
Anti-aliasing Technique for Inferring Dispersion of
Short-wavelength Instabilities in Electric Propulsion Devices

Miron F. Liu∗ and Benjamin A. Jorns†

University of Michigan, Ann Arbor, Michigan, 48105

An anti-aliasing analysis technique for inferring wave dispersion that leverages Bayesian
inference is compared to a standard two-point correlation Beall analysis using toy numerical
data to simulate propagating plasma waves. The theoretical underpinnings of the algorithm
and methodology for generating toy numerical data are presented. Dispersion plots produced
by applying the algorithm to simulated ion acoustic waves underscore its robust anti-aliasing
properties. Results suggest that this technique may be employed to extend the spectral bandwidth
of probe-based plasma wave diagnostics by eliminating aliasing of dispersion data due to the
finite separation of probe elements. This technique thus makes possible the experimental
detection of small length-scale instability modes existing at wavelengths less than 5 mm, such as
the modified two-stream instability, lower hybrid drift instability, and electron cyclotron drift
instability.

I. Introduction

Hall thrusters are widely employed electric propulsion (EP) devices that generate thrust by producing and accelerating
ions in a cross-field plasma [1]. Recent advances in magnetic shielding (MS) have significantly extended the

lifetime of these devices, enabling their use for deep-space applications. However, there remain life-limiting processes
that still pose a risk [2]. In particular, wear testing of MS Hall thrusters has revealed a new erosion phenomenon
characterized by grating and roughening of magnetic pole surfaces [3]. Consequently, with the advent of MS, “pole
erosion” has superseded discharge channel erosion as the primary life-limiting mechanism of these devices.

Recent studies have suggested that this outstanding erosion process may in part be attributed to the onset of plasma
instabilities near the inner front pole [4]. The key suspected drivers are the lower hybrid drift instability (LHDI) and the
modified two-stream instability (MTSI) which can locally heat ions to sufficiently high energies to sputter the poles
[5–7]. However, despite concerted efforts to investigate these instabilities in EP devices, a comprehensive understanding
of the modes - and by extension how they may be quenched - has yet to be achieved. This in large part stems from the
fact that the wavelengths corresponding to the highest growth rate of these waves lie in a “no man’s land” between 1 and
5 mm, which has been prohibitive to access experimentally. Aliasing effects arising from the finite spacing between
wave probe elements impose a lower bound on the wavelengths (≳ 5 mm) that physical probe-based methods can resolve
[8, 9]. In contrast, optical techniques for measuring wave properties, such as Coherent Thompson Scattering (CTS),
have inherent upper bounds in spectral bandwidth (≲ 1 mm) [10, 11]. In light of these outstanding limitations, there is
an apparent need to develop a novel diagnostic technique that allows for an expansion of the resolvable wavelength
regime to enable experimental measurements of these moderate-wavelength modes.

The goal of this work is to demonstrate a novel anti-aliasing technique based on Bayesian inference that addresses
this need. To this end, this paper is structured as follows: in Section II we provide a description of the anti-aliasing
algorithm and an overview of Beall analysis, a conventional wave-probe analysis technique against which we validate
our algorithm. In section III we detail the methodology used to generate numerical toy data we use to benchmark the
two algorithms. In section IV we provide a comparison of the results produced by our anti-aliasing algorithm and Beall
analysis, followed by a discussion of our findings in section V. Finally, in section VI we present a summary of the work
and key conclusions drawn.

II. Analysis Techniques
We detail in this section two analysis techniques for inferring the dispersion of waves measured using two-probe

correlation. The first is an analysis method developed by Beall et al. which yields a histogram of wave dispersion
through the frequentist binning of wavenumber-frequency pairs extracted from data taken at a single probe orientation
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[12]. The second is a novel analysis method that leverages Bayesian inference and uses multiple data sets taken at
various probe orientations (spacings and/or angles) to arrive at a de-aliased probability distribution of dispersion.

A. Beall analysis
The Beall method produces a histogram of wave dispersion by exploiting phase information encoded in the Fourier

transforms of plasma potential fluctuations taken at a pair of spatially separated probes. This technique has been
employed in the context of Hall thrusters such as in the works of Brown et al. and Jorns et al. [8, 13]. To illustrate this
technique, we show in Fig. 1 a notional schematic of the typical two-probe configuration and corresponding spectral
data used to infer wave dispersion.

Fig. 1 Notional diagram of two-probe correlation technique.

