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A Bayesian surrogate optimization method is developed which seeks to automate and
accelerate the discovery and calibration of data-driven models for the non-classical electron
transport in Hall thrusters. The proposed method is then used to identify best-fit model
coefficients for a three-parameter Bohm-like stationary anomalous collision frequency profile
for the SPT-100 Hall thruster. It is shown that the proposed approach can automatically identify
model coefficients which minimize the error between simulations and experimental data with
minimal human intervention. In addition, it is discovered that incorporating low-fidelity one-
dimensional simulations in addition to higher-fidelity two-dimensional axisymmetric simulations
may not increase the rate of convergence of this process unless the lower-fidelity code correlates
sufficiently well with the higher-fidelity code. The results are discussed in the context of other
data-driven approaches to modeling non-classical electron transport in Hall thrusters.

I. Introduction

All thrusters are in-space electric propulsion devices with moderate specific impulse and high thrust density
Hrelative to other state-of-the-art electric propulsion systems[1]]. They have been widely employed on satellites as
station-keeping thrusters and are becoming increasingly popular for deep space exploration[2]]. Despite this relative
maturity and widespread use, there remain poorly-understood aspects of their operation. The most consequential of
these is the problem of enhanced non-classical electron transport across the thruster’s magnetic field lines[[1]. The
inability to self-consistently model this so-called “anomalous"” electron transport has prevented the development of
simulations which could predict the performance and plasma properties of a device from its geometry and operating
conditions alone. Such simulations would be invaluable as part of the Hall thruster design and qualification process,
reducing the reliance on lengthy and expensive vacuum chamber testing. They would also accelerate the design and
optimization of new types of Hall thrusters, such as those which employ propellants other than xenon, unconventional
geometries, or which operate at high power densities.

To date, efforts to explain anomalous transport in Hall thrusters from first principles have not yet produced a model
which can be self-consistently incorporated into a whole-device simulation and yield results which are consistent
with experiment. This stems from the lack of understanding of the precise mechanism of the enhanced electron
transport. While multiple theories have been proposed to date [3]] [4][5], none of these has proven fully predictive
when incorporated self-consistently into higher fidelity models. To address the need for predictive tools, it has become
common practice to employ data-driven methods to approximate the electron dynamics and[[6][[7][8].

In these methods, either a base model is proposed which includes model coefficients which must be tuned to match
experiment, or an algorithm is used to try to discover a model. In state-of-the-art Hall thruster simulations, the most
common model is a spatially-varying, stationary anomalous collision frequency profile which is applied along the Hall
thruster channel centerline[9] and then projected outward along the magnetic field lines with a user-defined scaling[10].
These models typically feature 6 to 12 parameters which govern how the anomalous collision frequency varies in
space. They typically yield the best fit to experiment, but generalize poorly across thrusters and operating conditions.
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Other models include those derived from first-principles, which usually include a few numeric constants which can
be adjusted to improve the model’s fidelity[[L 1]][[12]][13]]. Being rooted in physics, these are more likely to generalize
well, but so far have not proven predictive. Traditionally, this sort of parameter calibration has been done by hand, but
this is time-consuming and requires one or more human experts. We can also try and learn new models from existing
experimental data[6], with the hope of finding models that are more predictive than existing first-principles models, but
which have fewer model coefficients and generalize better than the spatially varying models.

Ideally, data-driven methods for model discovery and calibration should be performed with a high fidelity simulation.
Typically, one begins with a model and a proposed set of model coefficients and then runs a simulation using these
inputs. We then compare the results to experiment and adjust the coefficients accordingly. Methods for doing this
range from hand-based, intuition-driven methods to rigorous gradient-based optimization. With that said, one of the
largest obstacles for this approach is that the computational expense of each iteration for higher fidelity simulations
can be prohibitive, with simulations in JPL’s state of the art fluid code Hall2De taking on the order of tens of hours to
complete. Hand-tuning is time-consuming, non-rigorous, and requires the time and attention of a human expert in the
loop. Gradients are not typically available in Hall thruster simulations, making gradient-based optimization impractical.

