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A theory describing a two-zone breathing mode mechanism is presented.
The stability of Hall thrusters is poorly understood in large part to the
breathing mode, ubiquitous low-frequency discharge current oscillations.
Many theories have already been presented to characterize this instability,
yet even the most prominent ones fall short of providing an intuitive an-
alytical description. The prominent predator-prey model of the breathing
mode is examined and a two-zone modification of it, involving coupled ion-
ization instabilities near the anode and in the traditional ionization region,
is proposed. This model is explored analytically with a linear perturba-
tion analysis. The stability of the system is examined in various limits. A
numerical study is performed using approximate steady-state plasma and
neutral parameters, and large regions of positive growth are found as the
electron near-anode speed and neutral gas channel transit time are varied.
In particular, for electron speeds near 2 km/s, real frequencies up to 7 kHz
and growth rates near 17 MHz are found. Both quantities are found to
be sensitive to the neutral density phase lag, in agreement with additional
simplified studies of the predator-prey model. Finally, several criteria for
validating this model experimentally are provided.

∗Ph.D Candidate, Department of Aerospace Engineering, etdale@umich.edu
†Assistant Professor, Department of Aerospace Engineering

1
The 36th International Electric Propulsion Conference, University of Vienna, Austria

September 15–20, 2019



Nomenclature
fiz = ionization frequency, Hz
Id = discharge current, A
L = characteristic ionization length, m
n = plasma density, m−3

na = plasma near-anode density, m−3

nn = neutral density, m−3

nn,a = neutral near-anode density, m−3

nn,0 = injected neutral density, m−3

ue = electron velocity, m/s
t = time, s
ue,a = electron near-anode velocity, m/s
ui = ion velocity, m/s
un = neutral density, m/s
z = axial position, m
γ = angular growth rate, rad/s
θn = plasma density phase lag, rad
θnn = neutral density phase lag, rad
λD = Debye length, m
ξiz = ionization rate coefficient, m3/s

ω = angular frequency, rad/s

I. Introduction

Hall thrusters are a form of electric propulsion that use crossed electric and magnetic fields to
produce a plasma and accelerate it for the purpose of generating thrust. These devices are

already widely deployed in near-Earth applications where their high specific impulse and moderate
thrust density is well-suited to stationkeeping. They are increasingly being projected for deep-space
missions.1

Since Hall thrusters are designed to operate for long durations – state-of-the-art lifetimes exceed
10,000 hours – the reliability of this technology is critical to its successful implementation. At a
minimum, the stability of a thruster must be well-understood to guarantee nominal operation during
in-space service. However, there are many aspects of the physical processes governing the operation of
Hall thrusters that are still poorly understood. One of the most significant of these that directly im-
pacts stability of these devices are low-frequency discharge current oscillations, termed the “breathing
mode”.

Despite several decades of theoretical, numerical, and analytical study, the underlying mechanism
controlling the growth and onset of the breathing mode is still opaque. Many hypotheses have been
proposed but often they are limited by complexity, physical inconsistencies, or vagueness. As a result,
the low-frequency stability of Hall thrusters cannot be predicted or intuitively understood. The need
is apparent for an evaluation of these existing theories for the purpose of synthesizing a new one
that overcomes their deficits. A more accurate description of the breathing mode would improve the
understanding of Hall thruster stability, thereby making this form of propulsion more reliable and
suitable for new mission spaces.
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In this work, Section II will review existing theories for the breathing mode and highlight their
successes and failures. In Section III, a new mechanism for the breathing mode is proposed and treated
analytically. This theory is evaluated numerically in Section IV. The implications of these results
are covered in Section V, as well as potential strategies for experimental validation of the proposed
mechanism. The validation will be addressed further in Part II of this study, Ref. 2. Finally, the
entire work is summarized in Section VI.

II. Background
The breathing mode has been studied experimentally3–7 and resolved numerically,8–11 yet there

is no intuitive but rigorous analytical description for its onset and growth. An early theory for low-
frequency oscillations proposed by Fife et al. is the predator-prey model.12 This description has
remained a prominent qualitative explanation for oscillatory behavior to the present day. Work by
Barral and Ahedo has proposed a more comprehensive ionization instability for the breathing mode.13

Finally, numerical studies have recently suggested that other regions in the plasma aside from the
typical ionization zone may play an important role in the breathing process. All of these models and
findings will now be reviewed.