As a first step, a pair of ion saturation probes (shown in the lower left in Fig. 1) is inserted into a plasma at two positions,
𝑥 and 𝑦, separated by a distance Δ®𝑥. Electrostatic waves propagating in the plasma will produce phase-separated,
time-varying plasma potential fluctuations, 𝜙(𝑥, 𝑡) and 𝜙(𝑦, 𝑡), where 𝑦 = 𝑥 + Δ®𝑥. Following the formulation given in
[9], the Fourier transforms of these signals, 𝑋 𝑓 and 𝑌 𝑓 , respectively, can be manipulated to extract the phase difference
𝛿Θ 𝑓 of waves and thus solve for the wavenumber (wavenumber is proportional to inverse wavelength) 𝑘Δ ®𝑥 ( 𝑓 ) along the
axis connecting the two probe elements as a function of frequency 𝑓 . The maximum resolvable wavenumber is dictated
by the inter-probe spacing, |𝑘𝑚𝑎𝑥 | ≤ 𝜋/Δ®𝑥:

𝑘Δ ®𝑥 ( 𝑓 ) =
1
Δ®𝑥 𝛿Θ 𝑓 =

1
Δ®𝑥 tan−1

[
I𝑚(𝑌 𝑓 𝑋

∗
𝑓
)

R𝑒(𝑌 𝑓 𝑋
∗
𝑓
)

]
. (1)

The superscript “∗” denotes complex conjugated quantities. As noted in [9], to condition against stochastic noise and
identify the dominant modes of fluctuations, Beall et al. proposed a weighted binning of wavenumber-frequency pairs
obtained from Eqn. 1 given by

𝑆( 𝑓𝑖 , 𝑘 𝑗 ) =
1
𝑀

𝑀∑︁
𝑚=1

𝐼0,Δ𝑘 [𝑘 𝑗 − 𝑘𝑚 ( 𝑓𝑖)]
1
2
[𝑃𝑚

1 ( 𝑓𝑖) + 𝑃𝑚
2 ( 𝑓𝑖)] . (2)

Here the frequency-wavenumber space is divided into 𝑖 × 𝑗 discrete "bins" where the bin width spans a range of
wavenumbers 𝑘 𝑗 + Δ𝑘 and the bin height spans a range of frequencies 𝑓𝑖 + Δ 𝑓 . Δ 𝑓 is determined by the frequency
resolution of data while Δ𝑘 is specified by the user. 𝑀 denotes the total number of spectra collected from 𝑀 pairs of
time-varying fluctuation traces, and 𝑚 denotes the sample index, i.e. the trace number. 𝑃1 and 𝑃2 are the power spectra
of fluctuations measured at 𝑥 and 𝑦, respectively, i.e. 𝑋𝑋∗ and 𝑌𝑌 ∗, and 𝐼0Δ𝑘 is an indicator function governed by

𝐼0Δ𝑘 [𝑥] =
{

1 if |𝑥 | < Δ𝑘

0 otherwise.
(3)
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𝑆( 𝑓𝑖 , 𝑘𝑖) represents the “intensity” value of bin (𝑖, 𝑗) which is proportional to the number of samples that fall within
each bin weighted by the average of the power spectra. In principle, iterating through every sample 𝑚, across every
frequency 𝑖 and wavenumber 𝑗 , and applying the binning method described by Eqns. 2 and 3 we obtain a heat-map of 𝑆
as a function of frequency and wavenumber. Larger values of 𝑆 indicate frequency-wavenumber pairs that are dominant
in the measurement domain.

B. Aliasing of Beall dispersion plots
It is evident from Eqn. 1 that the weakness of Beall analysis lies in the [−𝜋, 𝜋] domain restriction of the arctan

function. This constraint imposes a maximum resolvable wavenumber determined by the spacing of the probe element
where modes with wavenumbers greater than this limit are "phase-wrapped" to fit within the domain. This introduces
the issue of aliasing where modes with sufficiently high wavenumber are subject to phase-wrapping and become
indistinguishable from non-phase-wrapped, low wavenumber modes. Jorns et al. were able to mitigate this in their work
by reconstructing a de-aliased plot given the apparent periodicity of the Beall plot [9]. While this technique is effective
at de-aliasing Beall plots with simple, linear dispersion, as in the case of the aforementioned work, various instabilities
in Hall thrusters exhibit nonlinear dispersion. Additionally, de-aliasing using this technique is most effective when a
single, dominant mode is present. However, depending on the region probed, multiple instabilities may coexist in a
Hall thruster plasma. Overlapping dispersion plots will manifest if none of the modes are sufficiently dominant. This,
coupled with aliasing uncertainty has made it challenging to apply this de-aliasing technique to nonlinear dispersion
measurements in Hall thrusters [14].