In an effort to circumvent these limitations, it helps to employ information from lower-fidelity methods to accelerate
the calibration process. The simplest way to do this is to try to tune a model to match measurements of electron transport
without integrating the model into a full Hall thruster simulation. In 2018[6]], we used a dataset of spatially-varying
anomalous transport profiles combined with validated time-averaged simulation results in order to try and discover new
models of anomalous transport. The models obtained in this way yielded good fits with the profiles they were trained on
and with those not in their training dataset, but did not perform well when integrated into a Hall thruster simulation[14].
This may be due to the known non-uniqueness of such profiles[10] and the highly oscillatory nature of Hall thrusters.
For such methods to work, we would likely need time-resolved measurements of the anomalous collision frequency and
local plasma properties, which are not widely available.

In light of the limitations of this previous approach, we propose in this work a surrogate-based method for calibrating
Hall thruster anomalous transport model parameters which makes use of information from both low-fidelity and
high-fidelity codes. The overarching goal is to be able to improve model fidelity while increasing the speed of
calibration. To this end, this paper is organized in the following way. In Sec. [lIL we describe data-driven modeling of
anomalous transport and describe possible approaches for optimizing such models. In Sec. we outline our proposed
methodology and describe how we map the results of the low-fidelity simulations onto a global model of the high-fidelity
simulation output. In Sec. we then illustrate the utility of our approach for Hall thruster applications by performing
a proof-of-concept study in which we infer the parameters of a simple three-parameter Bohm-like anomalous transport
model. simulations[10]. In Sec. we discuss the performance of our method relative to other calibration methods.
Lastly, in Sec. VI, we summarize our work and its key conclusions.

I1. Data-driven approach to modeling anomalous transport
In Hall thrusters, the electric field which accelerates ions to produce thrust is established across the applied magnetic
field. Neglecting electron inertia and assuming the plasma is strongly magnetized (v, < wc., Where v, is the electron
collision frequency) the cross-field electron momentum equation reduces to a generalized Ohm’s law of the form:

eneyVe

1
— E, + Vi(neTev)|. (D
WeeB Ne

j el =
In the above expression, j., is the cross-field electron current density in A/m?, e is the fundamental charge,
1.6 x 10719 C, n,, is the plasma density in m™3, E is the cross-field electron current, and T,y is the electron temperature
in eV. We see that in the magnetized limit j., scales directly with v.. Experimentally, we observe that the cross-field
electron current is much higher than that predicted when all known classical momentum transfer collisions, such as
electron-ion and electron-neutral, are accounted for in v, [[1]. We thus typically include an extra “anomalous” collision
frequency (denoted v 4 ) in simulations in order to resolve this discrepancy. This frequency may dominate the combined
classical collision frequency by an order of magnitude or more, depending on the location in the discharge. This
introduces a closure problem, however, as to solve the plasma governing equations we need an expression that ties v4n
back to the state of the plasma.
In order to close the plasma fluid equations, it is necessary to find a form for this anomalous collision frequency, for
which two primary paths have been pursued to date. The first is to assume a spatially dependent form:
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Fig.1 Example of a spatially-resolved anomalous collision frequency profile, with a reference thruster geometry.

VAN = fan(2) wee. ()

Here, fan (z) is some shape function of the axial coordinate z, and w,. is the electron cyclotron frequency. Physically,
this expression captures the intuition that the transport is non-classical and therefore may be Bohm-like, i.e. with
collision frequency scaling with the cyclotron frequency to a position-dependent degree. Fig. [T]depicts an example of
such a profile and how it is typically applied in simulations.

One common way to do this is to make f4n a piecewise-continuous function whose shape is tuned by the user in
order to make simulations match experiment. Once the simulation matches available experimental data to a satisfactory
degree, we can then use it as a surrogate measurement of physical properties in regions of the discharge that are difficult
to probe non-perturbatively. This is useful for understanding how the plasma behaves inside of the thruster channel or
near the anode. However, the calibration procedure can be laborious and time-consuming. A recent effort by one of the
authors to calibrate such a profile for a single operating condition of a magnetically shielded Hall thruster[15] took over
three weeks. Additionally, these profiles can be non-unique[10], and in certain regions of the discharge, changing the
anomalous collision frequency by an order of magnitude has little effect on the resulting simulation.

