude. In the steady state, uf = 0 and un − `n0ξ = 0. The perturbed form of the inverse of
the ionization length, which is of more practical interest, can be expressed as Eq. (18).

Liz = Liz,0 −
∫
ufdt = Liz,0 +

∫
n′ξ`dt = Liz,0 + i

ξ`

2ω
n′ (17)
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(
1

Liz

)′
≈ −i ξ`

Liz,0
2ω
n′ (18)

Physically, these equations imply that changes in the ionization region length lag behind changes in ion
density by 90◦. In a linear sense, perturbations in the inverse of Liz lead changes in n by 90◦. Qualitatively,
this can be understood as the ionization region stretching or compressing in response to variations in bulk
ion density, with a lag occurring because this stretching is a function of these variations.

B. General Approach

In this work, several subsets of the governing equations outlined in the previous section are examined in terms
of stability. A common procedure is followed and is described in this section. First, numerical simulations
of the system are conducted for a limited set of input parameters to qualitatively identify any trends in the
response. This includes examining whether each time-dependent quantity damps and whether the damping
behavior between them is different. Next, a map of damping behavior is produced from numerical simulations
over a wide range of input parameters to evaluate the breadth of the conclusions on stability made from
the preliminary simulations. Finally, a linear perturbation analysis is performed on the system as an even
broader assessment of stability.

For the linear analysis, nn, n, ui, and Te can be treated as perturbation quantities, and E and Liz depend
on perturbed quantities. The determinant of the linearized matrix of equations is a polynomial in ω, and
its roots can be solved to find ω explicitly. A positive growth rate corresponds to Im(ω) > 0 and suggests
that the instability will be able to grow and non-linearly saturate, and thus be observable in real thrusters.
Although the roots for third and fourth order polynomials can be found exactly, the forms are often too
complicated to be useful for the equations involved here. As a result, the stability of higher order systems
can be judged using the Routh-Hurwitz theorem.19 Specifically, for a polynomial in the complex plane,
this theorem provides sufficient and necessary criteria for all roots to be in the left half-plane. For a linear
perturbation analysis where a perturbation quantity q′ has the form q̃ exp(−iωt), all ω must be substituted
with −iω to apply this theorem for determining linear stability.

C. Numerical Setup

The numerical simulations we performed used input parameters for the SPT-100.20 The channel length
and width are 2.5 and 2 cm, respectively. A discharge current and voltage of 4.5 A and 300 V respectively
were used, which corresponds to the nominal 1.35 kW operating condition. A current utilization efficiency
between 50% and 100% is assumed to allow the estimation of ue/ui, following Hara et al.1

IV. Results

A. Case I

The simplest subset of the governing equations is the neutral and ion continuity equations alone. For
simplicity, the radial ion losses are disregarded and Lch is more appropriately treated as Liz. Because the
linearized matrix determinant is only second order, it is sufficient to judge stability from a linear perturbation
analysis. It has been shown in the literature1 that the growth rate is,

γ = −1

2

nint
nint − nn

nξ , (19)

and thus all physical solution are damped.

B. Case II

Next, the ion momentum conservation equation Eq. (4) can be included to the model of Section IV A. Again,
the system is simple enough that numerical simulations are unncessary and the Routh-Hurwitz method can
be used to judge linear stability. The determinant of the linearized matrix of this system is a third-order
polynomial in ω, shown in Eq. (21). The condition for stability is given by,

ui < Liznintξiz , (20)
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which is guaranteed by the construction of the system. Thus, the system is always damped. This result
suggests that the ion momentum equation either has little impact on the system or contributes damped
poles to it. The former agrees with the observation that the breathing frequency scales closer to the neutral
transit time than the ion transit time, which is generally expected to be an order of magnitude larger,13 and
thus ions respond almost instantly to changes in the plasma during breathing.

2uiun(−ui + Liznintξiz)

L2
izLch

+
un(−ui + 2Liznintξiz)

LizLch
ω +

(
ui
Liz

+
Liznintunξiz

Lchui

)
ω2 + ω3 = 0 (21)

C. Case III

By adding the electron energy conservation equation Eq. (5), the time-dependent parameters of the system
now include nn, n, ui, and Te. The determinant of the linearized matrix for this system is fourth order in
ω, and thus is too complicated to examine by a linear perturbation analysis alone. As described previously,
investigating the system’s stability will begin with numerical simulations, which will then be compared to a
a slightly broader numerical linear analysis.