C. Bayesian framework
The approach to anti-aliasing presented in this work is predicated on the principle that varying the probe spacing or

probe angle will lead to a unique change in the phase difference measured by a probe pair. This invites the possibility that,
given data taken at a sufficient number of probe geometries, i.e. angle/spacing combinations, we may simultaneously
leverage multiple datasets using Bayesian inference to regress a probability distribution of the true wavenumbers. We
briefly overview the principle of Bayesian inference here.

In the Bayesian paradigm, we treat parameters of interest 𝜃 as a probability distribution. Given data D and a model
G𝑚𝑜𝑑𝑒𝑙 , which relates the parameters 𝜃 to data D, the distribution of parameters conditioned on data, 𝑃(𝜃 |D), i.e. the
posterior distribution, is given by

𝑃(𝜃 |D) = L(D|𝜃)𝑃(𝜃)
𝑃(𝑑) (4)

per Baye’s rule. 𝑃(𝜃) is the prior distribution which represents our belief of what the distribution of 𝜃 is prior to
observing data. L(D|𝜃) is the likelihood distribution which represents the probability of observing the data given that
𝜃 are the true parameters. 𝑃(𝑑) is a normalizing constant computed by marginalizing the likelihood distribution over all
𝜃. This can be interpreted as the marginal probability of observing the data. We note that, for simplicity, the parameters
of interest in this work are the 2D wave vectors of propagating modes, i.e. 𝜃 = (𝑘𝑥1 , 𝑘𝑥2 ), which we can learn from
datasets obtained by varying probe spacings and angles on only one plane. However, this analysis can be extended to
include inference of the wavenumber 𝑘𝑥3 in the third dimension by including data taken from probe geometries along a
third axis.

We first define the data ΔΘ 𝑓 as the average of 𝑀 experimentally measured phase differences 𝛿Θ 𝑓 for a particular
mode with frequency 𝑓 , i.e. ΔΘ 𝑓 = E[𝛿Θ 𝑓 ]. Next, we define our model relating parameters to measured data as

G 𝑓 (𝑘𝑥1 , 𝑘𝑥2 ;Δ®𝑥) = ®𝑘 ( 𝑓 ) · Δ®𝑥 + 𝜉, 𝜉 ∼ N
(
0, 𝜎2

𝛿Θ 𝑓

)
, (5)

where G 𝑓 (𝑘𝑥1 , 𝑘𝑥2 ;Δ®𝑥) can be related to the wave vector ®𝑘 and "probe vector" Δ®𝑥 connecting the probe elements with
respect to a user-defined, common axis. To encode measurement noise and uncertainty, we endow the model with
Gaussian noise 𝜉 distributed with zero mean and variance 𝜎2

𝛿Θ 𝑓
equal to the variance of experimental measurements of

𝛿Θ 𝑓 , i.e. 𝜎2
𝛿Θ 𝑓

= V𝑎𝑟 [𝛿Θ 𝑓 ]. Using this model, the Gaussian likelihood for one probe orientation is given by

L(ΔΘ 𝑓 |𝑘𝑥1 , 𝑘𝑥2 ;Δ®𝑥) =
1

2𝜋𝜎𝛿Θ 𝑓

𝑒𝑥𝑝

(
−1

2
(ΔΘ 𝑓 − G 𝑓 (𝑘𝑥1 , 𝑘𝑥2 ;Δ®𝑥))2

𝜎2
𝛿Θ 𝑓

)
. (6)
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Here G 𝑓 (𝑘𝑥1 , 𝑘𝑥2 ;Δ®𝑥) is the model output for the phase change we expect to observe for a particular probe configuration
Δ®𝑥 given the input parameters (𝑘𝑥1 , 𝑘𝑥2 ) are the true wavenumbers. The likelihood function decreases as the model
outputs deviate from the experimentally observed data and increases as they align more closely. Consequently, the
likelihood function is maximized when the input parameters match the "true" parameters that produced the experimental
data. However, due to aliasing, which results in phase-wrapped data, measurements from a single probe geometry are
insufficient to infer the true wavenumbers. In other words, all ±2𝜋 "harmonics" of the true wavenumber will all equally
maximize the likelihood. In light of this, we modify our likelihood function to incorporate data from a set of 𝑛 probe
geometries [Δ®𝑥1...Δ®𝑥𝑛)], where each probe vector Δ®𝑥 is defined with respect to a common axis,