The other approach is to attempt to find physics-based models of the electron transport which can be self-consistently
implemented into Hall thruster simulations. Such models have nu 45 as a function of the plasma properties instead of
the axial location. These too often have parameters which may be adjusted to improve the fit with experiment. For the
ensuing discussion, we would like to unify such models into a single framework. To this end, we seek models of the
anomalous collision frequency v4n of the form:

m(van,p,T,t,X) =0 3)

Here, m is the model, which may in general be an implicit function of van; p = (Te, uj, e, . . .) represents the state of
the Hall thruster discharge plasma in terms of macroscopic fluid variables, such as the electron temperature 7, the ion
velocity vector u;, and plasma density 7n.; r represents the spatial coordinate; and 7 is the time, and x is a vector of
constant model parameters. These parameters are model-dependent and there may be any number of them.
Equation 3] contains both the piecewise profiles discussed above (a special case where m does not depend on p and
1), as well as physics-based models. Many authors have proposed algebraic models where m is an explicit function
of p and x only[11]] [12][13]], and some have proposed multi-equation models where m is a coupled system of partial
differential equations[16]. In most cases, however, X needs to be tuned to make simulations give decent agreement with
experiment. For piecewise profiles, there can be as few as two constants, or more than twelve, while first-principles
models in the literature typically feature three or less. In the former case, these constants are specific to a single device
or operating regime, while in the latter case, it is hoped that if the model properly captures key aspects of the underlying



physics, then the parameters will generalize well across thrusters and conditions. In all cases, we need to optimize the x
such that the simulation(s) match experimental results as accurately is possible.

We can frame this more formally as an optimization problem. Let f(x | m) be some metric of the difference between
an experimental measurement and the output of a simulation performed using model m and parameters x. For example,
f may measure the difference in thrust or discharge current between the simulation and experiment, or the residual of
the difference between the spatially-resolved ion velocity curve produced by the code and one obtained in the laboratory
via laser-induced fluorescence. With f defined, our optimization problem is:

xera f (X | m),

where d is the length of x, the dimension of the optimization problem. For a general function f that we seek to minimize,
we would normally employ some sort of gradient-based local optimization, such as gradient descent or Newton’s method
as our first approach. If we do not have access to the gradients of f with respect to the parameters x, which is almost
always the case in Hall thruster modeling, then we need to compute them via finite differences. If x € R?, then the cost
of doing so is proportional to d. These local search methods also often require additional function evaluations in order
to pick the step size at each optimization iteration. They are quick to converge in terms of the number of iterations, but
they rapidly become impractical as the cost of each function evaluation grows. When f is a computer simulation that
may take hours to complete, which is the case for 2D axisymmetric Hall thruster simulations, the cost of such methods
may be prohibitive.

Additionally, local search methods tend to refine the solution to a high degree of accuracy, but in engineering
optimization we are more interested in finding the approximate location of the minimum and seldom interested in
accuracy beyond a couple of decimal digits. Lastly, these methods are local and can thus converge at local minima,
whereas we are interested in finding the globally optimal values of x, i.e. the model parameters that make the simulation
most closely match experiment.

One common way to tackle such problems is via surrogate optimization. Given some initial set of parameters
X = {x1,Xp,...} and the results of simulations at those parameters Y = {yy, y2,...}, where y; = f(x; | m), we
construct a surrogate model, which predicts the output of f at values of x that we have not yet tried. In contrast to
the original function f, the surrogate f(x) is quick to evaluate and has gradient information available. We can then
optimize the surrogate model instead of the original function. We can also use the surrogate to suggest new values of x
that we should run in our simulation code, and over time find an approximation of the global minimum value of f using
as few function evaluations as possible.

II1. Methodology

A. Gaussian process regression

One popular approach to constructing a surrogate model is Gaussian process regression (GPR), also known as
Kriging. Let f(x) be an approximation of f(x). If f is a Gaussian process, that means that it is characterized by both a
mean prediction u(x) and a covariance function or kernel k(x,x") for all values of x. This is a key feature, as it not only
allows us to predict the value of our computationally expensive function at an untested point, but also estimate our
uncertainty in our prediction at that point. There are many choices of covariance kernel, but in general the covariance
between two points falls off as the distance between them increases. One popular choice, and the one we employ in this
work, is the squared-exponential kernel:

’ 1 7
k(x,x’) = 0% exp (ﬁﬂx—x ||§).

