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We present a numerical method for simulating neutral xenon absorption spectra from diode-laser
spectroscopy of the Zeeman-split 6S��1 /2�→6P��1 /2� line at 834.682 nm-air in a galvatron’s
plasma. To simulate the spectrum, we apply a Voigt profile to a spectrum of �-transition lines of
even- and odd-numbered isotopes computed from anomalous Zeeman and nonlinear Zeeman
hyperfine structure theories, respectively. Simulated spectra agree well with Zeeman-split spectra
measured from 30 to 300 G. A commercial nonlinear least-squares solver �LSQNONLIN� returns
field strengths and translational plasma kinetic temperatures that minimize the error between
simulated and experimental spectra. This work is a preamble to computing magnetic field topology
and the speed distribution of neutral xenon particles in the plume of a Hall thruster from diode
laser-induced fluorescence. © 2008 American Institute of Physics. �DOI: 10.1063/1.2955761�

I. INTRODUCTION

Understanding the interaction between circuit-induced
magnetic fields and plasma discharges in Hall thrusters is
key to improving lifetime and performance.1,2 Studies of the
magnetic field topology in the plumes of such thrusters have
thus far relied on software-based modeling and physical
probe-based measurements. Both these methods have limited
field-mapping capabilities. In the former, magnetic fields are
modeled in the vacuum environment of a “cold” thruster in
which only coil currents generate the magnetic field. When
combined with Hall or B-dot probing, vacuum field simula-
tions do, to a certain extent, render possible the determina-
tion of Hall and beam current effects on the vacuum mag-
netic field. However, physical probe measurements are
inherently intrusive. Perturbations from physical probe inser-
tion include Hall current blockage, secondary electron emis-
sion, and sputtering of exposed metals and ceramics.1,3

Probe-size reduction �often to sub-millimeter magnitudes� is
typically the main recourse to reducing intrusiveness; this,
however, comes at the expense of higher sensitivity to fail-
ure.

Laser-induced fluorescence �LIF� is growing increas-
ingly popular as a reliable diagnostic tool for measuring ion
and neutral velocity distributions in thruster discharges and
plumes. The nonintrusive nature of this optical technique
also makes it attractive for sketching the magnetic field to-
pology in thruster discharges through spectral analysis.
When subject to the external effect of field-generating
thruster-magnets, energy levels of plasma-discharge particles
split, thereby affecting LIF spectra. In this work, we apply an
exact nonlinear model to study the Zeeman effect of the hy-
perfine structure of neutral xenon �Xe I� by simulating the
effect of an external magnetic field on absorption spectra as
Xe I particles are excited by a near infrared diode-laser beam
polarized perpendicularly with respect to the field direction.

In anticipation of Hall thruster LIF data exhibiting Zeeman
splitting, we limit this preliminary work to optogalvanic
spectra as the galvatron is immersed in the magnetic field of
a Helmholtz coil. Successful spectral data fitting of the
model prompted the development of a magnetic field inten-
sity and kinetic temperature solver, which we validate in this
work using optogalvanic spectra measurements at various
field intensity levels spanning 30 to 300 G—a practical in-
tensity range reflecting field magnitudes in Hall thrusters.1,3

II. THE ANOMALOUS ZEEMAN EFFECT

We start our theoretical introduction with the simplest
Zeeman effect described by the anomalous Zeeman theory.4

This theory applies to atoms that possess no nuclear spin and
are subject to an external magnetic field of strength H. Based
on the vector model, the application of such a field leads to a
precession of an outer-electron’s resultant momentum vector

�J�� about the field direction �H� �. The angle between J� and H�

only assumes discrete values. To each possible orientation of

J� is associated a specific magnetic moment �J proportional
to a quantum number MJ, whose possible values obey the
rules

− J � MJ � J with �MJ = 0, � 1. �2.1�

This quantization of the magnetic moment leads to quantized
MJ levels symmetrically distributed about each parent J
level. Possible energy displacements about some parent J
level for each MJ are given by

�E = gJMJH . �2.2�

When light—of a polarization vector oriented perpendicular

or parallel to H� —excites an atom at some energy level MJ,
there is a finite probability that it transits to a different energy
level. The transition probability from a parent J level to a
parent J+1 level �termed J→J+1� is given by the following
formulas5 for radiation of circular polarization:a�Electronic mail: bbahn@umich.edu.
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IMJ→MJ−1 = K�J − MJ + 1��J − MJ + 2� , �2.3a�

IMJ→MJ+1 = K�J + MJ + 1��J + MJ + 2� , �2.3b�

where K is an arbitrary normalization factor and all quantum
numbers are associated with upper �initial� states.

III. THE ZEEMAN EFFECT OF HYPERFINE
STRUCTURE

The Zeeman effect on species whose nuclear spin is
nonzero—hence exhibiting hyperfine structure—is more
complex due to coupled interactions of the magnetic field
with momenta associated with the nucleus and an outer-
electron. A matrix-based nonlinear theory6 developed by
Sommerfeld, Heisenberg, Landé, and Pauli in the 1930s ac-
curately models the Zeeman effect on a spinning spherical
body orbiting another spinning body, which induces a central
force-field while an external magnetic field acts upon the
overall system. A relatively simpler formulation of the theory
can be found from Darwin’s analysis of the problem based
on wave mechanics.6,7 In that decade, Bacher8 applied the
theory to thallium and bismuth lines in the 300–500 nm
range and validated it to good approximation against ob-
served spectra. Though useful, the theory has been, for the
most part, ignored among the engineering community; this
may be due to the complex nature of computations
involved—especially when applied to elements with high
momentum quantum numbers. As a recourse, a common
trend has been to use approximate methods suited for low
and high magnetic field strengths; low-field linear Zeeman
and high-field Paschen-Back models are two such examples.