L 𝑓 (ΔΘ𝑖
𝑓 | (𝑘𝑥1 , 𝑘𝑥2 )); [Δ®𝑥1...Δ®𝑥𝑛]) =

𝑛∏
𝑖=1

1
2𝜋𝜎𝑖

𝑓

𝑒𝑥𝑝

(
−1

2
(ΔΘ𝑖

𝑓
− G𝑖

𝑓
(𝑘𝑥1 , 𝑘𝑥2 ;Δ®𝑥𝑖))2

(𝜎2)𝑖
𝑓

)
. (7)

In lay terms, under the assumption of independently and identically distributed data, we posit that the true wavenumbers
will maximize the product of the likelihoods across all probe geometries. In principle, with sufficient number of small
angle and spacing variations, even if the data is aliased in one direction, the particular combination of ΔΘ 𝑓 associated
with the set of probe geometries will be largely unique to one wave vector. We may then perform a parametric grid
search of wave vectors to obtain the likelihood distribution.

If we elect to employ a uniform prior distribution, the likelihood distribution represents an unnormalized posterior
distribution. If we are purely interested in the most probable regions of wave dispersion relative to other regions on
the domain, as in this case, this unnormalized probability distribution function (PDF) is sufficient; there is no need
to normalize the PDF by computing the evidence. Additionally, we note here that this unnormalized PDF may be
employed in Bayesian Markov Chain Monte Carlo (MCMC) algorithms for approximating the normalized posterior
distribution [15, 16]. To this point, MCMC is a more suitable technique for inferring three-dimensional dispersion as
the computational expense of grid search scales poorly with the number of parameters.

D. Anti-aliasing algorithm
We show in Fig. 2 below an overview of the anti-aliasing data analysis process.

Fig. 2 General procedure for anti-aliasing approach

We begin by obtaining a statistically sufficient 𝑚 number of time-varying probe-pair traces for each of 𝑛 probe
orientations. Next, we divide the frequency domain into 𝐹 frequencies. For each frequency 𝑓 and probe geometry
Δ®𝑥𝑖 , we generate a histogram using 𝑚 samples of 𝛿Θ𝑖

𝑓
from which we extract the mean, ΔΘ𝑖

𝑓
= E[𝛿Θ𝑖, 𝑗

𝑓
], and variance

(𝜎2)𝑖
𝑓
= V𝑎𝑟 [𝛿Θ𝑖, 𝑗

𝑓
]. Here, samples are indexed by the superscript 𝑗 and the probe geometries are indexed by the

superscript 𝑖. Due to phase-wrapping (detailed in the proceeding subsection) careful treatment is required to ensure we
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obtain statistics that are representative of the true distribution. We discuss this in the following section. The likelihood
function incorporates the mean and variance from all 𝑛 histograms corresponding to a given frequency. In this work
we use grid search where, for each frequency index, we sweep the input parameters 𝜃 = 𝑘𝑥1 , 𝑘𝑥2 across a range of
wavenumbers to generate a heat map of the likelihood as a function of 𝑘𝑥1 and 𝑘𝑥2 . For 3D dispersion, MCMC can be
used instead.

E. Extracting histogram statistics
Given the possibility of phase-wrapping, statistics cannot be blindly extracted from histograms of phase data. We

illustrate this with the following, notional example in Fig. 10. Suppose a mode with wavenumber 𝑘 ≊ 𝑘𝑚𝑎𝑥 is aliased
such that the "true" distribution (shown in purple) of phase difference measured by the probe pair is approximately
centered about 𝜋. Given the domain restriction of the arctan function, bispectral analysis will instead produce the
phase-wrapped distribution (orange). It is evident that if we were to blindly extract statistics from this histogram without
accounting for phase-wrapping, we will mistakenly extract a mean phase of approximately 0 and a large variance. This
would be grossly unrepresentative of the true distribution. In light of this, we propose the following algorithm to extract
close estimates of the true histogram statistics.

1) Set the bin width of the histogram (hyperparameter)
2) Take the mode, argmax[ 𝑓 (𝛿Θ)], of the histogram as an estimate for the mean
3) Phase shift the distribution such that argmax[ 𝑓 (𝛿Θ)] is centered about 0 through the following:

a) If argmax[ 𝑓 (𝛿Θ)] > 0
i) subtract argmax[ 𝑓 (𝛿Θ)] from all phases (𝛿Θ) that satisfy 𝛿Θ ≥ argmax[ 𝑓 (𝛿Θ)] − 𝜋

ii) subtract argmax[ 𝑓 (𝛿Θ)] and add 2𝜋 to all phases that satisfy 𝛿Θ < argmax[ 𝑓 (𝛿Θ)] − 𝜋

b) If argmax[ 𝑓 (𝛿Θ)] < 0
i) add −argmax[ 𝑓 (𝛿Θ)] to all phases that satisfy 𝛿Θ ≤ argmax[ 𝑓 (𝛿Θ)] + 𝜋

ii) add −argmax[ 𝑓 (𝛿Θ)] and subtract 2𝜋 from all phases that satisfy 𝛿Θ > argmax[ 𝑓 (𝛿Θ)] + 𝜋

