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The experimental setup and optimization techniques are presented for
an upcoming test campaign to improve the performance of a low-power
Electron Cyclotron Resonance (ECR) thruster using multi-frequency heat-
ing techniques. Recent experiments at ONERA using ECR plasmas in a
magnetic nozzle thruster have demonstrated thrust efficiencies over 10%.
The goal of the work presented here is to improve upon these results by
using custom power input wave-forms, thus enabling rapid optimization
without physical alterations to the thruster design. Specifically, this exper-
iment is designed to implement two-frequency heating to increase thrust
while average power and mass flow rate are held constant. While this
technique has been utilized to improve the yield and stability of ECR ion
sources, it has not been employed in thruster design. The thruster design,
microwave signal generation and power input, including a new wireless
power coupler, and thrust stand are described in detail. The optimization
algorithm and techniques for an upcoming test campaign are presented.

I. Introduction
Low power magnetic nozzle thrusters promise several features that make them ideal for small

satellite applications. They offer simple operation, with only a single required power supply, and lack
the often life-limiting neutralizer cathode that is required by most mature Electric Propulsion (EP)
technologies. However, performance to date has typically been much lower than more established
EP thruster designs, with low power thrust efficiency typically on the order of 1%1. Magnetic nozzle
thruster designs using Electron Cyclotron Resonance (ECR) heating, in particular those designed
at Office National d’Etudes et de Recherches Aérospatiales (ONERA), have shown great promise in
overcoming the historically poor performance. Their recent experiments have demonstrated thrust
efficiency over 10% and 1000s during a 50 W test, while previous Helicon thruster experiments have
typically seen efficiencies under 2% at these power levels2–6.

Magnetic nozzle thrusters generate force by converting the random thermal energy of a plasma,
typically generated by externally applied radiofrequency (RF) or microwave fields, to directed kinetic
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energy. In the case of ECR, heating is a achieved when the frequency of the applied electromagnetic
wave matches that of the natural electron cyclotron motion that occurs when a DC magnetic field is
present within the plasma. This condition can be described mathematically as ωin = eB/me, where
e is the electron charge, B is magnetic field strength, and me is the electron mass. Because the DC
magnetic field is not constant is space, typical ECR discharges contain a single resonant surface over
which the plasma absorbs most of its energy7. The hot electrons generated through ECR are then
expelled through an expanding magnetic nozzle, pulling the ions with them in an ambipolar diffusion
process. Finally, the plasma must detach from the magnetic field lines in order to generate useful
thrust. This process has been characterized in many magnetic nozzle thrusters, but to this day is not
well understood and is the subject of ongoing research8–10.

ECR magnetic nozzle thrusters have a long history in the EP community, with many earliest
thruster concepts built around the technology11. Though there was some success operating these
thrusters at kilowatt power levels, the bulky microwave sources of the time prohibited their use
on satellites, and research on this topic declined sharply as gridded ion and hall effect thrusters
matured12. While not suited for spaceflight at the time, ECR technologies have seen extensive use
in both plasma processing reactors and as ion sources for particle accelerators13,14. Since the 1960’s,
the miniaturization of microwave sources has enabled ECR to once again become a viable technology
for both medium and small scale satellites, and it has been recently used as the ionization source for
gridded ion thrusters in deep space missions15.

The goal of the experiment detailed in this paper is to continue to improve ECR magnetic nozzle
thrusters using optimization techniques inspired by the ECR ion source technology, namely two-
frequency heating. As such, this paper is organized in the following way. In Sec. II, we outline
different design parameters that can be tuned to improve ECR performance and explain why two-
frequency heating was selected for the initial optimization experiment. In Sec. III, we describe the
optimization algorithm used in the experiments, and in Sec. IV we present the experimental setup
including the thruster, vacuum chamber, thrust stand, and trial point testing techniques used in the
experiments.

II. Optimization Design Parameters: Two-Frequency Heating
Selecting proper design variables for an optimization experiment can be a challenging endeavour,

particularly when the underlying physics is poorly understood. As such, we turn to previous research
on ECR plasmas to inform our design choices. Several techniques have been developed to enhance
the performance of ECR plasma sources over their multi-decade history. These techniques are largely
dependent on the end use, whether it be process uniformity and selectivity in processing plasmas, or
highly charged ion yield in the case of ECR ion sources. The methods developed include both physical
design changes, such as magnetic field topology, wall material selection, and waveguide coupling, as
well as changes to the input waveforms, which will be the focus of this study.