1. Preliminary Numerical Simulations

The full nonlinear equations are evaluated for a few values of ue/ui between 0.5 to 5 and the results over
0.5 ms are shown in Fig. 3. The response is damped for all cases examined. In Fig. 4 the Te plot is
normalized by the steady state value so that the shape of the response can be compared for different inputs,
and from this it is clear that Te fluctuates very little compared to other quantities. This implies that the
electron energy equation may be poorly coupled to the rest of the system since there are many conditions
where Te remains nearly steady or is only weakly perturbed. If the electron energy equation is playing such
a limited role in the time response of the system, this model may be unconditionally stable since we proved
in Section IV B that the continuity equations together with the ion momentum conservation equation are
always damped.
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Figure 3. The time response of the neutral density, ion density, ion velocity, and electron temperature for
various electron velocities.
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Figure 4. The normalized time response of the electron temperature for various electron velocities.

2. Extensive Numerical Map

To verify the trends observed previously, numerical simulations are performed for a wide range of input
parameters and the stability is summarized with the damping ratio of the ion density time response. The
damping ratio ζ, defined as

ζ = (τωn)−1 ≈ (τω)−1 , (22)

is calculated for a 10% initial perturbation of the neutral density, where the natural frequency of the system
was approximated with the observed frequency for simplicity. A harmonic oscillator is critically damped for
ζ = 1, undamped for ζ = 0, and growing for ζ < 0. Fig. 5 shows these values and demonstrates that they
are all positive, and thus the system is stable over a wide range of inputs. The limits in ue/ui are dictated
by the stiffness of the system, which generally means that the steady-state parameters become unphysical
(e.g. Te < 0eV ) or the simulation is numerically unstable outside the plotted domain. This domain therefore
represents the range of input parameters of physical interest for the chosen operating condition.

0 5 10 15 20 25 30

0.0004

0.0006

0.0008

0.0010

0.0012

|ue/ui|

ζ

Figure 5. The damping ratio of the time response of the system for varying electron velocity.

3. Linear Analysis

A linear analysis can be performed using the perturbation forms of Hara et al.,1 yielding the linearized
matrix equation shown in Eq. (23), where κ is the power relating ξiz to linear perturbations in Te, and Λ is
defined in Eq. (24).
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−iω −nξiz
n

Lch
−nui

L

κ

Te
ui
L

−iω +
nint

nint − nn
nξiz 0 n

ui
L

κ

Te

−iωui 0 n

(
−iω +

2ui
L

)
0

−iω 3

2
Te nξizχεiz 0 n

(
−i3

2
ω + Λ

)




ñ

ñn

ũi

T̃e

 = 0 (23)

Λ ≡ 3

2

εw
Te
νw +

ui
L

κ

Te
χεiz +

5

2

ue
L

. (24)

The resulting polynomial given by the determinant of the linearized matrix is fourth order, which generally
precludes any analytical judgment of stability. Alternatively, the growth rate and real frequency can be
computed numerically for a given thruster and operating condition.

Fig. 6 shows representative numerical results for the SPT-100. All roots were damped, so only those
with definite real and complex parts are shown. The only independent variable is the electron-ion velocity
ratio, and it can clearly be seen that the growth rate is always negative and asymptotically approaching
zero for stationary electrons. Previous work by Hara et al.1 showed similar plots as a function of electron
temperature, and although this may highlight that the model nearly predicts a region of positive growth, it
is clear from Fig. 7 that the steady state Te line never intersects the growing region. A linear perturbation
analysis by definition is only valid around the steady state condition, thus this model does not predict linear
growth for this case. However, because this system is intractable to evaluate analytically, it cannot be said
that the system is stable for all conditions. It is also important to note that the range of ue/ui shown in
the figure is far wider than that considered typical from the current utilization efficiencies expected for a
SPT-100 or more modern Hall thrusters.