A. Predator-Prey
The predator-prey model was proposed to accompany 1D hybrid particle-in-cell simulations of a

Hall thruster by Fife et al.12 A cyclic depletion of neutral particles was likened to a Lotka-Volterra, or
predator-prey, process where neutrals are prey and electrons are predators. Physically, as the thruster
channels fills with neutral particles, the ionization rate increases and thus the plasma thickens. As
the electron density rises, avalanche ionization occurs such that the neutral population is rapidly
reduced. Ionization then decreases while plasma continues to be accelerated out of the channel,
yielding a thinner plasma. With this drop in ionization, the neutral density can begin to rise once
again, allowing the process to restart. Fluid simulations that resolve low-frequency oscillations often
find a “neutral tide” that ebbs and flows in time with discharge current fluctuations, consistent with
this predator-prey picture.8,10

This process is captured with the zero-dimensional ion and neutral continuity equations,

dn

dt
= ξiznnn − n

ui
L

(1)

and
dnn
dt

= −ξiznnn + nn
un
L

, (2)

where n is the plasma density, nn is the neutral gas density, ui is the ion velocity, un is the neutral
gas velocity, and ξiz is the ionization rate coefficient. A linear perturbation analysis of this system
readily yields the following expression for breathing frequency ω:

ω =

√
uiun
L

. (3)

As Barral and Ahedo noted,13 this formulation is inaccurate because it does not account for neutral
particles flowing into the region from the channel gas injector, nn,0, regardless of injector geometry.
Accounting for that and other slight discrepancies, Hara et al. produced the following expressions,
where the first is equivalent to Fife’s result in the limit of low growth:

<(ω) =
√
nnnξ2 − γ2 , (4)
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=(ω) ≡ γ = −1

2

nn,0
nn,0 − nn

nξ . (5)

The major successes of these models is that they predict reasonable real frequencies, typically
O(1-10 kHz). However, there are severe limitations for both of these two variations of the predator-
prey model. In Eq. (3), there is no imaginary component of ω, indicating the linear instability is
metastable. In the presence of real-world damping processes, this implies these oscillations cannot be
sustained in a real thruster. Similarly, Eq. (5) must be negative from physical constraints, and thus
the linear oscillations are naturally damped.

Hara et al. investigated the role of electron energy in breathing oscillations with 0D and higher-
order direct-kinetic modeling.14,15 Although they found that a modified predator-prey model could
linearly grow,14 following studies showed on analytical grounds that the positive growth criteria are
unphysical.16 The closeness of the real frequencies predicted by the predator-prey model has generally
led it to be a popular description of the breathing mode, yet its failure to predict growth – even with
the addition of electron physics – suggests a few possibilities. First, the breathing mode may be a
kinetic process that is poorly represented by fluid equations. Second, it may be a spatially-dependent
phenomenon that is poorly represented with a 0D framework. Third, the surprising accuracy of Eq.
(3) may indicate that the breathing process is primarily driven by neutral and ion behavior but there
is an additional energy source sustaining the instability that is unrelated to the electron dynamics of
the ionization region. In this study, we embrace this last option as being most plausible.

B. Higher-Order Ionization Instability
Barral, Ahedo, and Peradzynski adapted a 1D fluid model to a quasi-steady formulation that

does not indiscriminately exclude temporal terms but instead encapsulates them with constant terms
Id
−1dId/dt and n/Id.17,18 Numerical studies of this model matched the low-frequency oscillations

of the fully time-dependent version but ignored higher frequency effects, like ion transit-time oscil-
lations.19 A linear analysis of the quasi-steady model suggested the presence of a standing plasma
wave, ñ/n ≈ Ĩd/Id, as well as a lagging standing neutral wave combined with a traveling component,

ωñn ≈ Ĩd
(
fiznn − fiz,0nn,0Exp

[
−iωz
un

])
, (6)

for an effective ionization frequency fiz,0. The second term in parentheses in Eq. (6) represents the
standing component with wavenumber ω/un, while the parenthetical factor Ĩd contributes a traveling
component. It was intractible to estimate the growth rate analytically, but an order of magnitude
analysis for the real frequency yielded