In the EP community, work on developing ECR powered gridded ion thrusters has yielded several
new magnetic field designs and microwave antenna configurations. These new features have generated
increased plasma density as well as reduced erosion rates in these thrusters, and have enabled their
use in deep space missions16. More recently, research performed by ONERA on an ECR magnetic
nozzle thruster has shown that small geometric changes to the inner antenna and thruster walls
can have profound impacts on performance, with thrust efficiency increasing over 400%17. These
performance changes are not easily captured in simple simulations, thus necessitating a large number
of experiments to find optimal design points18.

While geometric design studies have yielded great improvements in device performance, changing
these parameters often comes at a great cost, both in terms of testing time and fabrication expenses.
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As such, it is highly desirable to find design variables that do not require physical changes be made
to the thruster geometry. The primary such parameter is the input RF or microwave waveform
that is supplied to the plasma. While this variable has remained largely untouched in EP studies,
there have been many techniques developed for plasma processing and ECR ion sources that rely on
tailoring the input waveform. These include pulsed power techniques used in plasma processing and
multi-frequency heating, a common practice in ECR ion sources since the 1990s19,20.

Given the virtually unlimited number of variables that can be tuned when creating a custom
input waveform (frequency, duty cycle, modulation type, bandwidth to name a few), we intentionally
choose to limit the scope of our initial optimization experiments to focus on two-frequency heating.
This technique was first successfully implemented in the Lawrence Berkeley Laboratories Advanced
ECR ion source in the 1990s, and is now standard practice in highly charged ion sources21–24. Simply
stated, two-frequency heating adds a second resonance zone to the discharge, as shown in Fig. 2 (b).
By increasing the volume over which the electrons are efficiently heated, it has been postulated that
power coupling efficiency can be enhanced. This effect increases the density of hot electrons, which
in turn leads to better ion source performance. Subsequent experiments showed that the addition of
a second frequency dampened the discharge oscillations by suppressing kinetic instabilities typically
present in ECR ion sources25. The underlying physics of these improvements are still not fully
understood26. These experiments did, however, demonstrate just how sensitive ECR plasmas are to
small changes in input waveform with changes of only a few MHz significantly modifying the output
ion beam of a 14 GHz experiment24,27. Although the operating regimes of the ECR ion sources for
highly charged ions are quite different than those of ECR thrusters (i.e. much higher frequencies and
magnetic field strengths), the experiments indicate that two-frequency heating may be a promising
starting point for ECR thruster optimization.

By using two independent frequencies and holding the total input power constant, we have opened
the design space to 3 independent parameters: f1, f2, and P1/P2. Here, f1 and f2 are the two input
frequencies, and P1/P2 is the ratio of their powers. These input parameters can be tuned at different
total power and flow rate settings to find optimal operating conditions at alternate thrust levels and
specific impulses. By optimizing at several set points, we can generate a Pareto front of optimal
parameters such as that shown in Fig. 1. This information would allow the thruster to be operated
more efficiently across a wider envelope of mission-dependent operating conditions.
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Fig. 1 Hypothetical Pareto front showing the highest efficiency operating points at
various flow rates and power levels. By optimizing the input waveform at these flow
rates and power levels, we can potentially widen the operating envelope of the thruster.

III. Optimization Algorithm
As we will show in Sec. IV, measuring thrust at each new test point can take several seconds.

Furthermore, data from ECR ion source experiments indicates that the system may be very sensitive
to changes in input waveform. Thus, by introducing three free parameters, we have already expanded
the design space to an extent that a brute force approach cannot be executed in a realistic time frame.
We therefore require a more intelligent strategy for selecting new test points. Typical optimization
algorithms are likely insufficient for this task as there can exist several local optima and the data
produced by the experiment is often noisy. However, there exist several gradient-free non-convex opti-
mization techniques that are well-suited for this type of data. These types of optimization algorithms
have been successfully employed in fusion experiments in which tens to hundreds of parameters can
be tuned between each run28.

With this in mind, we have selected a Bayesian optimization solver for the initial ECR experiment.
This algorithm works by creating a surrogate model of the output function based on a predetermined
set of initial data points. It then uses an acquisition function incorporating the surrogate model to
select new test points. The surrogate model is then updated with the new data using a Bayesian
posterior probability, and the acquisition function is called again. This procedure is repeated until a
stopping criteria is met. The acquisition function can take several forms, but generally searches the
region where the most improvement of the surrogate model is expected. This algorithm is particularly
well suited for these experiments as it can optimize functions with noisy outputs. Furthermore, it
can easily be expanded to include more optimization parameters. A more complete explanation of
the full algorithm can be found in Ref. 29. Several Bayesian optimization packages are available for
open source and commercial platforms.
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IV. Experimental Setup