4) Extract the variance 𝜎2 of the phase-shifted histogram (green distribution in Fig. 3)

Given sufficient samples and Gaussian noise, the histogram should converge to a Gaussian, a symmetric distribution.
The mode of the histograms can thus serve as a proxy for the mean. Using this estimate of the mean, we can phase-shift
the distribution such that it is centered about zero per step 3 above. We can then compute the variance of this phase-shifted
distribution (green), which we see the shape of which is now much more representative of the true distribution.

Fig. 3 Comparison of true distribution, phase-wrapped distribution, and distribution used to estimate variance

We show in Tables 1 and 2 a comparison of the estimated statistics with and without conditioning for phase-wrapping.
We see from these results that computing the statistics without accounting for phase-wrapping leads to significant
deviation of the estimated statistics from their true values.
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- Value % Err.
True Mean 3.139 0

Phase-wrapped Mean 0.251 92
Mode (phase-corrected) 3.267 4

Table 1 Comparison of histogram means

- Value % Err.
True Variance 0.478 0

Phase-wrapped variance 2.849 502
Phase-shift corrected variance 0.473 1
Table 2 Comparison of histogram variances

III. Simulation Methodology
We discuss in this section our methodology for generating and extracting statistics from toy data. We first present

the theoretical dispersion of ion acoustic waves which we use to generate simulated spectra associated with these modes.
We then describe how we simulate plasma probes and data collection.

A. Simulating spectra of IAT
The ion acoustic instability is an electrostatic mode that arises spontaneously in plasmas with significant disparities

in ion and electron temperatures or drift velocities [17–19]. The dispersion relation for ion acoustic waves can be
derived from the linear perturbation analysis of the Boltzmann equations for ions and electrons. In light of the fact that
the experimentally observed frequencies at which these waves propagate are lower than the ion plasma frequency [9],
𝜔𝑅𝐸 ≪ 𝜔𝑝𝑖 , the dispersion relation is given by

𝜔𝑅𝐸 = 𝑘𝑐𝑠 + ®𝑘 · ®𝑣𝑖 . (8)

Fig. 4 Linear dispersion used to generate aliased data

The ion sound speed 𝑐𝑠 and ion drift velocity
𝑣𝑖 determine the linear slope of the dispersion
relation, which is also the group velocity 𝑣𝑔 of
the waves. We choose to generate simulated
ion acoustic waves using this dispersion rela-
tion due to its simplicity. We note that, while
experimentally observed measurements of the
group velocity are of order 103 𝑚/𝑠[9, 20],
for the purposes of simulating a highly aliased
data set to compare Beall analysis against our
anti-aliasing algorithm, we set a shallow slope
corresponding to a group velocity of approx-
imately 300 𝑚/𝑠. We show in Fig. 4 the
resulting dispersion relation from which we
can generate this spectra of simulated plasma
waves. We note that we set a default group
velocity of 2042 𝑚/𝑠 for our other results.

B. Simulating wave-probe data collection
Simulated plasma waves are generated per the dispersion relation discussed in the proceeding section for a range of

wavenumbers. For each wavenumber, we simulate a plane wave (Fig. 5a) with frequency 𝑓 determined by the dispersion
relation. We then insert two “virtual” probes (Fig. 5b) into the domain and simulate the contibution to the time-varying
signal that would be collected by the probes as the plane wave propagates (Fig. 5c). We model the total time-varying
signal measured by the probes as