However, with modern advances in computing capabili-
ties, the nonlinear Zeeman effect of hyperfine structure
�ZHFS� has grown increasingly attractive for modeling spec-
tra. As a preamble to describing the nonlinear ZHFS theory,
we begin with a brief introduction of approximate models.

A. Linear Zeeman theories of hyperfine structure in
weak- and strong-field strength regimes

Low- and high-field approximations of the Zeeman ef-
fect of hyperfine structure are linear theories, more thor-
oughly discussed by Haken et al.4 and Sobelman.5 In the
present work, we only report essentials of the theories
needed for a basic understanding and implementation of the
nonlinear ZHFS. The weak-field Zeeman theory of hyperfine
structure is applicable when the mean separation of energy
levels due to hyperfine structure alone ��Ehfs as H→0� is
much larger than their mean splitting arising from the Zee-
man effect �Emag. In the vector representation, the model

predicts a precession of the resultant angular momentum �F�

resulting from IJ coupling� of an atom about H� . This preces-
sive motion �which only occurs at discrete angles� leads to a
quantized magnetic moment �M proportional to a quantum
number M. The following selection rules dictate permissible
values of F and M, respectively:

�I − J� � F � I + J with �F = 0, � 1, �3.1�

− F � M � F with �M = 0, � 1. �3.2�

Energy displacements about some parent F level due to an
external field of strength H are given by

�E = �MH = �gF�BM�H , �3.3�

where the Landé factor, gF, linearly depends on electronic
and nuclear Landé g-factors, gJ and gI, respectively, as ex-
pressed below:

gF = gJ
F�F + 1� + J�J + 1� − I�I + 1�

2F�F + 1�

− gI

��N

�B
��F�F + 1� − J�J + 1� + I�I + 1��

2 F
F1+1

. �3.4�

In Eq. �3.4�, �B and �N respectively stand for Bohr magne-
ton and nuclear magnetic moment.

In the weak-field approximation, intensities of transition
lines arising from circularly polarized exciting radiation are
of the same form as those given in anomalous Zeeman
theory �2.3�; these are found by replacing J by F and MJ by
M based on Sobelman’s argument that F components split in
a similar fashion as the splitting of J components in a weak
field.5

In the strong-field limit4,8 ��Emag��Ehfs�, the Paschen-
Back effect of hyperfine structure applies. In this case, H is

so large as to decouple the interaction between I� and J� ,
leading to independent precessions of the latter vectors about

H� . The precessions lead to separate quantized magnetic mo-
ments �MJ

and �MI
respectively proportional to moment

quantum numbers MJ and MI, whose selection rules are re-
spectively given in Eq. �2.1� and by

− I � MI � I with �MI = 0, � 1. �3.5�

B. Nonlinear Zeeman effect of hyperfine
structure

The nonlinear theory of the Zeeman effect of hyperfine
structure is based upon a simple two-particle model. A spin-
ning particle induces a central force field on a spinning
spherical particle in orbit about the former as a magnetic
field externally acts upon the overall system.6,8 The theory is
exact over an arbitrarily broad range of field strengths when
applied to one-electron atoms whose nuclei exert a spheri-
cally symmetric electric potential on electrons. For this
physical model, the system’s wave-function �
=��� ,	 ,� ,r ,
 ,�� is separable into respective nuclear and
outer-electron components ��N=�N�� ,	 ,��� and ��E

=�E�r ,
 ,���, each described in independent Eulerian polar
coordinate systems.8 Under these assumptions, the time-
independent Schrödinger wave-equation assumes the form9

�VKE + VE + VLS + VIJ + VH + VH2�� = E� , �3.6�

where the left-hand side of the equation consists of a Hamil-
tonian operator, which acts on the wave-function and ac-
counts for
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• kinetic energy �VKE�, Coulomb interaction �VE�, and
electronic spin-to-angular momentum interactions
�VLS� responsible for fine structure;

• nuclear spin and outer-electron’s resultant angular mo-
mentum interactions �VIJ� responsible for hyperfine
structure; and

• independent and coupled interactions of I� and J� with

H� responsible for linear �through VH� and nonlinear
�through VH2� Zeeman effects of hyperfine structure.

Solving Eq. �3.6� results in the following exact solution:8

�MJ,MI��,	,�,r,
,��

= �
MJ,MI

XMJ,MI
�E

MJ�r,
,���N
MI��,	,�� , �3.7�

in which the separate electron and nuclear wave-functions
take on the respective forms

�E
MJ�r,
,�� = f�r�PJ

MJ�cos 
�eiMJ�, �3.8a�

�N
MI��,	,�� = PI

MI�cos 	�ei�MI�+���. �3.8b�

Substitution of Eqs. �3.8a� and �3.8b� into Eq. �3.7�, then into
the Schrödinger Eq. �3.6�, and integration over the space
enclosing outer-electron and nucleus subspaces leads to the
following characteristic Eq. �3.9� relating each energy level
to a set of up to three nonzero probability amplitudes �X�
associated with each quantum state:

− �a

2
�J − MJ + 1��I + MI + 1��XMJ−1,MI+1

− �a

2
�J + MJ + 1��I − MI + 1��XMJ+1,MI−1

+ �EMJ,MI
− aMJMI − �MJgJ + MIgI�oH�XMJ,MI

= 0.