A. ECR Thruster
The thruster used in this experiment, shown firing in Fig. 2, is based on the ECR thruster

designed at ONERA2. This thruster utilizes a coaxial design in which microwave power is injected
from the back of the thruster between an inner antenna and an outer conductor which serves as both
a waveguide and as the walls of the plasma source. A DC block is placed between the input coaxial
cable and the thruster allowing the thruster body to float with respect to the chamber. The magnetic
field is generated by permanent NdFeB magnets with a peak magnetic field of 1100 gauss inside the
thruster. For the design used in this paper, gas is injected radially into the discharge region, however
both axial and radial gas injection schemes have been utilized in other experiments with varying
levels of success30.

(a) (b)

Fig. 2 (a) ECR thruster firing on 2 SCCM xenon at 20 watts input power, (b) Schematic
of the thruster showing the ECR resonance zones created by two-frequency heating

B. Vacuum Facility
Initial experiments were performed in a 0.9 meter diameter by 0.9 meter vacuum chamber at

PEPL, shown in Fig. 4. This chamber is equipped with a cryogenic pump capable of approximately
1,300 L/s pumping speed on xenon. Because high background pressure has been previously shown
to inhibit the performance of these devices, the experiment was moved to the Junior vacuum facility,
a 1 meter diameter by 3 meter chamber equipped with both turbomolecular and cryogenic pumps
capable of a combined pumping speed of roughly 32,000 L/s on xenon.

C. Microwave Power and Diagnostics
We present an overview of the microwave power setup including signal sources and diagnostics in

Fig. 3. Microwave power is first generated by two Mini-Circuits voltage controlled oscillators with
output frequency ranges from 1,300 to 2,700 MHz. These signals are then combined using a Mini-
Circuits ZX10-2-252-S+ combiner and amplified using a Comtech PST linear amplifier. The power
is sampled using a Mini-Circuits ZABDC20-252H-N+ directional coupler, and the forward power is
fed through a 3-dB splitter after which one output is connected to a Mini-Circuits PWR-6RMS-RC
true RMS power sensor and the other is fed to a HP 8563E spectrum analyzer. The reverse port of
the directional coupler is connected to a Mini-Circuits PWR-6GHZ power sensor to measure reflected
power.

For the purpose of this experiment, efficiency is measured with respect to the forward power
input to the thruster. The reflected power, therefore, is not taken into account, and efficiency could
hypothetically be increased through the use of a matching network. It is worth noting that mixed
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signals, such as those generated by two-frequency heating, cannot be measured by standard Contin-
uous Wave (CW) power sensors. Instead "True Power" sensors are required, and even with these
devices, measurement bandwidth must be carefully taken into account.

Fig. 3 Schematic showing the microwave signal generation and diagnostic components

D. Thrust Stand
The thrust stand used in these experiments, shown in Fig. 4, employs a hanging pendulum design.

For our implementation, we use a counterweight on top of the pivots to increase the displacement
caused by the thruster. This design is similar to that used in Ref. 3. We measure thruster displace-
ment with a Philtec DMS-63 fiber-optic displacement sensor giving a ∼ 10 nm resolution. For the
initial tests, we do not employ active control to null the thruster displacement, however, this feature
may be added to future tests. The thrust stand is calibrated by placing a series of ∼ 0.5 gram weights
at a known moment arm with respect to the pendulum pivots. A typical calibration curve is shown
in Fig. 5(a).

Fig. 4 Thrust stand with the ECR thruster mounted

Initial tests were performed at a 20 watt, 2 SCCM-Xe operating condition. We show a raw data
trace from this test in Fig. 5 (b). Using the calibration data in Fig. 5 (a), the measured thrust was 535
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giving a thrust efficiency of 3.4%. However, these tests were performed at a relatively high background
pressure (over 30µTorr), which is known to cause a decrease in thruster performance. Furthermore,
these tests were conducted prior to adding several features to the thrust stand to improve the accuracy
of measurements taken with microwave powered thrusters, as discussed below. The measurements
taken during this initial test, therefore, may not be reflective of true thrust numbers.