𝜙(𝑥, 𝑡) =
𝐹∑︁
𝑓 =1

𝐴𝑠𝑖𝑛(−𝜔 𝑓 · 𝑡) + 𝜉 (𝑡), 𝜉 ∼ N(0, Γ) (9)

and

𝜙(𝑦, 𝑡) =
𝐹∑︁
𝑓 =1

𝐴𝑠𝑖𝑛( ®𝑘 𝑓 · ®𝑟 − 𝜔 𝑓 · 𝑡) + 𝜉 (𝑡), 𝜉 ∼ N(0, Γ). (10)
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Here A is the amplitude of the wave, which we set to unity. 𝜔 𝑓 is the angular frequency of the wave mode which can be
calculated as ®𝑘 𝑓 · 𝑣𝑔, where 𝑣𝑔 is the group velocity of the waves. As discussed in the proceeding section, we prescribe
the value of 𝑣𝑔 to the dispersion relation in this work. The index 𝑓 denotes the 𝑓 𝑡ℎ wavenumber (corresponding
to frequency 𝑓 ) in our wavenumber range of interest. ®𝑟 = (𝑟𝑥1 , 𝑟𝑥2 ) is the position vector of the probe 𝑦, where
𝑟𝑥1 = Δ𝑥 · 𝑠𝑖𝑛(𝜃𝑝𝑟𝑜𝑏𝑒) and 𝑟𝑥2 = Δ𝑥 · 𝑐𝑜𝑠(𝜃𝑝𝑟𝑜𝑏𝑒) are calculated from the probe spacing, Δ𝑥, and the angle, 𝜃𝑝𝑟𝑜𝑏𝑒,
that Δ®𝑥 makes with respect to the positive 𝑥2 axis. Γ is the variance of the random Gaussian noise. Fig. 5 shows
notionally an example of the simulated data generated by one particular mode 𝑘 𝑓 propagating solely in the 𝑥2 direction
with wavenumber 𝑘 = 1000 [𝑚−1] where the noise variance is set to 0. Fig. 6 shows an example of a possible probe
orientation and the corresponding simulated data generated.

(a) Virtual probes in propagating plane wave

(b) Amplitude along probe axis at time t=0

(c) Time-varying signal measured by probes

Fig. 5 Simulated data from probes aligned with wave vector

(a) Virtual probes in propagating plane wave

(b) Amplitude along probe axis at time t=0

(c) Time-varying signal measured by probes

Fig. 6 Simulated data from probes angled 45◦ with respect to wave vector
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To generate a “realization” of time-varying data for one probe configuration (®𝑟, 𝜃𝑝𝑟𝑜𝑏𝑒), we first prescribe a sampling
duration 𝑇 and sampling time interval Δ𝑡. We then propagate Eqns. 9 and 10, the dynamics, forward in time in
increments of Δ𝑡 up to 𝑇 . At every time step, we sum the wave amplitude of 𝐹 modes, each of which is perturbed by
random Gaussian noise. One realization of data is thus a data vector of length 𝑇/Δ𝑡 where each element corresponds to
the sum of wave amplitudes at each time step. Following the process given in Fig. 2 and Eqns. 9 and 10, we generate 𝑀

realizations of the sum of 𝐹 plane waves spanning a range of wavenumbers, perturbed by Gaussian noise. We show in
Fig. 7 example realizations of data sampled over 2 𝑚𝑠 with Δ𝑡 = 1 𝜇𝑠 and noise variance Γ = 5 (Fig. 7a) and Γ = 50
(Fig. 7b). We can further divide these traces into 𝐿 segments to arrive at an 𝑚 = 𝑀 × 𝐿 effective number of realizations.

(a) Realization of data with Γ = 5 (b) Realization of data with with Γ = 50

Fig. 7 Realization of data with different noise variances

Next, we Fourier transform these realizations and extract the phase data through bispectral analysis following Eqn. 1.
We repeat this process for 𝑛 number of probe geometries. We ultimately arrive at 𝑚 × 𝑛 number of spectra from which
we can extract phase information.

IV. Results
We present in this section results for validating our algorithm. We first show the outcomes of units tests demonstrating

the scaling of the anti-aliasing technique with the number of data sets taken. We then detail the effect of spacing
step-size on the likelihood function. Finally, we provide a comparison across a range of signal-to-noise ratios of the
dispersion histogram produced through conventional two-point correlation Beall analysis with the dispersion probability
distribution produced using the anti-aliasing technique.

A. Probe geometry convergence study
We show in Fig. 8 the effect of various probe spacing and angle combinations on the likelihood function (Eqn. 7).

The plots shown here are each for a single mode with wave vector (𝑘𝑥1 , 𝑘𝑥2 ). We tabulate the particular set of spacings
and angles for each probing combination in this study in Table 3. We also show the corresponding combination of probe
orientations to the right of each plot. For each probe geometry, we generate 100 realizations of simulated spectra with
noise Γ = 0.5. For example, for 5 spacings, a total of 500 realizations are generated, 100 per probe pair. The group
velocity of the waves in this study is set to 2042 𝑚/𝑠. The wave vector of the particular mode interrogated in the plots of
Fig. 8a is (𝑘𝑥1 , 𝑘𝑥2 ) = (0, 120). The wave vector of interest in the plots of Fig. 8b is (𝑘𝑥1 , 𝑘𝑥2 ) = (1060, 1060).