�3.9�

In the above characteristic equation, H denotes the magnetic
field strength; o=e / �4mc2� is the Larmor precession fre-
quency; gJ and gI denote Landé g-factors respectively asso-
ciated with the outer-electron and the nucleus; a denotes the
hyperfine unit interval; and MJ and MI are moment quantum
numbers associated with precessions of the resultant orbital
momentum of the outer-electron and the spin of the nucleus

about H� . Together with the sum rule �M =MJ+MI�, the se-
lection rules of Eqs. �2.1� and �3.5� yield all permissible sets
�MJ ,MI�. While M is a quantum number in the weak-field
approximation10 �recall Eq. �3.1��, it is not considered as
such in the nonlinear ZHFS model;8 hence, the set �JFMJMI	
is sufficient and necessary to fully describe a quantum state.
To each such set corresponds a single subequation of Eq.
�3.9�. Considering n possible energy states, one can conve-
niently express the characteristic equation in matrix form as

�X�n�n�E�n�n = �C�n�n�X�n�n, �3.10�

where

• �E� is a diagonal square matrix whose diagonal entries
consist of all possible energy displacements about
some parent J level of interest;

• �X� is a square matrix consisting of vectors whose
components form a set of mode shape amplitudes
XMJ,MI

J,F �at most three of which are nonzero� associated
with each state; and

• �C� is a square matrix of factors multiplying each
mode shape amplitude in Eq. �3.9�.

Depending on the polarization of exciting radiation, transi-
tions obey the following rules: �M =0 for parallel polariza-
tion �� and �M = �1 for circular polarization ����. In this
paper, we restrict our interest to the latter type of polarization
for the particular class of J→J−1 transitions, whose inten-
sity formulas read

I =

��
M

XMJ,MI

J,F XMJ�1,MI

J−1,F� �I + MI� ! �I − MI� ! �J + MJ� ! �J − MJ�!�2

NM
J,FNM�1

J−1,F , �3.11�

where upper and lower state normalization constants �NM
J,F

and NM�1
J−1,F, respectively� are found from the formula

NM
J,F = �

M

�XMJ,MI

J,F �2�I + MI� ! �I − MI� ! �J + MJ� ! �J

− MJ� ! . �3.12�

The summations in Eqs. �3.11� and �3.12� are performed over
all possible sets �MJ ,MI�, satisfying the conservation of mo-
mentum condition �or sum rule�: M =MJ+MI. For a better
grasp on the proper implementation of the above intensity
formulas, we recommend the work of Bacher8 and Darwin7

containing several examples worked out in great detail.

IV. MODELING OF THE 834.682 NM-AIR NEUTRAL
XENON „XE I… ABSORPTION SPECTRUM

Since the nine stable isotopes of xenon are atoms of zero
and nonzero nuclear spin, modeling the 834.682 nm absorp-
tion spectrum of Xe I requires a different approach for each
set.

A. Transition line spectra modeling of isotopes with
nonzero nuclear spin

As we noted in Sec. III B, the nonlinear Zeeman theory
was developed for hydrogenlike elements. However, as the
ground state configuration of neutral xenon ��Kr�4d105s25p6�
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suggests, this atom has many electrons. So, before applying
the nonlinear ZHFS model to the two isotopes of nonzero
spin �129Xe and 131Xe�, we first ensure that our approach is
reasonable. The 834.682 nm line of Xe I results from the
interaction of two excited upper and lower states:
5p5�2P1/2�6s and 5p5�2P1/2�6p, respectively. In this transi-
tion, a single electron from the outer 6s subshell assumes a
higher orbital angular momentum state 6p. The term 5p5

means that the outermost subshell of the ground state is va-
cant by one electron �since a filled p-subshell contains six
electrons�. This leaves the atomic system with an inner core:
�Kr�4d105s25p5.11

The electron outside this inner core �termed “outer-
electron”� undergoes LK coupling11 �also termed LS1�. In this
electronic configuration scheme, L accounts for the coupling
of the orbital angular momentum of the core electrons with
that of the outer-electron. The interaction of L with the over-
all spin of core electrons leads to a resultant angular momen-
tum K. In turn, the interaction of K and the spin of the outer-
electron �S� results in an effective resultant momentum
quantum number, J, associated with the outer-electron. The
nomenclature in LK coupling is of the form 2S+1�K�J, which
is analogous to the naming convention of hydrogenlike at-
oms: nl2LJ.

11 This analogy makes it reasonable to approxi-
mate our multi-electron atomic system as a hypothetical one-
electron atomic system of orbital angular momentum K,
multiplicity 2S+1, and resultant angular momentum J.

Next, we verify the validity of the spherically symmetric
nuclear field assumption for the 6S��1 /2�1→6P��3 /2�1
transition of Xe I. Aside from the main coulomb potential
associated with all nuclei, there may be a differential elec-
trostatic potential associated with nuclei of asymmetric
structure.12 This asymmetry leads to a variation of the gradi-
ent of the electric potential across the nucleus’ volume,
which, in turn, induces an electric quadrupole interaction
moment Q. Positive and negative values of Q correspond to
prolate �“cigarlike”� and oblate �“disklike”� structures of the
nucleus, respectively. The effect of this interaction on each
hyperfine structure line component is a specific shift propor-
tional to an electric quadrupole interaction constant B given
by

B =
e2

4�0
qJQ , �4.1�

where the quantity qJ linearly depends on the electric field
gradient. All nuclei of Xe I isotopes are symmetric except
that of 131Xe with a prolate structure �Q�0�. Suzuki13 pro-

vides upper- and lower-state B values for the latter isotope.
When accounted for, this parameter induces shifts of hyper-
fine line components smaller than 5% based on transition
energy formulas given by Svanberg12—who also reports
transition intensity formulas. This is illustrated in Fig. 1�a�,
which compares 131Xe cold spectra for B=0 and B�0. Fur-
thermore, these deviations are much less noticeable on the
combined cold spectra of all isotopes �refer to Fig. 1�b��.
These facts validate the spherically symmetric potential as-

TABLE I. 129Xe upper state’s �6S��1 /2�1� energy levels along with corresponding unnormalized mode-shape
amplitudes.