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5

-9000

-8000

-7000

-6000

ue/ui

γ
,r
ad

/s

Figure 6. The growth rate as a function of the electron-ion velocity ratio..

D. Case IV

To improve the coupling of Te to the rest of the system, Ohm’s law can be added to the model. This allows
the electric field to be expressed in terms of electron velocity and the total collision rate, which is a function
of several time-independent parameters. In this way, E becomes a time-independent quantity, introducing
another potential source of instability.

1. Preliminary Numerical Simulations

Fig. 8 shows the time response of the system as a function of ue and α. The behavior is damped for these
sample cases. Fig. 9 shows the Te response normalized, as in Fig. 4. The curves show very small oscillation
amplitudes, indicating that Te coupling is not improved. This suggests that even including Ohm’s law does
not induce large perturbations in Te, and including perturbations in E does not induce instability.
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Figure 7. The growth rate as a function of the electron-ion velocity ratio (colored region), and the steady-state
electron temperature (blue line). The white region corresponds to zero or negative growth rates.

2. Extensive Numerical Map

By defining a nominal discharge current, current continuity couples ue to ui and n such that α is a function
of ue. As a result, only one input parameter, ue is required for this model with a given discharge current.
Fig. 10 shows this relationship for a SPT-100. The limits of ue in this plot are dictated by the stiffness of
the system of equations. Fig. 10 shows the damping ratio for a range of ue and α that are close to those for a
nominal discharge current of 4.5 A. Everywhere the response is damped, and thus the system is everywhere
stable. The discharge current curve is superimposed on the damping ratios in Fig. 10 for context. It should
be noted that the damping ratios do not cover the full extent of the discharge current curve because the
simulations became numerically unstable in certain extremes of this range. Even so, we conclude from Fig.
10 that even including Ohm’s law into the temperature-dependent model does not induce instability for a
nominal discharge current in this case.

3. Linear Analysis

The linear analysis for this system is similar to that of D, except the Ohm’s law definition of E introduces
perturbation terms to the linearized matrix. For ranges of ue and α similar to the numerical simulation
map in Fig. 10, the growth rate yielded by the linear analysis is nowhere positive. To demonstrate this, the
growth rate of roots with finite positive real frequency is shown in Fig. 11. It is clear that the growth rate
is always damped, supporting the findings of the numerical simulations.

E. Case V

A model incorporating time-dependent Te and E terms was incapable of producing instability for a range
of input parameters corresponding to a nominal discharge current. And based on the spatial dependence of
many of the parameters for this model, any unstable marginal cases for the SPT-100 conditions considered
here are not expected to be meaningful. The next step would naturally be to include ionization length
perturbations in the the model of Section IV D. However, this would further complicate an already analyti-
cally intractable model, so the electron energy conservation equation (which contains E perturbations) and
the damping ion momentum conservation equation are removed before including a Liz perturbation form.
The rationale for this approach is as follows: if perturbations in Liz alone are shown to make the system
unstable, any additional physical processes are not of primary importance for capturing the breathing mode
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Figure 8. The time response of the system with Ohm’s law included.

and only serve to add conditions to the instability; conversely if the system is stable, we do not expect Liz
perturbations to make a more complicated system unstable. These assumptions are unproven in this work
but embraced for the sake of simplicity.

Instead of adding Liz perturbations to the model of Section IV D, only the ion and neutral continuity
equations are retained, as in Section IV A. This is done to make the system more tractable for linear
perturbation analysis.

1. Preliminary Numerical Simulations

A sample numerical simulation of the full nonlinear equations is shown in Fig. 12. As can be observed,
within 1 ms all quantities are oscillating and growing continuously, and the frequency is approximately 14
kHz at 1 ms. The nonlinear oscillations in ionization length and ion density are in phase, which is consistent
with results from more sophisticated simulations.8

Since this system is observed to be unstable and is simple enough for analytical linear analysis, a more
extensive set of numerical simulations is unnecessary.