The first plot of Fig. 8a ("1 spacing") illustrates the issue of aliasing encountered in Beall analysis. All ±2𝜋
harmonics of the wavenumber are equally likely. We see from the plots of Fig. 8a that, although increasing the number
of spacings will de-alias the data in one direction, multiple spacings alone are insufficient to identify the 2D wave
vector. This is physically intuitive as probing solely in one direction will only yield information about the wavenumber
along that axis. There remains uncertainty in the wavenumber along the other axis. This is reflected in the likelihood
plots of Fig. 8a where all wavenumbers in the 𝑥1 direction are equally likely. We see from Fig. 8b that combining
spacing variations with angle variations can reveal the full wave vector. As additional data is incorporated from multiple
geometries, the likelihood plot becomes increasingly peaked in the vicinity of the true wave vector.

8

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
on

 J
an

ua
ry

 1
3,

 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
5-

12
93

 



(a) Convergence with spacing only (b) Convergence with both spacing and angles

Fig. 8 Convergence of likelihood plots with various probe geometries
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Plot Spacings (𝑚𝑚) Angles (◦)
1 spacing 4 0
3 spacings 4, 4.5, 5 0
5 spacings 4, 4.5, 5, 5.5, 6 0
10 spacings 4, 4.5,... 8.5 0
9 geometries 4, 4.5, 5 15, 30, 75
15 geometries 4, 4.5, 5, 5.5, 6 15, 60, 105
20 geometries 4, 4.5, 5, 5.5, 6 15, 30, 60, 75
25 geometries 4, 4.5, 5, 5.5, 6 15, 30, 45, 60, 75
Table 3 Convergence study probing geometries

B. Effect of spacing step-size on likelihood distribution
We show in Fig. 9 the effect of smaller step sizes on the outputs of the anti-aliasing algorithm. Here we compare

spacing increments of 0.5 mm and 0.1 mm. We show the particular probe geometries used to the right of each plot. We
generate 100 realizations of simulated spectra for each spacing with noise Γ = 0.5. In this study, the group velocity of
the waves is set to 2042 𝑚/𝑠. The wave vector of the particular mode interrogated in Fig. 9 is (𝑘𝑥1 , 𝑘𝑥2 ) = (0, 1500).

(a) 0.5 mm spacing increments

(b) 0.1 spacing increments

Fig. 9 Effect of spacing step size on likelihood plot

It is evident from this result that, for the same number of probe geometries, finer spacing produces a more highly peaked
likelihood function. This is a physically intuitive result. A finer spacing allows for the evaluation of finer changes in
phase. In this manner, finer spacing increments is analogous to closer inter-probe spacing of probe elements.
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C. Comparison of Beall analysis plots with anti-aliasing likelihood distributions
We show in Fig. 10 the key result of this work were we directly compare the dispersion histogram produced from

Beall analysis with the probability distribution of dispersion produced by our anti-aliasing algorithm across a range of
signal-to-noise ratios (SNR). SNR of simulated data is calculated as

𝑆𝑁𝑅 =
⟨𝑃𝑤𝑎𝑣𝑒⟩
⟨𝑃𝑛𝑜𝑖𝑠𝑒⟩

=
0.5𝐴2

𝑤𝑎𝑣𝑒

Γ
, (11)

the average wave power over the variance of the noise. Given a wave amplitude 𝐴 of unity, we set SNR by changing the
variance of the Gaussian noise parameter. SNR is denoted above each plot. The probe geometries of each technique is
tabulated below in Table 4 and illustrated in the bottom left of each sub plot.

Analysis Technique Spacings (𝑚𝑚) Angles (◦)
Beall method 4 0

Antialiasing algorithm 4, 4.5, 5, 5.5, 6 15, 30, 45, 60, 75
Table 4 Probe geometries used in algorithm comparison

We generated 1000 realizations of simulated spectra for each probe orientation. As discussed in section III, to produce
highly aliased data, the group velocity of the waves is set to 313 𝑚/𝑠. The Beall method only leverages data from one
probe pair. In contrast, the anti-aliasing algorithm leverages 25 datasets from 5 different spacings and angles. We see
from Fig. 10a that the dispersion plot produced from Beall analysis exhibits severe aliasing characterized by multiple
parallel striations. In comparison, the likelihood distribution of dispersion generated using the anti-aliasing algorithm
exhibits no aliasing and correctly reconstructs the wave dispersion across the entire wavenumber range. We see from the
SNR sweep that the robustness of the anti-aliasing algorithm to noise is comparable to that of Beall analysis. With 1000
realizatons of data taken at each probe orientation, the SNR limit of both techniques appears to be around 1:10. At
an SNR of 1:20 both techniques produce plots with no discernible dispersion. We note that the maximum SNR will
increase if more data are taken.