<(ω) =
ui
L
O
(√

nn
n

)
, (7)

which is equivalent to Eq. (3) within the bounds of Barral et al.’s model.
Because this model was developed as a simplification of a full set of 1D fluid equations, the physical

interpretation was mostly added a posteriori. However, Barral and Ahedo interpreted their findings
as depicting the typical neutral tide cycling forward and backward, accompanied by an oscillating
ionization front. In short, they describe predator-prey action that includes spatial variation of the
ionization zone and traveling fluctuation of the neutral population upstream of the ionization region.

The major success of this model is that, due to the relationship between the fully time-dependent
model and quasi-steady model, it incontrovertibly predicts growing nonlinear low-frequency oscilla-
tions. Further, the similar scaling of ω with the traditional predator-prey model means that it too
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will predict realistic frequencies. However, the lack of explicit physical insight provided by this ap-
proach limits its usefulness. Further, the complexity of the analysis owing to its 1D framework limits
the practical benefits it offers. Combined, the lack of a defined physical mechanism to describe the
instability – and in particular an explanation of where the 1D predator-prey process draws energy –
puts the burden of proof on the theoretical results, but they too are obscure. As a result, it is difficult
to accept Barral et al.’s model.

C. Near-Anode Effects
Numerical studies of the breathing mode have usually been either qualitative – typically noting

that the observed features appear to be consistent with a predator-prey process – or have performed
sensitivity studies on the instability. As an example of the latter, Hara et al. examined electron
dynamics with a hybrid-direct kinetic code and found that the breathing mode is stabilized by reduced
axial electron drift, possibly due to the formation of space charge saturated sheaths on the walls, and
electron excitation becoming more significant than electron impact ionization.11 However, they noted
over all that suppression of electron energy and ionization near the anode tended to damp oscillations.
This presaged fluid simulations by Hara and Mikellides where breathing behavior was found to depend
on a wide variety of parameters, including electron mobility in the near-anode region.20

In general, there is mounting evidence that the anode plasma may contribute to development of
the breathing mode. In the context of Hara et al.’s numerical studies, it was speculated that the
effective ionization region may extend deep into the channel, and so reductions in ionization near
the anode are shortening L in Eq. (3). Additionally, changes in near-anode electron mobility –
independent of downstream mobility – may alter the potential structure in the channel, cooling the
plasma and possibly initiating breathing oscillations due to the reduced wall heat flux.

The beauty of a breathing mode description involving upstream plasmadynamics is that it provides
a simple growth mechanism for the predator-prey process. Instead of relying on nebulous spatial
effects, the unique physics of the anode presheath, near-anode electron transport, and the anode
sheath provide new opportunities for an energy source for the breathing mode. This explanation,
though, is still firmly a result of numerical sensitivity and does not present a coherent physical process
for the development of low-frequency oscillations.

III. Theory

A. Synthesis
To reiterate Section IIA, the simple predator-prey analysis suggests that the breathing mode may

either be kinetic, spatially-dependent, or an ionization instability with an energy source outside the
downstream ionization region. The fact that fluid simulations can reproduce these oscillations casts
doubt on the first option. Interestingly, the last two options are not mutually exclusive. In Section
IIB, we saw that a one-dimensional approach is more successful in capturing growing low-frequency
oscillations than zero-dimensional. However, the scarcity of details in this higher-order ionization
instability prevents us from determining whether the spatial dependence alone is sufficient to capture
the breathing mode. But the studies described in Section IIC more definitively indicate that the
spatial dependence may only be part of the growth mechanism. That is, the breathing mode was
found to be sensitive to plasma properties in the near-anode region in ways that are not entirely
consistent with the moving ionization front and standing plasma/neutral waves of Barral et al.’s 1D
quasi-steady model. Altogether, this information can be used as the foundation for a simpler, more
rigorous model for the breathing mode. The major lessons that will be taken into account are as
follows:
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1) The physical mechanism of the predator-prey model is qualitatively correct, and it is also fairly
quantitatively accurate in describing the real frequency of oscillations.