2. Linear Analysis

The linearized matrix equation based on this system is shown in Eq. (25). For simplicity, . All quantities are
steady-state. The roots of the determinant of the matrix must be found, and this determinant is given by
Eq. (26). An exact analytical form for the roots of ω based on Eq. (26) exists but is much too complicated
to be useful for judging the stability of the system.

aun
Liz
− iω ui

L2
izω

(
1

Liz
− i(1− a)βun

)
(1− a)un

Liz

i(1− a)buiun
L2
izω

− iω


[
ñn

ñ

]
= 0 (25)
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i(a− 1)buiu
2
n + (a− 1)(b− 1)Lizuiunω + iaL2

izunω
2 + L3

izω
3 = 0 (26)

For the polynomial a0 + a1s+ a2s
2 + s3, the Routh-Hurwitz criteria for stability are a0 > 0, a2 > 0, and

a1a2 − a0 > 0. For Eq. (26) these criteria become,

− (a− 1)buiu
2
n

L3
iz

> 0 (27)

aun
Liz

> 0 (28)

(a− 1)uiu
2
n(a(b− 1)− b)
L3
iz

> 0 . (29)

Given that α > 1 and β > 0, these criteria cannot be satisfied and thus the system is always unstable.
However, whether it is purely exponential (such that Re(ω) = 0) or nonlinearly periodic cannot be deter-
mined. However, the simulations of the previous section confirm that the response is periodic for the cases
considered.

In order to examine the linear stability numerically, we considered a test case with un ∼ 100 m/s, ui ∼ 10
km/s, and Liz ∼ 1 cm. Fig. 13 shows the growth rate as a function of the logarithm of a ≡ nint/nn and
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conditions.

b ≡ `/L for reasonable ranges of those values: a 10 and b 1, where the latter implies that neutral density drops
significantly throughout the entire ionization region. As it shows, the growth rate is everywhere positive.
At small b, the growth rate is insensitive to a; at large b, the growth rate is proportional to a. It should
be noted that the real frequency for the positive growth region is everywhere zero, indicating the the linear
growth is purely exponential and thus any oscillations are a nonlinear effect. Again, the previous numerical
simulations confirm this.
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V. Discussion

A. Physical Interpretation

It has been shown that the addition of Liz perturbations is sufficient to render the very simple system of
Section IV A unstable. It is useful to provide a physical interpretation for this result. To do this, it is
important to understand why the continuity equations alone are unconditionally damped. Perhaps the most
cogent argument is to note that the time rate of change of n is proportional to that of nn, and specifically
they are 180◦ out of phase. When the system is perturbed, the system inevitably reaches equilibrium because
increases in n (nn) are immediately met with decreases in nn (n). Alternatively, Liz perturbations are 90◦

behind n perturbations. That is, Liz changes to reach equilibrium for the instantaneous n, but by the time
Liz has finished deforming, n has changed. This lag, and the attending fact that equilibrium can never
be reached, produces growth. The energy source for the instability may be related to the redistribution of
energy from the steady, confined ionization region to an unsteady, deforming ionization region.

B. Estimated Growth Rate

An exact form for the real frequency and growth rate of linear perturbation for the model of Section IV E
was not derived as part of this work. Without that information, it is difficult to judge whether the nonlinear
oscillations observed in Fig. 12 are plausibly breathing mode oscillations. Further, the numerical linear map
in Fig. 13 corresponded to roots with zero real frequency, which means the linear analysis can likely not be
used to estimate the real frequency because the oscillations are nonlinear in nature. We now prove that the
real frequency must always be zero for positive growth of a linear perturbation. If the real part of Eq. (26)
is taken given the substitution ω = Re(ω) + iγ, the following expression results:

LizRe(ω)[uiun(a− 1)(b− 1) + Lizγ(2una+ 3Lizγ)] = 0 . (30)

Either LizRe(ω) or the term in brackets must equal zero, and assuming that b ≤ 1 – the neutral density drops
entirely within the ionization region – the term in brackets will always be positive. Therefore Re(ω) = 0 for
finite ionization region length.

i(a− 1)buiu
2
n + (a− 1)(b− 1)Lizuiunγ + iaL2

izunγ
2 + L3

izγ
3 = 0 (31)

Assuming positive growth and thus no real frequency, Eq. (26) becomes Eq. (31). Since the second,
third, and fourth terms are positive, each of them must be smaller than the first term, which can be used to
derive the following relationships:

γ <
unb

Liz(b− 1)
, (32)
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ui
un

>
ab

(a− 1)(b− 1)2
≈ b

(b− 1)2
� b

b− 1
. (33)

The steady state conditions for the model of Section IV E show that ui/un = a − 1 ≈ a, and given the
condition for the third order term in Eq. (31) to be much smaller than the second order term,

a� b

b− 1
, (34)

we conclude that the third order term may be neglected. What remains can be solved for γ explicitly, where
the positive solution is shown as the first expression in Eq. (35). The inequalities previously derived can be
applied, yielding the second expression in Eq. (35) as the only definite solution. The term ui/Liz is more
characteristic of the ion transit time instability, which is typically 100 kHz, while the b− 1/2 factor reduces
the magnitude. It was previously assumed that b − 1 is small, which means the growth rate becomes the
rightmost expression in Eq. (35). In general, given that it was assumed γ > 0, a new criterion is presented:
b > 1/2. The value for b ≡ `/Liz is highly dependent on the thruster plasma as a whole, so it is difficult
to assess the meaningfulness of this new criterion, or whether it is simply a self-consistent result of the
assumption that b ≈ 1.

γ =
ui(a− 1)(b− 1)±

√
ui(a− 1)

√
ui(a− 1)(b− 1)2 + 4unab

2aLiz
≈ ui
Liz

(
b− 1

2

)
≈ ui

2Liz
(35)

C. Onset Criteria

Given that the growth rate as estimated in the previous section may be somewhat oversimplified and does
not contain a meaningful criterion for the onset of the instability, we must address what this says about the
completeness of the model of Section IV E. Although recent analyses21 of Hall thruster stability delineate
“global” oscillations – identified with the breathing mode – and “local” oscillations, it is possible that
the linear growth of the breathing mode instability is never completely suppressed but instead changes
shape/amplitude due to nonlinear effects or is dominated by other oscillation modes. If this is true, then
a criterion that separates positive growth from damping of the breathing mode should not be sought, but
instead a scaling law for the growth rate is of interest and should be compared to experimental observations
in the range where the breathing mode is dominant. The expression derived in Section V B may constitute
such a scaling law, but any experimental validation is reserved for future work.

D. General 0D Limitations

Typical Hall thruster simulation results22 establish that the plasma varies greatly spatially, indicating that a
0D model is not very useful if it depends on the exact magnitudes of plasma parameters inside the channel,
as any average parameters predicted by this model or computed from higher-dimensional models cannot
accurately represent the entire channel plasma. For example, the term ui/Liz often appears in the predator-
prey model, and it is assumed that ui is the beam speed ubm. However, the actual transit time of ions is
dictated by the shape of E, which has a strong spatial dependence, and this time will necessarily be less
than ubm/Liz. In total, this demonstrates that the choice of plasma parameters for a 0D model is somewhat
arbitrary, and thus the results should not strongly depend on the magnitude of these parameters. Previously
it was found that many subsets of the governing equations were stable for a wide range of input parameters,
and so any instability that they might predict will occur only at very specific magnitudes of the input
parameters. As a result, even if some disregarded models predict instability, it may not be a useful result.

VI. Conclusion

In this paper, 0D modeling of the Hall thruster breathing mode was approached numerically and analyt-
ically. A temperature-dependent model was first considered, and we found it to be incapable of predicting
positive growth. We showed that the electron energy equation was largely decoupled from the rest of the
system in the current 0D formulation, which is unconditionally stable according to a Routh-Hurwitz stability
analysis. Adding Ohm’s law to the model did not improve this coupling and rendered the system dependent
on ue and Id or α, but it was still found unconditionally stable for the specific cases examined. Finally, we
returned to the traditional predator-prey model except ionization length was assigned a perturbed form by
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considering the motion of the upstream edge of the ionization region. The resulting model is less complicated
than the temperature-dependent model and amenable to Routh-Hurwitz analysis, which shows it to be un-
conditionally unstable. Numerical simulations support this conclusion, and the derivation of an approximate
growth rate was explored.
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