(a) (b)

Fig. 5 (a) Typical thruster calibration curve showing displacement as successive ∼ 0.5
gram weights are added, and (b) displacement as the thruster is turned on and off at a
20 watt, 2 SCCM operation condition

Thrust produced by RF and microwave powered thrusters can be particularly difficult to measure
due both thermal deformation and RF/microwave interference issues. Delivering microwave power
to the thruster requires the use of relatively stiff coaxial cables that both limit the sensitivity of the
thrust stand and expand during operation causing false readings. Initial tests of the ECR thruster
using RG-400 coaxial cable showed that cable heating could cause thrust readings on the order of
those produced by the thruster itself. Although no microwave interference issues were encountered
during initial tests, the thruster’s proximity to sensitive electronics makes it vital to consistently check
for false readings. The thrust stand therefore features several additions to make it suitable for testing
low-power ECR thrusters. These include wireless power coupling, a microwave power diverter, and
PID temperature control of the thruster and thrust stand.

1. Wireless Power Coupler
In order to avoid false readings associated with cable heating, power is coupled to the thruster

wirelessly through a custom designed wireless power coupler shown in Fig. 6 (b). These types
of wireless power coupler are becoming standard practice microwave thruster measurements30,31.
However, because of the large bandwidth required for our two-frequency ECR tests, a new coupler
design was needed.

For our design, we employ a coaxial geometry somewhat similar to an air dielectric coaxial cable.
This design enables a large bandwidth and is insensitive to small changes in the relative position of
the two halves. Several iterations of the design were simulated in COMSOL Mulitphysics, with a final
design achieving a -1 dB bandwidth from 800 to 2,500 MHz, as shown in Fig. 6(a). The design was
constructed using brass as the inner and outer conductor, and the resulting scattering parameters
were measured to be similar to the simulations. During initial thruster tests, we were able to operate
the thruster over the full bandwidth at powers up to 50 W.
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(a) (b)

Fig. 6 (a) Simulated S parameters of the microwave wireless power coupler and (b)
the final design undergoing testing with the network analyzer

2. Power Diverter
Because false readings due to microwave interference and thermal expansion are often difficult to

identify, we have added a microwave power diverter to the thrust stand as an additional sanity check.
For our design, a JFW RF switch is used to route incoming microwave power to either the thruster
or a 50Ω dummy load. By comparing the thrust measured with power sourced to the dummy load
to that measured with no power input to the thrust stand, we can quickly determine if the input
microwave signal is causing false thrust readings.

3. PID Temperature Control
Finally, in order to provide stable thermal environment, thrust stand and thruster are held at

constant temperatures using PID control. We implement this feature using Kapton heating strips
attached to both the thruster and thrust stand. The temperature at these points is read using
two DSB1820 digital temperature sensors, and heater current is controlled using an on-board micro-
controller.

V. Experiment Operation and Initial Results
The optimization experiment is implemented as a LabView VI. This VI controls the microwave

signal sources, diagnostics, and displacement sensor, and is coupled with a MatLab Bayesian Opti-
mization code to select new test parameters. The initial experiment is shown in operation in Fig.
7.

Initial tests revealed several challenges associated with this type of optimization experiment. The
most obvious of these difficulties was the discovery of hysteresis in thruster performance i.e. thrust
varied significantly depending on whether the test point was approached from a higher or lower power
state. This is a well known phenomenon in ECR plasmas, but is not typically encountered in EP
thrusters32. Furthermore, conflicting data between power sensors revealed the need for "True Power"
sensors, as mentioned above. While the power measurement issue could be solved by using new
equipment, the hysteresis problem required new testing methods. An overview of the new trial point
designed to eliminate the observed hysteresis technique is shown in Fig. 8. Here, the thruster is
first operated at a known low-power (∼ 5 watt) condition. It is then quickly switched to a higher
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Fig. 7 Initial optimization experiment during operation. The thruster can be seen
firing on the left while the LabView VI controlling the experiment is shown on the right

power (∼ 30 watt) operating point, and then slowly transitioned down to the new test point using
variable attenuators. Once steady state is reached at the trial point, which was found to take around
10 seconds, the thruster is quickly transitioned to the low-power operating point, and thrust is
determined using the change in thrust. Finally, a new trial point is calculated by the optimizer and
the process repeats.

Fig. 8 Diagram showing the routine used to measure thrust at each new test point.
Relative thrust is measured by taking the ∆ Thrust between the test point and the
known low-power set point.

VI. Conclusions
In this paper, we have presented the preparations for an upcoming optimization experiment using

two-frequency heating to improve the performance of a low-power ECR magnetic nozzle thruster. We
show that ECR thrusters are well suited for optimization using custom input waveforms, and present
our choice of optimization variables: f1, f2 and P1/P1. The thrust measurement techniques and
experiment facilities were presented, including a newly developed thrust stand. Finally, we present a
new technique for quickly iterating through trial points while avoiding the effects of hysteresis. The
full results of the tests implementing these new techniques will be the subject of future publications.
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