Mode-shape amplitudes
State Energy �GHz� X1,1/2

1,3/2 X0,1/2
1,3/2 X1,−1/2

1,1/2 X−1,1/2
1,3/2 X0,−1/2

1,1/2 X−1,−1/2
1,3/2

�1 3
21 1

2 	 −2.32 1 - - - - -

�1 3
20 1

2 	 −2.72 - −1 0.936 - - -

�1 1
21− 1

2 	 6.20 - −0.468 −1 - - -

�1 3
2 −1 1

2 	 −3.11 - - - 0.535 0.934 -

�1 1
20− 1

2 	 5.42 - - - 1 −1 -

�1 3
2 −1− 1

2 	 −3.49 - - - - - 1

FIG. 1. �Color online� Illustration of the negligible effect of the electric
quadrupole interaction on the spectrum of Xe I. �a� Effect on 131Xe spectrum
�isotope shift not accounted for�. �b� Effect on combination of all isotopes’
spectra �isotope shifts accounted for�.
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sumption necessary for the application of the nonlinear
ZHFS theory in modeling the Zeeman effect of the
6S��1 /2�1→6P��3 /2�1 line of Xe I.

The application of the ZHFS theory to the 6S��1 /2�
→6P��3 /2� transition of neutral isotopes 129Xe �nuclear spin
1/2� and 131Xe �nuclear spin 3/2� �Ref. 14� begins with the
determination of lower and upper energy levels and mode-
shape amplitudes based on characteristic Eq. �3.9�. The for-
tunate fact that all physical parameters associated with the
two isotopes are known for this transition renders any nu-
merical evaluation of Eq. �3.9� trivial. Electronic Landé fac-
tors, gJ, are given by Saloman.15 Nuclear Landé factors, gI,
can be deduced for each isotope from nuclear moments, �N,
reported by Emsley16 based on the relationship gl= ��N / I�
��me /mp�.4 Upper and lower level hyperfine constants a are

listed in Refs. 13 and 17.
As a practical illustration of the determination of energy

levels from nonlinear ZHFS theory, we consider the simpler
case of 6S��1 /2�1 of 129Xe for which J=1.18 Starting with
selection rules �3.1�, �2.1�, and �3.5�, we find

F =
1

2
,
3

2
; MJ = 0, � 1; and MI = �

1

2
.

Next, we find all permissible combinations of MJ and MI

such that M =MJ+MI, where M sums are given by Eq. �3.2�.
The simple process, illustrated below, leads to six possible
states for 6S��1 /2�1:

From the sets �MJ ,MI�, we write the eigenvalue problem19 using Eq. �3.9� in terms of some ith eigenvector associated with
a state �i	; for H=312 G, we express the eigenvalue problem in the following equation:


E�i	�I� − �
− 2.32 0 0 0 0 0

0 − 1.87 � 10−4 − 5.80 0 0 0

0 − 2.90 3.49 0 0 0

0 0 0 2.32 − 2.90 0

0 0 0 − 5.80 1.87 � 10−4 0

0 0 0 0 0 − 3.49
��

X1,1/2
1,3/2

X0,1/2
1,3/2

X1,−1/2
1,1/2

X−1,1/2
1,3/2

X0,−1/2
1,1/2

X−1,−1/2
1,3/2

� = �0� . �4.2�

TABLE II. 129Xe lower state’s �6P��3 /2�1� energy levels.

State �2 5
22 1

2 	 �2 5
21 1

2 	 �2 3
22− 1

2 	 �2 5
20 1

2 	 �2 3
21− 1

2 	 �2 5
2 −1 1

2 	 �2 3
20− 1

2 	 �2 5
2 −2 1

2 	 �2 3
2 −1− 1

2 	 �2 5
2 −2− 1

2 	
Label �1	 �2	 �3	 �4	 �5	 �6	 �7	 �8	 �9	 �10	

Energy �GHz� �1.84 �2.27 �5.29 �2.69 4.67 �3.11 4.04 �3.53 3.40 �3.95

TABLE III. 131Xe upper state’s �6S��1 /2�1� energy levels.

State �1 5
21 3

2 	 �1 5
20 3

2 	 �1 3
21 1

2 	 �1 3
20 1

2 	 �1 3
20 1

2 	 �1 1
21− 1

2 	 �1 5
2 −1 1

2 	 �1 3
20− 1

2 	 �1 1
21− 3

2 	 �1 5
2 −1− 1

2 	 �1 3
20− 3

2 	 �1 5
2 −1− 3

2 	
Label �1	 �2	 �3	 �4	 �5	 �6	 �7	 �8	 �9	 �10	 �11	 �12	

Energy �GHz� 3.16 �1.50 2.94 �4.56 �1.60 2.72 �4.18 �1.75 2.49 �1.97 2.25 1.99
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The resulting eigenvalues �energy levels� and eigenvectors
�mode shape amplitudes� are reported in Table I. For the
lower state �6P��3 /2�1�, the eigenvalue problem is more
complex in that the square coefficient matrix is ten-
dimensional; the resulting energy levels are listed in Table II.
The degree of complexity increases for 131Xe due to a higher
nuclear spin for this isotope �I=3 /2�. The resulting 12 upper-
states and 20 lower-states associated with the latter isotope
are reported in Tables III and IV, respectively.

The next step in modeling the full spectrum consists of
determining all allowed transitions and corresponding nor-
malized line strengths associated with isotopes 129Xe and
131Xe based on transition rules and intensity and normaliza-
tion formulas in Eqs. �3.11� and �3.12�,20 respectively. Table
V illustrates details of the calculation of line intensities for
the eleven M→M −1 transitions of 129Xe at H=312 G; ex-
pressions of unnormalized intensities20 �numerator of Eq.
�3.11�� and normalization factors from Eq. �3.12� are listed
therein in terms of mode shape amplitudes. The resulting
normalized intensities are also listed along with correspond-
ing transition energies. The complete � line spectra of the
two isotopes are reported in Figs. 2 and 3.