V. Discussion
We discuss in this section some limitations of the validation work and possible future extensions of the validation

effort. We additionally discuss some considerations for experimentally implementing this technique.

A. Limitations of this validation work
While the results presented in the proceedings sections are promising, several limitations in the validation process

warrant discussion. First, the method was validated using a simple linear dispersion relation. Although the technique
should, in principle, be applicable to nonlinear dispersion relations, further validation is required to confirm its viability
in such scenarios. Second, we model plasma waves as unidirectional 2D plane waves. In reality, plasma waves are
inherently three-dimensional. Future validation work will include an extension of this algorithm to three dimensions.

Our plane wave model also assumes that the wave vector of a propagating mode remains constant across all probing
geometries, i.e. the wave vectors are independent of position. This assumption allows us to project all probe vectors
onto the same wave vector for computing phase change. However, the wave vectors of a mode in real EP plasmas may
be spatially dependent even when the wave vector magnitude remains the same. For example, a single ion acoustic
mode propagating outward in a hollow cathode plume could have wave vectors that vary with position. Under such
conditions, the anti-aliasing algorithm could yield inaccurate wave vector reconstructions. To address this issue, we
can probe at sufficiently small spatial increments such that wave vectors can reasonably be assumed to vary negligibly
across probe geometries. In other words, we posit that the waves will appear locally plane-wave-like across sufficiently
small spatial scales. This approach synergizes well with our findings that finer probe spacing/angle adjustments improve
algorithm performance. Alternatively, we can explore methods to incorporate wave vector variability directly into the
Bayesian inference framework.

Finally, due to the computational expense associated with data generation and simulation, we validated this technique
using only 1000 realizations of data per orientation. By contrast, experimental studies employing bispectral analysis
often incorporate thousands or even tens of thousands of realizations. However, we note that increased data generally
decreases the impact of noise. Thus, the algorithm’s effectiveness should only improve given more data.
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(a) Beall plots showing severe aliasing

(b) Anti-aliasing likelihood plots showing no aliasing

Fig. 10 Comparison of dispersion plot produced by analysis techniques at varying SNR
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B. Experimental implementation
Employing this analysis experimentally requires designing a probe array capable of adjusting both the probe spacing

and probe angle in situ. This is comparatively more complex to implement than a simple, fixed probe pair used for Beall
analysis. However, a key advantage of this technique is its ability to potentially mitigate the effects of probe shadow
shielding [20] by utilizing multiple probe orientations. In principle, even if shadow shielding significantly affects one
geometry, the impact may be effectively “averaged out” across other geometries and thus mitigated. Additionally,
since the influence of probe shielding diminishes with increasing inter-probe distances [21], we can collect data at a
larger initial probe spacing. While spacing probe elements farther apart typically reduces the maximum detectable
wavenumber and exacerbates aliasing, our technique inherently corrects for aliasing and thus avoids this associated
penalty.

Given this technique is predicated on achieving particular probe geometries with high accuracy, it is important to
consider the spatial resolution and precision of the motion stages used in the construction of the probe array. If the
positional accuracy is sufficiently low, then probe spacing and angle variability will likely need to be incorporated as
additional parameters in the Bayesian inference framework to rigorously account for this uncertainty. The variability
can be reduced with the use of high-precision stepper motors and encoders.

Lastly, we note that although we have presented this analysis method in the context of physical probes, it can in
principle be extended to optical techniques, provided time-varying plasma density fluctuations at multiple locations in
the plasma can be measured. This can potentially be done through passive high-speed imaging and LIF [22].

VI. Conclusion
In this work, we validated a novel wave analysis technique capable of reconstructing wave dispersion from aliased

data by leveraging multiple data sets through Bayesian inference. Our results show that the performance of the algorithm
improves with greater data availability and finer probe spacing. When compared directly to a conventional two-point
correlation Beall bispectral analysis, the new anti-aliasing multi-point correlation technique successfully reconstructs
dispersion without aliasing. Our finding suggests that this new technique can be leveraged to obtain the first experimental
measurements of small-length-scale fluctuations that have been to date inaccessible to conventional probing techniques
due to aliasing.
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