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A Bayesian surrogate optimization method is developed which seeks to automate and
accelerate the discovery and calibration of data-driven models for the non-classical electron
transport in Hall thrusters. The proposed method is then used to identify best-fit model
coefficients for a three-parameter Bohm-like stationary anomalous collision frequency profile
for the SPT-100 Hall thruster. It is shown that the proposed approach can automatically identify
model coefficients which minimize the error between simulations and experimental data with
minimal human intervention. In addition, it is discovered that incorporating low-fidelity one-
dimensional simulations in addition to higher-fidelity two-dimensional axisymmetric simulations
may not increase the rate of convergence of this process unless the lower-fidelity code correlates
sufficiently well with the higher-fidelity code. The results are discussed in the context of other
data-driven approaches to modeling non-classical electron transport in Hall thrusters.

I. Introduction

Hall thrusters are in-space electric propulsion devices with moderate specific impulse and high thrust density
relative to other state-of-the-art electric propulsion systems[1]. They have been widely employed on satellites as

station-keeping thrusters and are becoming increasingly popular for deep space exploration[2]. Despite this relative
maturity and widespread use, there remain poorly-understood aspects of their operation. The most consequential of
these is the problem of enhanced non-classical electron transport across the thruster’s magnetic field lines[1]. The
inability to self-consistently model this so-called “anomalous" electron transport has prevented the development of
simulations which could predict the performance and plasma properties of a device from its geometry and operating
conditions alone. Such simulations would be invaluable as part of the Hall thruster design and qualification process,
reducing the reliance on lengthy and expensive vacuum chamber testing. They would also accelerate the design and
optimization of new types of Hall thrusters, such as those which employ propellants other than xenon, unconventional
geometries, or which operate at high power densities.

To date, efforts to explain anomalous transport in Hall thrusters from first principles have not yet produced a model
which can be self-consistently incorporated into a whole-device simulation and yield results which are consistent
with experiment. This stems from the lack of understanding of the precise mechanism of the enhanced electron
transport. While multiple theories have been proposed to date [3] [4][5], none of these has proven fully predictive
when incorporated self-consistently into higher fidelity models. To address the need for predictive tools, it has become
common practice to employ data-driven methods to approximate the electron dynamics and[6][7][8].

In these methods, either a base model is proposed which includes model coefficients which must be tuned to match
experiment, or an algorithm is used to try to discover a model. In state-of-the-art Hall thruster simulations, the most
common model is a spatially-varying, stationary anomalous collision frequency profile which is applied along the Hall
thruster channel centerline[9] and then projected outward along the magnetic field lines with a user-defined scaling[10].
These models typically feature 6 to 12 parameters which govern how the anomalous collision frequency varies in
space. They typically yield the best fit to experiment, but generalize poorly across thrusters and operating conditions.
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Other models include those derived from first-principles, which usually include a few numeric constants which can
be adjusted to improve the model’s fidelity[11][12][13]. Being rooted in physics, these are more likely to generalize
well, but so far have not proven predictive. Traditionally, this sort of parameter calibration has been done by hand, but
this is time-consuming and requires one or more human experts. We can also try and learn new models from existing
experimental data[6], with the hope of finding models that are more predictive than existing first-principles models, but
which have fewer model coefficients and generalize better than the spatially varying models.

Ideally, data-driven methods for model discovery and calibration should be performed with a high fidelity simulation.
Typically, one begins with a model and a proposed set of model coefficients and then runs a simulation using these
inputs. We then compare the results to experiment and adjust the coefficients accordingly. Methods for doing this
range from hand-based, intuition-driven methods to rigorous gradient-based optimization. With that said, one of the
largest obstacles for this approach is that the computational expense of each iteration for higher fidelity simulations
can be prohibitive, with simulations in JPL’s state of the art fluid code Hall2De taking on the order of tens of hours to
complete. Hand-tuning is time-consuming, non-rigorous, and requires the time and attention of a human expert in the
loop. Gradients are not typically available in Hall thruster simulations, making gradient-based optimization impractical.

In an effort to circumvent these limitations, it helps to employ information from lower-fidelity methods to accelerate
the calibration process. The simplest way to do this is to try to tune a model to match measurements of electron transport
without integrating the model into a full Hall thruster simulation. In 2018[6], we used a dataset of spatially-varying
anomalous transport profiles combined with validated time-averaged simulation results in order to try and discover new
models of anomalous transport. The models obtained in this way yielded good fits with the profiles they were trained on
and with those not in their training dataset, but did not perform well when integrated into a Hall thruster simulation[14].
This may be due to the known non-uniqueness of such profiles[10] and the highly oscillatory nature of Hall thrusters.
For such methods to work, we would likely need time-resolved measurements of the anomalous collision frequency and
local plasma properties, which are not widely available.