Next, we account for the relative frequency shifts13 and
natural abundances14 associated with each isotope. Each set
of line components associated with each isotope undergoes a
particular shift arising from two effects: a mass effect due to
differences in the number of neutrons and a volume effect
due to differences in the charge distribution of protons.14,21

This isotope shift is wavelength dependent. For the 834.682
nm line of Xe I �6S��1 /2�1→6P��3 /2�1�, Suzuki et al.13

provide all isotope shifts; their study also reports shifts asso-
ciated with several other lines in the 820.6 to 904.5 nm-air
range. Additionally, xenon isotopes vary in their relative
natural abundances.14 We account for this effect by normal-
izing each set of isotope lines by unity prior to scaling them
by natural abundance. Figure 4 illustrates frequency shifting
of �− lines of 129Xe and 131Xe. For the sake of completeness,
we also report the full �+ spectrum of the two isotopes in
Fig. 5.

B. Transition line spectra modeling of isotopes with
zero nuclear spin

For the treatment of the remaining seven even-mass iso-
topes �124Xe,126Xe,128Xe,130Xe,132Xe,134Xe, and 136Xe with
I=0�, we use the simpler anomalous Zeeman theory. Once all
possible MJ values are generated from Eq. �2.1�, transition
energies are determined from Eq. �2.2�; owing to the depen-
dence of energy displacements on H and MJ alone, line com-
ponents of all these isotopes have equal transition energies.
Intensity formulas given in Eq. �2.3� are applied prior to
isotope shifting13 and scaling14 of the lines plotted in Fig. 6;
this latter step is identical to the treatment of 129Xe and 131Xe
outlined at the end of Sec. IV A.

C. Natural and Doppler broadening of line spectra

Lastly, we apply a Voigt profile4 to the overall spectrum
combining line components associated with each isotope. It
suffices, here, to briefly describe such a profile as the productTA
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TABLE V. Illustration of the calculation of transition intensities based on �− components of the 6S��1 /2�1→6P��3 /2�1 line of Xe I when H=312 G.

Transition Energy �GHz� IN I NM
J,F

NM�
J+1,F�

�1 �4	 �0.374 2 �4X1,1/2
1,3/2Y0,1/2

2,5/2�2 2�X1,1/2
1,3/2�2 4�Y0,1/2

2,5/2�2

�1 �5	 6.99 2 �4X1,1/2
1,3/2Y0,1/2

2,3/2�2 2�X1,1/2
1,3/2�2 4�Y0,1/2

2,3/2�2

�2 �6	 �0.398 3.74 �6X0,1/2
1,3/2Y−1,1/2

2,5/2 +4X1,−1/2
1,3/2 Y0,−1/2

2,5/2 �2 �X0,1/2
1,3/2�2+2�X1,−1/2

1,3/2 �2 6�Y−1,1/2
2,5/2 �2+4�Y0,−1/2

2,5/2 �2

�2 �7	 6.75 1.04 �6X0,1/2
1,3/2Y−1,1/2

2,3/2 +4X1,−1/2
1,3/2 Y0,−1/2

2,3/2 �2 �X0,1/2
1,3/2�2+2�X1,−1/2

1,3/2 �2 6�Y−1,1/2
2,3/2 �2+4�Y0,−1/2

2,3/2 �2

�3 �6	 �9.32 3.77�10−5 �6X0,1/2
1,1/2Y−1,1/2

2,5/2 +4X1,−1/2
1,1/2 Y0,−1/2

2,5/2 �2 �X0,1/2
1,1/2�2+2�X1,−1/2

1,1/2 �2 6�Y−1,1/2
2,5/2 �2+4�Y0,−1/2

2,5/2 �2

�3 �7	 �2.17 3.22 �6X0,1/2
1,1/2Y−1,1/2

2,3/2 +4X1,−1/2
1,1/2 Y0,−1/2

2,3/2 �2 �X0,1/2
1,1/2�2+2�X1,−1/2

1,1/2 �2 6�Y−1,1/2
2,3/2 �2+4�Y0,−1/2

2,3/2 �2

�4 �8	 �0.426 7.35 �24X−1,1/2
1,3/2 Y−2,1/2

2,5/2 +6X0,−1/2
1,3/2 Y−1,−1/2

2,5/2 �2 2�X−1,1/2
1,3/2 �2+ �X0,−1/2

1,3/2 �2 24�Y−2,1/2
2,5/2 �2+6�Y−1,−1/2

2,5/2 �2

�4 �9	 6.51 0.836 �24X−1,1/2
1,3/2 Y−2,1/2

2,3/2 +6X0,−1/2
1,3/2 Y−1,−1/2

2,3/2 �2 2�X−1,1/2
1,3/2 �2+ �X0,−1/2

1,3/2 �2 24�Y−2,1/2
2,3/2 �2+6�Y−1,−1/2

2,3/2 �2

�5 �8	 �8.96 7.27�10−5 �24X−1,1/2
1,1/2 Y−2,1/2

2,5/2 +6X0,−1/2
1,1/2 Y−1,−1/2

2,5/2 �2 2�X−1,1/2
1,1/2 �2+ �X0,−1/2

1,1/2 �2 24�Y−2,1/2
2,5/2 �2+6�Y−1,−1/2

2,5/2 �2

�5 �9	 �2.02 9.82 �24X−1,1/2
1,1/2 Y−2,1/2

2,3/2 +6X0,−1/2
1,1/2 Y−1,−1/2

2,3/2 �2 2�X−1,1/2
1,1/2 �2+ �X0,−1/2

1,1/2 �2 24�Y−2,1/2
2,3/2 �2+6�Y−1,−1/2

2,3/2 �2

�6 �10	 �0.460 12 �24X−1,−1/2
1,3/2 Y−2,−1/2

2,5/2 � 2�X−1,−1/2
1,3/2 �2 24�Y−2,−1/2

2,5/2 �2

FIG. 2. �Color online� �− transition line spectra of 129Xe and 131Xe for an
external field strength of 312 G. For the sake of clarity, annotations are
applied to every other line. �a� 129Xe line spectrum. �b� 129Xe line spectrum.
�c� 131Xe line spectrum. �d� 131Xe line spectrum