Here, o and ¢ are hyperparameters which reflect how far the function strays from its mean and how smooth the
function is, respectively. These are then optimized via cross-validation or maximum-likelihood estimation[/17] in order
to obtain the final surrogate model.

1. Multi-fidelity surrogates

Suppose now that we have two codes available, a low-fidelity code and a high-fidelity code. We denote the result of
the low-fidelity code as fyr(x) and the result of the high-fidelity code as fyr(x). We wish to use the low-fidelity code
to predict the response of the high-fidelity code to changes in X, in order to reduce the number of times we need to run
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Fig. 2 Diagram of how the integrated velocity error is defined. The numerator of Eq.Elis the integral of the
squared difference (dashed black lines) between the experimental data (red markers) and the simulation (solid
black line). The denominator of Eq. [5|is the area denoted in light red. The integral is is performed over the
differential length elements integrated by dz from z to z.

the high-fidelity code. We accomplish this via Multi-Fidelity Kriging[18] (MFK), where we model the high fidelity
function as

frr (%) = p(xX) frr(x) +6(x).

where §(x) is a difference function and p(x) is a correlation function (generally a constant or a low-order polynomial).
For the purposes of this work, we employ the Surrogate Modeling Toolbox[19], a Python package developed at the
University of Michigan, to construct and train the multi-fidelity surrogate models.

B. Optimization

Once we have obtained a multi-fidelity surrogate, we need to pick new points at which we can run our codes in order
to improve the surrogate and find the parameter values which make the simulations give the best fit to data.
We define the following objective functions for this work. The first is the relative error in the discharge current:
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The second is the integrated velocity error, which we define as:
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Here, u; 1.1r(z) is the mean ion velocity as a function of axial location z as measured by laser-induced fluorescence,
u;i sim(z, X) is the simulated ion velocity at z given model parameters X, and zp and z are the axial locations of the first
and last LIF measurements, respectively. In Fig.[2] we illustrate graphically how the IVE is computed.

The best fit to experiment is found when both of these functions are minimized. While optimizing, we need an
acquisition function which tells us where we should run the high-fidelity code next. For a single-objective Bayesian
optimization problem where we attempt to minimize a function f(x) and have constructed a kriging surrogate $(x), the
Expected Improvement function is often used[17]):

EI(x)=E [ymin _ f(x)] = (Ymin — f(X))‘D (M) +0(x)¢ (M) (6)
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Here, yin is the smallest objective function evaluated, o-(x) is the predicted standard error at x and ® and ¢ are the
cumulative distribution function and probability density functions, respectively, of the standard normal distribution. At
each optimization iteration, we find the point x which maximizes the expected improvement function and compute our
expensive model at that point. However, we have a multi-objective optimization problem, and it is not guaranteed that
the point which minimizes the integrated velocity error will also minimize the error in the discharge current. There are
many approaches to such problems in literature, but we adopt a simple no-preference method in which we transform our
multi-objective problem into a single-objective problem via a combined objective function:

fx) = fv(x) + f1(x), )

The integrated velocity error and discharge current error are defined such that they should have similar orders of
magnitude. If the the ion velocity curve is off by 10% from the experimental profile, then fy (x) will be 0.1. Similarly,
if the discharge current is off by 10%, then f;(x) will also be 0.1. This scaling captures our lack of a-priori reason
to weigh one of these quantities more highly than the other. If a simulation fails for some reason, we would set f(x)
to 20.0, although this did not happen in the present study. We compute this objective function at all low-fidelity and
high-fidelity sample points, then build the multi-fidelity surrogate as described in Section We can then compute
and maximize the expected improvement. We find this point by sampling randomly in the domain, finding the points
with the highest expected improvement, and initializing a local optimizer at each of these points to find the one which
maximizes EI. We then run both the low- and high-fidelity codes at the new point and use the output to update the
multi-fidelity surrogate. We repeat this until a termination criterion (typically a fixed number of simulations) is reached.