In light of the limitations of this previous approach, we propose in this work a surrogate-based method for calibrating
Hall thruster anomalous transport model parameters which makes use of information from both low-fidelity and
high-fidelity codes. The overarching goal is to be able to improve model fidelity while increasing the speed of
calibration. To this end, this paper is organized in the following way. In Sec. II, we describe data-driven modeling of
anomalous transport and describe possible approaches for optimizing such models. In Sec. III, we outline our proposed
methodology and describe how we map the results of the low-fidelity simulations onto a global model of the high-fidelity
simulation output. In Sec. IV, we then illustrate the utility of our approach for Hall thruster applications by performing
a proof-of-concept study in which we infer the parameters of a simple three-parameter Bohm-like anomalous transport
model. simulations[10]. In Sec. V, we discuss the performance of our method relative to other calibration methods.
Lastly, in Sec. VI, we summarize our work and its key conclusions.

II. Data-driven approach to modeling anomalous transport
In Hall thrusters, the electric field which accelerates ions to produce thrust is established across the applied magnetic

field. Neglecting electron inertia and assuming the plasma is strongly magnetized (a4 � l24, where a4 is the electron
collision frequency) the cross-field electron momentum equation reduces to a generalized Ohm’s law of the form:
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In the above expression, 94? is the cross-field electron current density in A/m2, 4 is the fundamental charge,
1�6� 10�19 C, =4 is the plasma density in m�3, �? is the cross-field electron current, and )4+ is the electron temperature
in 4+ . We see that in the magnetized limit 94? scales directly with a4. Experimentally, we observe that the cross-field
electron current is much higher than that predicted when all known classical momentum transfer collisions, such as
electron-ion and electron-neutral, are accounted for in a4[1]. We thus typically include an extra “anomalous" collision
frequency (denoted a�# ) in simulations in order to resolve this discrepancy. This frequency may dominate the combined
classical collision frequency by an order of magnitude or more, depending on the location in the discharge. This
introduces a closure problem, however, as to solve the plasma governing equations we need an expression that ties a�#
back to the state of the plasma.

In order to close the plasma fluid equations, it is necessary to find a form for this anomalous collision frequency, for
which two primary paths have been pursued to date. The first is to assume a spatially dependent form:
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Fig. 1 Example of a spatially-resolved anomalous collision frequency profile, with a reference thruster geometry.

a�# = 5�# „I” l24 � (2)

Here, 5�# „I” is some shape function of the axial coordinate I, andl24 is the electron cyclotron frequency. Physically,
this expression captures the intuition that the transport is non-classical and therefore may be Bohm-like, i.e. with
collision frequency scaling with the cyclotron frequency to a position-dependent degree. Fig. 1 depicts an example of
such a profile and how it is typically applied in simulations.

One common way to do this is to make 5�# a piecewise-continuous function whose shape is tuned by the user in
order to make simulations match experiment. Once the simulation matches available experimental data to a satisfactory
degree, we can then use it as a surrogate measurement of physical properties in regions of the discharge that are difficult
to probe non-perturbatively. This is useful for understanding how the plasma behaves inside of the thruster channel or
near the anode. However, the calibration procedure can be laborious and time-consuming. A recent effort by one of the
authors to calibrate such a profile for a single operating condition of a magnetically shielded Hall thruster[15] took over
three weeks. Additionally, these profiles can be non-unique[10], and in certain regions of the discharge, changing the
anomalous collision frequency by an order of magnitude has little effect on the resulting simulation.

The other approach is to attempt to find physics-based models of the electron transport which can be self-consistently
implemented into Hall thruster simulations. Such models have =D�# as a function of the plasma properties instead of
the axial location. These too often have parameters which may be adjusted to improve the fit with experiment. For the
ensuing discussion, we would like to unify such models into a single framework. To this end, we seek models of the
anomalous collision frequency a�# of the form:

<„a�# � p� r� C� x” = 0 (3)

Here, < is the model, which may in general be an implicit function of a�# ; p = „)4� ui� =4� � � �” represents the state of
the Hall thruster discharge plasma in terms of macroscopic fluid variables, such as the electron temperature )4, the ion
velocity vector ui, and plasma density =4; r represents the spatial coordinate; and C is the time, and x is a vector of
constant model parameters. These parameters are model-dependent and there may be any number of them.