FIG. 3. �Color online� �+ transition line spectra of 129Xe and 131Xe for an
external field strength of 312 G. For the sake of clarity, annotations are
applied to every other line. �a� 129Xe line spectrum. �b� 129Xe line spectrum.
�c� 131Xe line spectrum. �d� 131Xe line spectrum.
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of a two-step process.22,23 In the first, a “cold spectrum” is
generated by Lorentz-broadening the lines. This is achieved
through a Lorentz distribution simulating spontaneous emis-
sion of light through a rate ��=Aij / �2�, which represents
the width at half-maximum of the distribution and is propor-
tional to a transition constant Aij, whose value is reported by
Miller et al.24 for the 834.682 nm Xe I line. In the second,
the cold spectrum is convolved with a Doppler distribution to
generate a “warm spectrum” that simulates the absorption
spectrum of Xe I for a particular external magnetic field
strength and plasma kinetic temperature. An illustration of
the broadening process is shown in Fig. 7 in which line, cold,
and warm spectra are overlaid.

V. SOLVING FOR MAGNETIC FIELD STRENGTHS
AND PLASMA KINETIC TEMPERATURES FROM XE I
ABSORPTION SPECTRA

A. Experimental setup for xenon optogalvanic cell
spectroscopy

We used spectral data from a galvatron �also known as
optogalvanic cell� to validate the nonlinear ZHFS model and
used a commercial least-squares solver, LSQNONLIN,25 in
computing magnetic field strengths and kinetic temperatures.

Smith et al.26 describe the experiment in detail. The galva-
tron consists of a glass tube filled with xenon and neon �non-
reacting filler�. It encloses two electrodes for plasma break-
down with 250 V potential difference applied between them.
When the plasma is excited by a light source tuned to a
particular transition’s wavelength, the discharge current var-
ies proportionally with the radiative absorption intensity of
the plasma.

The light source consists of a tunable single-mode diode-
laser centered at 834.682 nm with a 10 GHz mode-hop-free
frequency detuning range. A 2 GHz free-spectral-range
�FSR� Fabry-Perot interferometer ensures high-resolution
measurements of the detuning. A pair of Helmholtz coils, on
either side of the galvatron, produce field lines perpendicular
to the galvatron’s axis and of maximum intensity at its cen-
ter. To excite �-transitions, the polarization vector of the la-
ser beam is rotated until perpendicular to the magnetic field
direction inside the galvatron. A lock-in amplifier operating
with a time-constant of 300 ms reads discharge current varia-
tions, relays them to a PC, and controls the voltage of the
laser’s piezoelectric tuning element.

FIG. 4. �Color online� �− transition line strengths of 129Xe and 131Xe for an
external field strength of 312 G. The figure further illustrates the frequency
shift associated with each isotope �unshifted lines are dashed�.

FIG. 5. �Color online� �+ transition line strengths of 129Xe and 131Xe �iso-
tope shifts are accounted for�.

FIG. 6. �Color online� Line spectrum of xenon isotopes with no nuclear
spin.

FIG. 7. �Color online� Voigt profile generation from the spectrum of transi-
tion lines. The normalized cold and warm spectra shown are based on Lor-
entz and Doppler broadenings of transition lines. The external field strength
is 312 G in this plot. As shown, normalized line intensities were amplified
by a factor of 20 for the sake of illustration.
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FIG. 8. Variation of transition energies of 131Xe with magnetic field
strength.

FIG. 9. �Color online� Surface plot illustrating a smooth variation of cold
spectra with magnetic field strength.

FIG. 10. �Color online� Least-squares fitting of neutral xenon absorption spectra at 834.682 nm in an optogalvanic cell at various external magnetic field
strength settings. The fitting is based on optimal magnetic field strength and plasma kinetic temperature outputted by Matlab’s LSQNONLIN solver. �a� 30 G
external field strength setting. �b� 120 G external field strength setting. �c� 210 G external field strength setting. �d� 270 G external field strength setting.
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The experiment was conducted at ten field strength set-
tings within an interval spanning 30 to 300 G in 30 G incre-
ments. A Hall-effect probe placed 3 cm above the galvatron’s
symmetry axis, coinciding with its interrogation volume,
confirmed the settings. According to the probe’s calibration
runs, this translated to 1% higher “center-field strengths”
along the symmetry axis.

B. Continuity of transition energies and smooth
distribution of absorption spectra

Successful application of LSQNONLIN requires a
smooth and continuous input error function. A study of the
evolution of energy levels with magnetic field strength con-
firmed their continuity. With machine tolerance being the
only constraint, we found the range of magnetic field
strengths recoverable with this technique to extend from 0.01
to 50 000 G; we stress, however, that the nonlinear ZHFS
model is theoretically applicable to an arbitrarily wide range
of field strengths. Figure 8 illustrates continuous variations
of transition energies from 0.01 to 1000 G for 131Xe. Energy

level continuity led to a smooth evolution of Xe I cold spec-
tra with magnetic field strength as revealed by the surface
plot of Fig. 9.