For a multi-fidelity problem such as ours with an expensive high-fidelity simulator, it is advantageous to be able
to select a batch of several points to run in parallel instead of a single point. One simple approach to this problem
(and the one we employ in this work) is the Constant Liar (CL) method[20]. Let x"*! be the point which maximizes
the expected improvement as described above. Instead of evaluating the objective function to obtain y"**! and adding
(1, y™*1) to the surrogate, we use a constant pretend value of y"*! = L. We then find the point which maximizes the
expected improvement of the updated surrogate and call it x*2. We again add (x**2, L) to the surrogate, and repeat this
process until we have added however many new points we desire. L is often chosen to be the maximum, minimum, or
mean of all y-values in the surrogate. Using L = min(Y) will tend to find points that are close to the current best point
(exploitation), while using L = max(Y’) will tend to generate points that are spread out (exploration). L = mean(Y) will
be somewhere in-between these extremes, and it is the value we will use in this work. We summarize the surrogate
construction and optimization procedure in Fig.

C. Thruster

In this work, we simulate the SPT-100 Hall thruster (depicted in Fig. @). This 1.35 kW unshielded thruster
was developed in the Soviet Union and is is one of the oldest and best-studied thrusters still in use today[21]. It is
extensively-studied by the electric propulsion community and often serves as a model thruster for Hall thruster research.

The data used for comparison in this section comes from Macdonald-Tenenbaum et al[22]], who measured ion
velocity curves using laser-induced fluorescence at multiple background pressures at a discharge voltage of 300 V and a
discharge current of 4.24 A. We attempt to calibrate our model to match their measured discharge current as well as the
ion velocity curve measured at a background pressure of 3.5 x 10> Torr.

D. Codes

The last things we need in order to apply our proposed multi-fidelity surrogate modeling method are two Hall thruster
codes — a low-fidelity code and a high-fidelity code. Our high-fidelity code of choice is Hall2De, a two-dimensional
axisymmetric multi-fluid code developed at the Jet Propulsion Laboratory[9]. Our low-fidelity code is HallThruster.j1[23]],
an open source one-dimensional fluid code recently developed at the University of Michigan. HallThruster.jl can
simulate 2 ms of Hall thruster operation in seconds to minutes, depending on the grid resolution, making it ideal for
sampling densely from the parameter space. In contrast, Hall2De takes several hours to run a single simulation of the
same duration, but features much greater fidelity compared to HallThruster.jl.
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Fig.3 Summary of the multi-fidelity surrogate modeling and optimization procedure used in this work.

Fig.4 The SPT-100 Hall thruster.



IV. Study: Three-parameter model
In order to assess the utility of the bi-fidelity surrogate modeling approach, we first attempted to use it to calibrate a
static anomalous transport model. We employ a simple two-zone Bohm-like mobility model similar to that used by
Giannetti et al[24]. In this model, the anomalous collision frequency is described by three model parameters: @, Z;rans,
and L;4,s. These parameters represent the scale of the anomalous transport, the axial location of the transition from
low to high anomalous collision frequency, and the width of the transition, respectively. The latter two parameters are
normalized by the discharge channel length L.;, which for the SPT-100 is 2.5 cm. The model is given by:

a Z/Lch > Ztrans T 0.5 Ltrans

(®)
0.01 @ z/Lcn < Ztrans — 0.5 Lirans,

VAN = Wce {
When —0.5 L;yans < (2/Leh = Ztrans) < 0.5 Lyrans, the anomalous collision frequency transitions smoothly between
the two zones using a hyperbolic tangent function, as depicted in Fig.[5a] In Fig.[5b| we show an example anomalous
collision frequency profile for @ = 1.0, z;rqns = 1.5, Lirans = 0.5.
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Fig.5 (a) Illustration of the anomalous transport model, given parameters (&, Z;,ans, Ltrans), Showing transition
region in blue. (b) Anomalous collision frequency profile for @ = 1.0, z;;q4ns = 1.5, Liyans = 0.6.