Equation 3 contains both the piecewise profiles discussed above (a special case where < does not depend on p and
C), as well as physics-based models. Many authors have proposed algebraic models where < is an explicit function
of p and x only[11] [12][13], and some have proposed multi-equation models where < is a coupled system of partial
differential equations[16]. In most cases, however, x needs to be tuned to make simulations give decent agreement with
experiment. For piecewise profiles, there can be as few as two constants, or more than twelve, while first-principles
models in the literature typically feature three or less. In the former case, these constants are specific to a single device
or operating regime, while in the latter case, it is hoped that if the model properly captures key aspects of the underlying
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physics, then the parameters will generalize well across thrusters and conditions. In all cases, we need to optimize the x
such that the simulation(s) match experimental results as accurately is possible.

We can frame this more formally as an optimization problem. Let 5 „x j <” be some metric of the difference between
an experimental measurement and the output of a simulation performed using model < and parameters x. For example,
5 may measure the difference in thrust or discharge current between the simulation and experiment, or the residual of
the difference between the spatially-resolved ion velocity curve produced by the code and one obtained in the laboratory
via laser-induced fluorescence. With 5 defined, our optimization problem is:

x2Rd 5 „x j <”�

where 3 is the length of x, the dimension of the optimization problem. For a general function 5 that we seek to minimize,
we would normally employ some sort of gradient-based local optimization, such as gradient descent or Newton’s method
as our first approach. If we do not have access to the gradients of 5 with respect to the parameters x, which is almost
always the case in Hall thruster modeling, then we need to compute them via finite differences. If x 2 R3 , then the cost
of doing so is proportional to 3. These local search methods also often require additional function evaluations in order
to pick the step size at each optimization iteration. They are quick to converge in terms of the number of iterations, but
they rapidly become impractical as the cost of each function evaluation grows. When 5 is a computer simulation that
may take hours to complete, which is the case for 2D axisymmetric Hall thruster simulations, the cost of such methods
may be prohibitive.

Additionally, local search methods tend to refine the solution to a high degree of accuracy, but in engineering
optimization we are more interested in finding the approximate location of the minimum and seldom interested in
accuracy beyond a couple of decimal digits. Lastly, these methods are local and can thus converge at local minima,
whereas we are interested in finding the globally optimal values of x, i.e. the model parameters that make the simulation
most closely match experiment.

One common way to tackle such problems is via surrogate optimization. Given some initial set of parameters
X = fx1� x2� � � �g and the results of simulations at those parameters Y = fH1� H2� � � �g, where H1 = 5 „x1 j <”, we
construct a surrogate model, which predicts the output of 5 at values of x that we have not yet tried. In contrast to
the original function 5 , the surrogate 5̂ „x” is quick to evaluate and has gradient information available. We can then
optimize the surrogate model instead of the original function. We can also use the surrogate to suggest new values of x
that we should run in our simulation code, and over time find an approximation of the global minimum value of 5 using
as few function evaluations as possible.

III. Methodology

A. Gaussian process regression
One popular approach to constructing a surrogate model is Gaussian process regression (GPR), also known as

Kriging. Let 5̂ „x” be an approximation of 5 „x”. If 5̂ is a Gaussian process, that means that it is characterized by both a
mean prediction ‘„x” and a covariance function or kernel : „x� x0” for all values of x. This is a key feature, as it not only
allows us to predict the value of our computationally expensive function at an untested point, but also estimate our
uncertainty in our prediction at that point. There are many choices of covariance kernel, but in general the covariance
between two points falls off as the distance between them increases. One popular choice, and the one we employ in this
work, is the squared-exponential kernel:

: „x� x0” = f2 exp
�

1
2�
j jx � x0 j j22

�
�

Here, f and � are hyperparameters which reflect how far the function strays from its mean and how smooth the
function is, respectively. These are then optimized via cross-validation or maximum-likelihood estimation[17] in order
to obtain the final surrogate model.

1. Multi-fidelity surrogates
Suppose now that we have two codes available, a low-fidelity code and a high-fidelity code. We denote the result of

the low-fidelity code as 5!� „x” and the result of the high-fidelity code as 5�� „x”. We wish to use the low-fidelity code
to predict the response of the high-fidelity code to changes in x, in order to reduce the number of times we need to run
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