C. Computing magnetic field strengths and plasma
kinetic temperature from optogalvanic spectra

Prior to applying LSQNONLIN to solve for external
field strength on the plasma and kinetic temperature, we first
set out to find what “target” magnetic field strengths and
kinetic temperatures and “optimal” physical parameters best
model the 834.682 nm absorption line; these variables were
simultaneously solved for. To account for any potential con-
tamination of the external magnetic field by devices sur-
rounding the galvatron �such as the Fabry-Perot interferom-
eter� and the plasma-induced magnetic field as well as any
possible errors associated with Hall probe measurements, we
solved for effective �target� field strengths felt by xenon neu-
trals at the various experimental settings. Center-field
strength values were used as starting guesses and error

FIG. 11. �Color online� Comparison of solver solutions with target values,
center-field values �applicable to field strength solutions only�, and initial
guesses. �a� External magnetic field strength solutions. �b� Plasma kinetic
temperature solutions.

FIG. 12. Effect of signal-to-noise ratio �SNR� on the calculation of external
magnetic field strength �H� and plasma kinetic temperature �T� based on
nonlinear least-squares fitting of neutral xenon absorption spectra at 834.682
nm-air. Gaussian noise was added to experimental absorption spectra. �a�
Effect of SNR on H convergence. �b� Effect of SNR on T convergence.
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bounds were set arbitrarily wide at �100% about them. As
for target temperatures, they were computed based on a start-
ing guess of 700 K and an error bound interval of 300 K. We
inferred this width by correlating our galvatron’s discharge
voltage setting with that of a previous optogalvanic study,27

which reported a kinetic temperature of 800 K at a 440 V
discharge voltage setting. Due to uncertainties associated
with physical parameters28 involved in modeling the 834.682
nm line, we also needed to determine what optimal values
would minimize the error, �, between experimental and
simulated spectra within their respective published error
bounds. Published mean values served as initial guesses to
the solver.

Having determined target solutions and optimal physical
parameters, we set out to test the performance of the solver
in recovering field strengths and kinetic temperatures when
initial guesses significantly deviated from center and target
values. As the good fits of optogalvanic spectra plotted in
Fig. 10 imply, LSQNONLIN was successful in simulta-
neously determining the strengths of the external magnetic
field and its kinetic temperature. These reveal convergences

FIG. 13. �Color online� Variation of transition energies of 129Xe and 131Xe
as predicted by weak-field linear and nonlinear theories of the Zeeman effect
of hyperfine structure. �a� Transition energies of 129Xe. �b� Transition ener-
gies of 131Xe.

FIG. 14. �Color online� Comparison of cold spectra as computed by non-
linear and weak-field Zeeman effects of hyperfine structure at 17 G.

FIG. 15. �Color online� Comparison of LSQNONLIN’s solution outputs
based on the weak-field linear and nonlinear theories of the Zeeman effect of
hyperfine structure. �a� External magnetic field strength solutions. �b�
Plasma kinetic temperature solutions.
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to within 10% of target temperatures and field intensities
even when starting guesses deviated by as much as 100%
from expected targets. Values for the starting guesses Ho and
To, solutions H* and T*, and deviations �T and �H are listed
in each plot. The latter two parameters are deviations of so-
lutions from target parameters that indicate the quality of the
convergence; the smaller the deviations, the better the match
between solutions and corresponding targets. Figure 11�a�
provides a complete summary of solutions, target values,
starting guesses, and center-field strengths at all ten experi-
mental settings. As shown in the figure, solutions remain
consistently close to target values at all settings but deviate
from center-field values by as much as 50% below 100 G.

In the event that the level of field contamination from
surrounding devices �such as the Fabry-Perot interferometer�
and errors from Hall-probe calibration were insignificant;
that is, if measured center-field strengths effectively acted
upon xenon species, the previously mentioned mismatch
would suggest a weakness of the spectral model at field set-
tings below 100 G that could be attributed to three reasons.
First, the nonlinear ZHFS model does not account for the
electric quadrupole interaction between nuclei and respective

electron clouds arising from the former particles’ asymmetric
structure12 �recall discussion at the end of Sec. IV A�. Sec-
ond, the magnitudes of the Zeeman splitting of some hyper-
fine energy levels approach our solver’s numerical tolerance
levels as the field strength drops below 100 G. Lastly, Dop-
pler broadening further amplifies the problem by causing a
blurring of line spectra.

Kinetic temperature solutions, on the other hand, re-
mained close to targets independently of the magnetic field
strength. The relatively flat distribution of solutions shown in
Fig. 11�b� illustrates this fact and validates the solver’s reli-
ability in computing plasma kinetic temperature given that
the galvatron’s discharge voltage was kept constant through-
out the data acquisition process.

D. Sensitivity of solver to signal-to-noise ratio „SNR…

Though the above analysis dealt with optogalvanic spec-
tra, the primary purpose of the solver is to resolve magnetic
field strengths and kinetic temperatures from laser-induced
fluorescence spectra �from future work� of electric thruster
discharges. The latter spectra are typically noisier with SNR

TABLE VI. Solution outputs from the application LSQNONLIN to the determination of optimal physical parameters and target magnetic field strengths and
kinetic temperatures based on Xe I absorption spectra about 834.682 nm at ten external magnetic field settings.