2) A 1D model is capable of recovering low-frequency oscillations but is often analytically in-
tractable, even with quasi-steady simplifications.

3) Regardless of the spatial dependence of the model, the near-anode region may need to be
involved to correctly capture breathing oscillations.

B. Two-Zone Model
In the following we propose a two-zone predator-prey model that accounts for the lessons of the

previous section. To motivate this derivation, we start by exploring the (corrected) predator-prey
model of Fife et al. A linear perturbation analysis of Eqs. (1) and (2) produces a quadratic in ω,
where α ≡ nn,0/nn:

ω2 +
iαunω

L
− (α− 1)

uun
L2

= 0 . (8)

Since there is only one imaginary term, the growth rate must either be zero or, by physical constraints,
negative. This suggests that that other fluctuation terms out of phase with plasma and neutral
density fluctuations, ñ and ñn, must be included to allow for growth purely on analytical grounds. If
we presume that the incoming neutral density nn,0 is fluctuating such that ˜nn,0 = Nnñ, where N is
a complex amplitude, the linear perturbation quadratic becomes

ω2 +
iαunω

L
− (α− 1)un

ui −Nnun
L2

= 0 . (9)

This quadratic has a closed form solution but isolating the imaginary frequency =(ω) is quite difficult,
so the Routh-Hurwitz theorem can be employed to provide criteria for stability of the oscillations
based on the number of stable and unstable roots:

iαun
L

> 0 (10)

and

− (α− 1)un
ui −Nnun

L2
> 0 . (11)

The system is not stable if ui > un<(Nn) and/or =(Nn) < 0, where we assume α > 1 and un > 0.
Physically, these conditions suggest the oscillations may grow if nn,0 fluctuates weakly in phase with
n, out of phase with n, or leads n by any amount. In short, fluctuations of the incoming neutral
density to the ionization/acceleration region may be sufficient for a predator-prey description of the
breathing mode to predict growth.

This result is somewhat unprecedented in studies of 0D breathing models. It indicates that com-
plicated physics do not need to be piled onto the traditional predator-prey model to yield growth.
Rather, more fluctuating terms are only required to achieve this. However, this revelation is decep-
tively simple in that the process producing fluctuations in nn needs to be modeled and incorporated
into the 0D predator-prey framework. Based on the lessons of Section IIIA, we propose that the fluc-
tuation in nn,0 is a result of ionization in the near-anode region, coupling spatially to the predator-prey
action at the downstream ionization zone.

1. Physical Process
We start first with a description of a hypothetical physical process based on the discussions of

Section II, and then we explore it analytically in the following sections.
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We presume that a predator-prey-like ionization instability exists in the traditional ionization
zone. As the plasma density increases during rampant ionization, an excess of electrons stream to the
anode. Ionization in the near-anode region is enhanced by this increase in electron flux. As a result,
the neutral population is reduced, so a dearth of neutrals drift downstream. These neutrals reach
the ionization region while the ionization rate there is already dropping due to typical predator-prey
action, which exacerbates the drop. Once the plasma thins, a dearth of electrons stream to the anode,
leading to an excess of neutrals drifting to the ionization region. In this way, the process repeats
itself. A diagram of this process is provided in Fig. 1.

i. thickening

ii. flash ionization

iii. thinning

iv. refill

i. thickening

ii. flash ionization

iii. thinning

iv. refill

Near-Anode Ionization Zone

Fig. 1 A diagram of the physical process proposed for the two-zone model, where
electrons are shown in red and neutral gas is shown in blue. The righthand cycle
represents the typical predator-prey process in the ionization region, and the lefthand
cycle represents a similar phenomenon near the anode. The arrows between the two
reflect the coupling between the two instabilities.

Fundamentally, this model proposes that there are two coupled ionization instabilities, one in
the traditional ionization region and one near the anode, and that it is the interplay between them
that allows the otherwise predator-prey-like mechanism to grow. The energy for the instability is
therefore derived from the electrons – it is the energy stripped from them during impact ionization
events near the anode that supports fluctuations in the upstream neutral density, which in turn
fuels the downstream predator-prey oscillations. An important aspect of this process is the delay
in electrons reaching the anode from the ionization region, and the delay of neutrals reaching the
ionization region from the anode. Presumably these quantities play a significant role in setting the
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pace of breathing oscillations. The electron transit time is hard to predict in the near-anode region,
and is often determined non-classically here. This adds an unfortunate complication to an otherwise
very simple model. This implications of this will be discussed later in Section IV.

