

Design of a 30-kW RMF-FRC Thruster

Christopher L. Sercel, Joshua M. Woods, Tate M. Gill, Eric Viges, Ricardo G. Van Zanten, and Benjamin A. Jorns Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan

Introduction

- Field-Reversed Configuration (FRC) thrusters could fill the role of high-power (>100 kW), propellant-agnostic thruster
- These devices have been built, but direct measurements are lacking
- Physical mechanisms behind plasmoid acceleration are poorly understood
- We seek to build a test unit to measure thrust and I_{sp} , and investigate FRC formation

Design Requirements

- Thruster must operate in repetitive mode (not single shot) at 1 kHz to support measurement with a traditional thrust stand
- Thruster must use a Rotating Magnetic Field (RMF) to generate the plasmoid. Necessary field strength approximately 350 G at 20 kHz \rightarrow \sim 30 J pulse. Therefore thruster will be 30 kW class
- Supporting infrastructure must be compatible with the Large Vacuum Test Facility at the University of Michigan
- Power processing system must operate in atmosphere to reduce

vacuum-related challenges with pulsed power

Power Processing Unit

Top: Sample RMF ringdown generated in Spice. Bottom: Measured ringdown (no plasma) between RMF antenna and energy storage capacitor bank inside boost circuit. Q = 31 indicates this resonator is highly underdamped without plasma in the cone (little loss to resistance)

[2] Weber, T. E., "The Electrodeless Lorentz Force Thruster Experiment," Ph.D.

[3] Woods, J. M., Jorns, B. A., , and Gallimore, A. D., "Circuit Modeling of Rotating Magnetic Field Field-reversed Configuration Thrusters," AIAA-2018-4911, 2018

Contact: csercel@umich.edu

This work was partially supported by the NASA Space Technology *Research Fellowship under Grant 80NSSC18K1190*