Magnetic field strengths �G�

Center 33.19 65.6 99.01 131.9 164.8 197.8 230.8 263.7 296.7 329.7
Optimal 16.59 33.68 49.51 112.1 148.1 174.6 216 240.8 277 315.6

States Isotopes Optimal variables Averages

Galvatron temperatures �K�
450 510.8 563.9 540.9 464.2 450.7 474.3 452.2 453.5 499.1 486

Isotope shifts �MHz� - relative to 136
124 250.3 250.2 250.2 250.2 250.2 250.2 250.2 250.2 250.2 250.2 250.2
126 209.1 209.1 209.1 209.1 209.1 209.1 209.1 209.1 209.1 209.1 209.1
128 167.9 167.9 167.9 167.9 167.9 167.9 167.9 167.9 167.9 167.9 167.9
129 208.7 208.7 208.7 208.7 208.7 208.7 208.7 208.7 208.7 208.7 208.7
130 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4
131 183.6 183.6 183.6 183.6 183.6 183.6 183.6 183.6 183.6 183.6 183.6
132 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9
134 62.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9

Hyperfine constants �MHz�
6S��1 /2�1 129 �5811 �5811 �5786 �5811 �5797 �5786 �5811 �5811 �5811 �5811 �5805

131 �2893 �2899 �2899 �2898 �2899 �2899 �2889 �2899 �2886 �2886 �2895
6P��3 /2�1 129 1718 1718 1718 1718 1718 1718 1718 1718 1718 1718 1718

131 855.8 855.8 855.8 855.8 855.8 855.8 855.8 855.8 855.8 855.8 855.8

Electron Landé g-factors: gJ

6S��1 /2�1 1.321 1.321 1.321 1.321 1.321 1.321 1.321 1.321 1.321 1.321 1.321
6P��3 /2�1 1.189 1.189 1.189 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.19

Nuclear moments: �N

129 �0.7767 �0.7767 �0.7767 �0.7767 �0.7767 �0.7767 �0.7767 �0.7767 �0.7769 �0.7769 �0.7767
131 0.7498 0.7498 0.7498 0.7498 0.7498 0.7498 0.7498 0.7498 0.7498 0.7498 0.7498

Einstein emission coefficient
0.8743 0.8904 0.8904 0.8904 0.8904 0.8904 0.8904 0.8904 0.8904 0.8904 0.8888
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levels less than 100.22 Hence, to further validate the H and T
solver, we studied the effect of noise on convergence. Gauss-
ian noise, at various SNR levels, was added to optogalvanic
spectra. This study revealed little impact of noise on the
quality of convergence for SNR levels above 200. At lower
SNR levels �about 20�, deviations of solutions from expected
target solutions still remained below 50% at all field strength
settings investigated. Figures 12�a� and 12�b� respectively
illustrate the evolution of the temperature and field strength
deviations with decreasing SNR.

VI. NECESSITY OF THE NONLINEAR ZEEMAN
THEORY OF HYPERFINE STRUCTURE FOR XE I LINE
SHAPE MODELING

For the sake of completeness, we compare the perfor-
mance of the nonlinear ZHFS theory with its weak-field lin-
ear counterpart. In our analysis, we pay particular interest to
the range of field strengths investigated �0 to 300 G� by
comparing the variations of transition energies with magnetic
field strength as predicted by the two theories for the two
xenon isotope with nonzero nuclear spins. From Fig. 13�a�,
we find that, for the case of 129Xe with a small nuclear spin,
both theories agree well beyond the upper bound of our
range of interest. But, for the case of 131Xe whose nuclear
spin is higher—implying a more complex hyperfine
structure—Fig. 13�a� reveals a greater nonlinearity of the
variation of transition energies; hence the larger disparities
between the predictions of the two models. The differences
become noticeable from 100 G and intensify from 0.1 GHz
to 1 GHz as the field strength increases from 300 G to 900 G
�see line components centered about �6.5 GHz and �2
GHz, for example�.

The above analysis suggests that the weak-field approxi-
mation is reliable for locating energies of Xe I transition
lines about 834.682 nm provided that the field strength does
not exceed 300 G. Does the same apply to line intensities?
For the sake of clarity, we chose to answer this question
using cold spectra instead of cluttered transition line plots;
from Fig. 14, we note clear differences between cold spectra
modeled from the two theories for an external field setting as
low as 17 G. Furthermore, we tested the performance of a
magnetic field strength solver based on the low-field ap-
proximation; Figs. 15�a� and 15�b� compare the latter solv-
er’s solutions with those reported in Sec. V C. The imple-
mentation of LSQNONLIN based on the linear model
revealed a good match of field strength solutions only below
90 G �see Fig. 15�a��. Above 90 G, the solutions deviate by
as much as 30% from those outputted by the nonlinear ZHFS
solver. Worse, a comparison of plasma kinetic temperature
solutions shown in Fig. 15�b� reveals no match throughout
the range of field strengths investigated. Assuming that the
mean of temperature solutions �on the order of 500 K� ob-
tained from the nonlinear ZHFS theory is accurate, we con-
clude that the weak field theory is not reliable for the predic-
tion of plasma kinetic temperatures from Xe I spectra.

This comparative analysis omits the strong-field linear
approximation since its range of applicability, spanning 10 to
20 KG,9 is far beyond the range investigated in this study.

VII. CONCLUSION

We successfully applied theories of the linear Anoma-
lous Anomalous Zeeman effect and the nonlinear Zeeman
effect of hyperfine structure on even- and odd-mass isotopes,
respectively, to simulate neutral xenon absorption spectra in
the plasma environment of an optogalvanic cell to which an
external magnetic field was applied. The reliability of the
model prompted us to use it as an input function to a non-
linear least-squares solver of external magnetic field
strengths and plasma kinetic temperatures based on optimal
fitting of experimental spectra. We noted good convergence
of the solver in both variables even in the presence of Gauss-
ian noise. The results reported in this study reveal that the
solver is a reliable computational tool for the study of the
interaction between an external magnetic field and a xenon
plasma and the extraction of Maxwellian velocity distribu-
tions of neutral xenon atoms in Hall thruster plumes.
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