We compare three cases. In the first (case A), we use only the one-dimensional code to perform the parameter
optimization. In the second (case B), we only run the two-dimensional code. In the last (case C), we employ a bi-fidelity
approach, using the two-dimensional code to augment the response of the one-dimensional code. For cases A and
C, we initialize the optimizer by sampling 250 points from the region of @ € (0.01, 1.0), Z;rans € (1.0,2.0) and
Lyrans € (0.1, 1.0) and running HallThruster.jl at these points. For case B and C, we then subsample 20 points from the
initial 500 and run Hall2De at this subset of points. We use an optimal Latin Hypercube sampling plan[25]] to pick the
initial sample locations, ensuring the points are well-distributed and not clumped. In Fig. ??.

With the initial samples generated, we then run the optimization procedure described in the preceding section. Since
we sampled the parameter space comparatively densely using the 1D code and since both metrics vary smoothly, we
simply select the best point from the initial samples as the final solution. For the other two cases, we optimize the
surrogate as described in the previous section. At each iteration of case B and C, we obtain five new points using the
Expected Improvement - Constant Liar strategy, then run Hall2De at each of the sample points. For case C, we also
run HallThruster.jl at the sampled points, as the surrogate construction process requires that high-fidelity samples be
co-located with low-fidelity samples. We present the results of this study in Tab. [T} while in Fig.[6a} we show how the
simulated ion velocity curves compare across the three cases.

As Tab. |l|demonstrates, both methods are able to converge to points that match the discharge current well and which
minimize the objective function. The fits to the ion velocity curves so obtained are not exact, but this is a limitation
of the chosen model rather than the optimization procedure. Unsurprisingly, both cases B and C outperform case
A, as they have access to information from the high-fidelity code and case A does not. Unexpectedly, case B seems
to moderately outperform case C, despite the former’s lack of low-fidelity code information. The results obtained



’ Case ‘ Description | # 1D evals | # 2D evals ‘ X" = (@, Zranss Lirans) ‘ Ip(x*) ‘ Sv(x*) ‘ f(x¥) ‘

A 1D code only | 250 1 (0.034, 1.012, 0.1325) 4.064 A | 0.228 0.270
B 2D code only | O 80 (0.251, 1.785, 1.000) 4212 A | 0.139 | 0.146
C Bi-fidelity 330 80 (0.281, 1.424, 0.159) 4.082 A | 0.125 0.162

Table 1 Results of the bi-fidelity surrogate optimization procedure for the three-parameter anomalous transport
model. “#1D evals' and ‘“#2D evals'' refer to the number of times HallThruster.jl and Hall2De were run,
respectively. The optimal parameter values found in each case are denoted as x*, and the discharge current,
integrated velocity error, and combined objective function at the found optimum are 7, (x*), fy (x*), and f(x*),
respectively.
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in cases B and C are very similar, with nearly identical ion velocity curves and only small differences in discharge
current. However, the predicted optimal coefficients are quite different. The optimum found by case B is @ = 0.0251,
Ztrans = 1.785, and Ly 4,y = 1.00, while for case C we find a = 0.281, z;rans = 1.424, and L, 4,5 = 0.159. As is
evident, the parameter governing the scaling of the anomalous transport, o, matches quite closely, but both z;,4,s and
L¢rans are very dissimilar. In Fig.[6b] we compare the best profiles discovered by the three cases. As indicated by the
best-fit coeflicients, the optimized profiles for the two cases differ strongly in the transition region, but match well both
upstream and downstream of this point.

These results seems to suggest that there may not be much utility in our multi-fidelity approach. With that said, the
model in question is simple and it is not necessarily surprising that the bi-fidelity approach will require as many numerical
evaluations as the single-fidelity model to converge. Our method may be more useful for calibrating higher-dimensional
models like those more commonly employed. We next turn to a more detailed discussion of the bi-fidelity surrogate’s
poor performance and the implications of solution non-uniqueness on future calibration algorithms.