2. Model Derivation
We implement this hypothetical process as a two-zone predator-prey model. That is, we consider

two coupled 0D sets of continuity equations, for ions and neutrals in the traditional ionization zone,
and for electrons and neutrals near the anode. The evolution of the plasma and neutral populations
is largely ignored between these zones, and instead we represent the transit of electrons and neutral
particles between the zones with phasors Ne6 θn and Nn 6 θnn . The plasma density, neutral density
electron velocity, and ionization rate coefficient near the anode are denoted na, nn,a, ue,a, and ξiz,a,
respectively. The relevant 0D continuity equations assuming quasi-neutrality are as follows:

dn

dt
= ξiznnn − n

ui
L

(12)

dnn
dt

= −ξiznnn + (nn,a − nn)
un
L

(13)

dna
dt

= ξiz,anann,a + (n− na)
ue,a
λD

(14)

dnn,a
dt

= −ξiz,anann,a + (nn,0 − nn,a)
un
λD

(15)

Here, we assume that the neutral velocity does not vary spatially, that no ionization or acceleration
occurs between the two regions, and that the near-anode region is contained with the anode sheath.
The assumption of quasi-neutrality breaks down near the anode, but we ignore that here under
the assumption that sheath potentials will be somewhat low so only a small disparity in densities
exists. Also, it is important to note that the electron continuity equation pertains solely to electrons
produced in the ionization region – electrons streaming from cathode to anode are ignored. In reality,
recombination at the walls and other effects may limit the number of electrons that belong to this
neglected group. In fact, we expect that the current utilization efficiency is a good representation
of the ratio of channel-born to cathode-born electrons; these efficiencies are usually around 80% for
modern thrusters,21 which indicates that a minority of electron flux in the channel is sourced from
the cathode.

Linearizing these equations yields the following system:
−iω (1− η1)unL 0 0

ue,a
L −iω + un

L 0 −Nnn
6 θnn

un
L

−Nen 6 θn
ue,a
λD

0 −iω + (2− η2)ue,aλD
(1− η3) unλD

0 0 (1− η2)ue,aλD
−iω + η3

un
λD

×

ñ

ñn

ña

ñn,a

 = 0 (16)

Here, the η quantities are density ratios: η1 ≡ nn,a/nn > 1, η2 ≡ n/na < 1, and η3 ≡ nn,0/nn,a > 1.
Physically, η1 is the ratio of neutral density near the anode to that in the ionization region, which
should be above unity due to ionization. Correspondingly, η2 is the ratio of plasma density in the
ionization region to that near the anode, where it should be below unity due to ionization. Finally,
η3 is the ratio of neutral density coming from anode to that near the anode, which we anticipate to
be slightly above unity.
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The solution of this system is a fourth-order polynomial in ω. Although closed-form solutions
for polynomials like this exist, they are notoriously complicated and in this case would not avail an
insightful solution. However, assuming η1 � 1, η2 � 1, and η3 ≈ 1, the following somewhat simplified
equation results:

0 =

{
η1ue,aun

2

λD
2L2

[ui(3η3 − 1) + ue,aNe6 θnNn 6 θnn ]

}
−iω

{
η1un

λD
2L2

[Lue,aun(3η3 − 1) + uiλD(2ue,a + unη3)]

}
−ω2

{
un

λD
2L2

[L2ue,a(3η3 − 1) + LλDη1(2ue,a + unη3) + η1λD
2ui]

}
+iω3

{
1

λDL
[L(2ue,a + unη3) + unλDη1]

}
+ω4

(17)

It is immediately apparent that several common terms appear in these coefficients. Further, there are
some physical relationships between the quantities involved that may simplify the coefficients even
further. In particular, we consider ue,a > ui � un, and we define δ ≡ λD/L. Finally, since the phasor
quantities appear together and if we assume that the transit of particles between zones is lossless, we
combine them as 6 θ. This reduces the equation to the following:

0 =

{
η1ue,aun

2

δ2L4
[ui(3η3 − 1) + ue,a 6 θ]

}
−iω

{η1ue,aun
δ2L3

[un(3η3 − 1) + 2uiδ]
}

−ω2
{unue,a
δ2L2

[(3η3 − 1) + 2η1δ]
}

+iω3

{
1

δL
[2ue,a + unη1δ]

}
+ω4

(18)

3. Stability Analysis
The stability of this model can be evaluated aided by certain additional assumptions. First,

we examine the low-growth limit <(ω) � =(ω). Without making any assumptions on θ, the real
component of Eq. (18) is a sparse quartic and the imaginary component a sparse cubic. Even though
the latter is more tractable, complications still arise. For example, at a minimum the discriminant ∆
of the polynomial can reveal the nature of any possible roots but here the sign of ∆ is not immediately
clear because the first-order coefficient has a different sign than the zeroth and third. However, an
order of magnitude analysis suggests that ∆ � 0, which means that there is only one valid root to
the cubic in this case. A large ω contradictorily yields ω = 0, but a small ω compared to the zeroth
order coefficient assuming ue,a � ui and assuming η1δ is relatively small yields

<(ω) =
3

√
η1ue,aun2

2δL3
. (19)

In summary, the only readily available solution for Eq. (18) in the limit of small growth requires
sin(θ) must be relatively large. This suggests that neutral particles must significantly lead/lag in
phase while traveling from the anode to the ionization zone. However, note that we have assumed
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=(ω) is small compared to <(ω), which itself is small compared to the zeroth order term of Eq. (18).
We will return to this assumption in Section IV.

Next, the limit of high growth is investigated, <(ω) � =(ω). In this case, the polynomial is a
full and real quartic. To make any analytical progress, we assume θ is near ±90◦; that is, the neutral
particles accrue a considerable lead/lag in phase traveling through the channel. As a result, only
the zeroth-order coefficient of Eq. (18) has an imaginary component. In fact, sin(θ) must be zero in
this case, which violates the starting premise that there is considerable lag/lead. Over all, then, the
high growth limit is either unphysical or requires completely in-phase or out-of-phase θ, which is not
consistent with the argument developed in Eq. (9). As a result, it seems likely that the growth rate
predicted by this two-zone predator-prey model must be small or comparable to the real frequency.

IV. Results
As the previous section showed, only limited analytical information can be gleaned from Eq. (18)

due to its complexity without severe assumptions. Alternatively, we can examine the linearized model
numerically using realistic input parameters to evaluate its stability behavior.

A. Steady-State Quantities
The choice of steady-state quantities with which to explore the two-zone model must be given

thought. For operation at 300 V and 15 A with 15 mg/s of xenon flow – a standard condition for
the thruster tested in Part II of this study – the ion terminal velocity is roughly 20 km/s based on
energy conservation and a typical voltage utilization efficiency of 93%.21 For a symmetric Ez profile,
ui in the “center” of the acceleration region is closer to 1/

√
2 times the terminal velocity, or 14 km/s.

Previous studies in similar thrusters have shown neutral velocities to be close to 300 m/s throughout
much of the channel.22 The electron velocity in the ionization/acceleration is difficult to estimate, but
following the approach of Hara et al. and assuming a current utilization efficiency ηI of about 80%,
ue ≈ (ui/ηI)(1− ηI/

√
2), roughly 7.8 km/s. A similar approach cannot be taken near the anode, and

in general estimating ue,a is quite difficult. As a result, we consider it a free variable in this numerical
study. With this information, the steady-state forms of Eqs. (12) to (15), combined with current
continuity, yield downstream neutral and ion densities of 1.9 × 1018 m−3 and 2.8 × 1017 m−3, and
near-anode neutral and ion densities of 1.3 × 1019 m−3 and 3.1 × 1017 m−3. This then means that
η1 is 7.0, η2 is 0.9, and η3 is 1.1, which agrees with our previous assessment about their comparison
with unity.