V. Discussion
In both cases, our optimization procedure was able to minimize the combined objective function and find fits
more optimal than those in the initial simulation batch. The rate of convergence was somewhat slow. It took four
batches of five simulations each before the optimizer found a point which improved upon one in its initial batch. The
high-fidelity optimizer performed slightly better than the bi-fidelity optimizer. This was unexpected, as the latter had
more information than the former. Additionally, the

A. Effect of conflicting minima
One possible reason for the lackluster performance of the bi-fidelity optimization routine over using the high-fidelity
code by itself is that, for some anomalous collision frequency models, the optimal parameters are significantly different
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Fig.7 Correlations between HallThruster.jl (x-axis) and Hall2De (y-axis) for (a) integrated velocity error, (b)
error in discharge current, (c) sum of objectives for the three-parameter model evaluated in Sectionm

in the 1D code than in the 2D code. In Fig.[/| we show how the HallThruster.jl and Hall2De trend against each other. In
the integrated velocity error plot (Fig.[7a), we see that there are two distinct populations of solutions. In the top left,
there is a population that correlates very well between Hall2De and HallThruster.jl, while in the bottom right, there is a
population which does not correlate at all. This is evident, but significantly less so, in the plot of discharge current error
(Fig.[T)), as is it also in the plot of the combined objective function(Fig. [7c). This is problematic for the bi-fidelity
surrogate (case C), as this second population contains the points that are lowest on the y-axis, i.e. which perform the
best in Hall2De. This delays the convergence of the optimization routine to the point that its performance is very similar
to the high-fidelity-only optimizer (case B). In fact, the minimum found in case B lies in the region of parameter space
that correlates poorly between the two codes, reducing the probability that the bi-fidelity optimizer would find the same
minimum. The reason for the poor correlation of the second population is related to the onset of very high-amplitude
limit-cycle oscillations in HallThruster.jl which do not occur in Hall2De. These do not significantly affect the average
discharge current but dramatically change the time-averaged velocity profile, increasing the integrated velocity error as
measured by the 1D code.

To ameliorate this effect, it would be beneficial to employ a multi-fidelity optimization algorithm which is less
sensitive to the differences in the location of the minimum between the low-fidelity and high-fidelity codes. To more
clearly illustrate this difficulty, let us consider the Forrester function[26], a simple one-dimensional function commonly
employed to demonstrate the utility of bi-fidelity optimization. Let f; r be the low-fidelity version of the function and
fuF be the high-fidelity version, then the Forrester functions are given by:

frr(x) = (6x —2)%sin(12x — 4) 9)
frr(x) =0.5(6x —2)*sin(12x —4) + 10(x —0.5) = 5 (10)

To examine the impacts of shifting the location of the minimum of the low-fidelity function compared to the
high-fidelity function, we can shift the entire low fidelity function by ¢ in the x direction. As in Forrester 2008,
let us sample the low-fidelity function at 11 points in the interval [0, 1] (increments of 0.1), while we sample the
high-fidelity function only at x = {0.0,0.4,0.6, 1.0}. We will show how the single-fidelity kriging and multi-fidelity
kriging surrogates respond to different values of ¢. We will test ¢ € {0.0,0.05,0.01}. The results are shown in Fig.
In Fig.[8al when ¢ = 0, we see that adding the low-fidelity information dramatically improves the approximation over
the only including high-fidelity information. However, when we shift the low-fidelity function only slightly, by 1/20 the
width of the sample space (Fig.[8b), the approximation begins to degrade, and when we shift the low-fidelity function by
twice as much (Fig.[8c)), the approximation is only somewhat better than when we include only the high-fidelity sample
points. Thus, when the low-fidelity function and high-fidelity function have minima that significantly conflict, the
multi-fidelity kriging model might have misleading ideas about where the true minimum lies, and its performance may
be only as good, or even worse than, a single-fidelity model. For calibrating a specific model of anomalous transport
model, researchers should thus determine how well the 1D code correlates with the 2D code before committing to a
bi-fidelity optimization method.
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Fig. 8 Multi-fidelity approximations of the Forrester function (Egs. with the low-fidelity shifted by ¢
compared to Eq.[I0} The sample locations of the low-fidelity and high-fidelity functions are indicated by the blue
and red circular markers, respectively. The surrogate constructed using only the high-fidelity information is
denoted by a dotted line, while the bi-fidelity surrogate is indicated by a dashed line.

B. Solution non-uniqueness

Non-uniqueness poses a significant challenge to verifying and validating anomalous transport models. Mikellides
and Lopez Ortega showed in 2019[10] that one can significantly alter the anomalous collision frequency in parts of the
discharge without altering the predicted electrostatic potential profile and discharge current. We encountered a similar
result here, where two quite different coefficient sets and anomalous collision frequency profiles (c.f. Tab. [T]and Fig. [6b)
gave very similar ion velocity curves (Fig.[6a)) and predicted discharge currents. Without non-invasive measurements of
plasma properties deep inside the channel, for example, it is hard to validate that the anomalous collision frequency near
the anode is correctly calibrated. This is likely to pose more of a challenge for the spatially-varying profiles than for
first-principles models, but may be mitigated by including additional data in the calibration procedure. For example,
component efficiencies, such as mass and beam utilization, may give information about conditions in hard-to-measure
regions of the discharge that are not apparent from the ion velocity profile and discharge current alone.

C. Comparison to other calibration methods

We now turn to discussing our results in the context of other calibration procedures. For ad-hoc piecewise anomalous
transport models, our proposed approach is likely preferable to hand-tuning, provided enough computing resources are
available to run the needed simulations in parallel. Due to the model’s simplicity, a human expert would likely have
been able to calibrate the three-parameter model (Sec. in fewer simulations than our procedure required. However,
our procedure can be fully automated, and it is ultimately objective.

The Expected Improvement-based optimization algorithm we employ in this work may not be the ideal choice for
our problem it is likely that other global optimization algorithms may provide significant speedups. In head-to-head
comparisons[27] with a suite of other global optimization routines, those based on the Dividing Rectangles (DIRECT)
[L7] algorithm were able to solve the most number of problems in a fixed number of iterations. Some combination of
this algorithm with a surrogate modeling effort may address the shortcomings of both methods[28]] and lead to improved
convergence behavior.

Although we did not directly investigate it in this work, our procedure would be useful for discovering and calibrating
physics-based self-consistent models of anomalous transport. While our previous approach[6] produced a suite of
new models which gave promising fits to experiment when trained on spatially-varying anomalous collision frequency
profiles, we have found that this does not correlate strongly with how well the discovered model performs when
integrated into a high-fidelity Hall thruster simulation[14]. Therefore, we need to include the high-fidelity simulation in
the calibration procedure, and our approach provides a systematic way to do that. With these models, there may be less
human intuition to guide what the appropriate model parameters should be, as the plasma and anomalous collision
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frequency are strongly coupled and interact in unexpected ways. For example, we might want to evaluate a model of the

following form:
B Y 6
i T
VAN =awce( - ) ( e ) (—6) (1)
Vde Wee T;

In this model, we incorporate several terms that have appeared in both prior model discovery efforts[6] and in
first-principles models[12]][13]. Obtaining a good fit to experiment with such a model would give us information
about which plasma parameters the anomalous collision frequency is likely to scale with, which could then inform
future first-principles modeling efforts. With such a model, though, there may be less intuition about how to tune
the parameters (here @, 3, ¥, and ¢) in order to make simulations consistent with experiment, and so an automated
procedure like ours might be useful.

VI. Conclusion

Self-consistent predictive models of Hall thruster anomalous transport have proven elusive in the past twenty years.
Even the ad-hoc piecewise profiles commonly employed to make simulations match experiment are problematic due to
their potential non-uniqueness and the large amount of human time required to calibrate individual operating conditions.
In this work, we have presented a multi-fidelity surrogate-based calibration procedure to attempt to automate the
calibration of anomalous transport models, whether they be empirical, physics-based, or data-driven. We found that
including information from reduced-fidelity codes may not speed up the calibration procedure, but only when the two
codes are sufficiently well-correlated given the model being calibrated. However, this depends strongly on the model,
and researchers ought to determine how well the codes correlate prior to choosing a single-fidelity or multi-fidelity
calibration procedure. Despite these caveats, we have shown that a significant amount of the calibration work can be
automated and parallelized, paving the way for more rapid design, testing, and iteration on more predictive engineering
models of anomalous transport.
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