B. Stability
Based on the previous discussion and the derivation of the previous section, the free variables in

this numerical analysis are θn, θnn , and ue,a. For simplicity, we assume θn = 0, as we expect electrons
to travel rapidly from the ionization region to the anode. We can then examine how the real and
imaginary components of ω, dictated by Eq. (18), evolve as a function of θnn and ue,a. Figure 2 shows
this for the fastest-growing of the quartic’s four roots. Both the real frequency and growth rate vary
several orders of magnitude over the domain of θnn and ue,a, and the appearance of discontinuities
suggest that the root locus structure may contain loops or intersections.

It is interesting to note that there is a region of considerable growth for ue,a near 2 km/s where
the real frequencies are close to the anticipated order of magnitude, O(10 kHz). However, the real
frequency and growth rate appear to be independent of θnn in this area. But if we examine it closer,
as in Fig. 3a, very clear trends become apparent. For ue,a=2 km/s, the real frequency is clearly
directly proportional to sin(θnn), and the growth rate weakly proportional to cos(θnn). Physically,
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(a) (b)

Fig. 2 The real frequency (a) and growth rate (b) as a function of neutral density phase
lag and near-anode electron velocity. Damped regions are indicated on both plots with
red dashed lines.

this indicates that the growth is strong regardless of θnn , but the mode does not support linear
oscillations when the neutral density fluctuations are completely in phase or out of phase during
transit between zones.

Finally, Fig. 3b shows the root locus curves for ue,a of 2 km/s. These curves are traveled
counterclockwise such that θnn approaches 0◦ at their leftmost ends. As it shows, all four roots
are always complex, with the limiting case that some of them become purely imaginary for θnn=0.
Further, it is interesting to note that there are in fact two growing roots. Although it is not apparent
from Fig. 3b, the slower-growing root has higher real frequencies for a given θnn , typically around
twice as large as those of the fastest-growing root.

V. Discussion
Although the real frequency and growth rate vary intricately in Fig. 2, as we have pointed out in

the previous section there appear to be regions of positive growth with real frequencies close to those
anticipated for the breathing mode. In Section IIIB, we concluded that a lag/lead in the neutral
particles as they transit the channel is sufficient for growth of a predator-prey instability, and in
Section IIIB3 we found a similar result in the limit of low growth. However, the results of Fig. 3a
make clear that for some ue,a the growth rate is much larger than the real frequency for all θnn . In
Section IIIB3, we had examined the high-growth limit and found it intractable, and in general such
fast growth may suggest the process is highly non-linear. It is unclear, then, how well the results of
the previous section describe the breathing mode.

To test this two-zone model more definitively, it is clearly important to verify that our guesses for
steady-state parameters are correct. Further, it is critical to be able to estimate ue,a and θnn , as the
parameter space presented by these two quantities is too wide to be meaningful without experimental
insight. For example, we focused on case of ue,a = 2 km/s, but according to Fig. 2 there are other
values of ue,a that yield realistic ω, sometimes with more restrictive conditions on θnn . Finally, it is
important to verify that θn is small, as all of the numerical results examined here assume that.
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(a) (b)

Fig. 3 The real frequency and growth rate as a function of the neutral density phase
lag (a), and the root loci of the two-zone model (b). Both plots assume ue,a=0. In (a),
the growth rate varies very little with θnn, so the ordinate scale is in percentage change
from the mean value. In (b), a signed logarithmic scale is used.

VI. Conclusions
In this work, an alternative model for the breathing mode involving two coupled ionization in-

stabilities was developed. We found that allowing fluctuation of the neutral density entering the
ionization zone may be sufficient for growth of the predator-prey model, which despite its shortcom-
ings, is still prominent for its intuitiveness and passing quantitative accuracy. A physical mechanism
was proposed wherein electron density excesses in the ionization region influence the ionization rate
near the anode, which then alters the neutral density leaving the anode. This model was implemented
analytically with ion and neutral continuity equations in the ionization zone, and electron and neutral
continuity equations in the near-anode zone. Although the result was complicated, certain simplify-
ing assumptions were made to explore its stability. Finally, a numerical study was performed that
revealed many growing roots of the model, some of which correspond to real frequencies close to those
expected for the breathing mode. In this way, a promising new model for the breathing mode has
been presented, and numerical studies present encouraging correspondence with the breathing mode.
This model will be investigated experimentally in Part II of this study.
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