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Abstract: An inductive pulsed plasma thruster (IPPT) operates by pulsing high current through
an inductor, typically a coil of some type, producing an electromagnetic field that drives current
in a plasma, accelerating it to high speed. The IPPT is electrodeless, with no direct electrical
connection between the externally applied pulsed high-current circuit and the current conducted in
the plasma. Several different configurations were proposed and tested, including those that produce
a plasma consisting of an accelerating current sheet and those that use closed magnetic flux lines to
help confine the plasma during acceleration. Specific impulses up to 7000 s and thrust efficiencies over
50% have been measured. The present state-of-the-art for IPPTs is reviewed, focusing on the operation,
modeling techniques, and major subsystems found in various configurations. Following that review
is documentation of IPPT technology advancement paths that were proposed or considered.

Keywords: inductive pulsed plasma thruster (IPPT); pulsed inductive thruster (PIT); theta pinch;
conical theta pinch; field reversed configuration (FRC); rotating magnetic field (RMF);
circuit modeling; plasma modeling; plasma thruster subsystems

1. Introduction

An inductive pulsed plasma thruster (IPPT) is a spacecraft propulsion system that uses short,
high current electrical pulses flowing through an inductive coil or set of coils to drive currents in
a plasma and expel it at high speed. While there are multiple implementations that can operate in the
manner described, they all share some common features. The electrical energy is typically stored at
high voltage in capacitors before being discharged rapidly through the inductive coil. Switches for the
pulsed circuit are required to hold off voltages of multiple kV during the capacitor charging phase
and then often conduct 10 s of kA of current when discharging. The switches must allow for a very
high current rise rate during pulses that last on the order of 1–10 µs. Coupling between the coils and
the propellant is all accomplished inductively, making these devices electrodeless. This electrodeless
nature eliminates electrode erosion caused by high-rate charge transfer across the material-vacuum
interface found in thrusters with electrodes, where the propellant is in contact with electrodes and
completes the electrical circuit. As such, IPPTs are capable of operation on propellants that could be
corrosive to electrodes in other plasma thrusters.

While the thruster types described in this paper have unique aspects to their operation, at a high
level IPPTs operate through a combination of Ampère’s and Faraday’s laws, given respectively as:
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∇ × B = µ0j (1a)

∇ × E = −∂B
∂t

(1b)

In these equations the electric and magnetic field vectors are E and B, the current density vector is j,
and the permeability of free space is µ0. Using the schematic of Figure 1a for illustrative purposes,
current flowing azimuthally in the coil produces a radial magnetic field through the relationship in
Ampère’s law. A fast time-variation in the current produces an equally rapidly varying magnetic field
that, through Faraday’s law, induces a strong azimuthal electric field. The direction of the electric
field is opposite to the current in the coil, giving rise to a counter-rotating azimuthal plasma current.
The currents in the coil and plasma electromagnetically repel each other, axially accelerating the
current-carrying plasma to yield thrust.

IPPTs must overcome inherent difficulties related to both ionization and acceleration to achieve
high efficiencies [1]. Since the primary (external) circuit is completed without the presence of an
induced (secondary circuit) plasma current, a delay between current initiation in the primary circuit
and ionization of the gas will result in increased resistive energy dissipation in the primary circuit.
In addition, once the secondary plasma current exists, electrodynamic coupling between the two
current loops is a function of the mutual inductance between the two circuits, which decreases quickly
as the separation between the plasma and the external circuit increases. Efficient operation can only be
achieved if a significant fraction of energy transfer to the secondary circuit can be accomplished rapidly,
before the plasma is too distant to effectively couple with the primary circuit. Finally, in addition to
transferring energy to the plasma quickly, an efficient pulse circuit must be capable of performing
significant electromagnetic work on the propellant. The inductance of the circuit increases as a function
of time, and this increase is representative of the amount of electromagnetic work the circuit is capable
of performing. For efficient acceleration the ratio of the coil inductance LC, which is the amount by
which the circuit inductance increases during the pulse, to the initial (also called stray or parasitic)
inductance L0, which is fixed and performs no electromagnetic work on the propellant, must be much
larger than unity (LC/L0 � 1) [2].

For the purposes of classification, we subdivide IPPTs into two general categories. Inherent in
these categories is the nature of the magnetic flux surfaces in the thruster. One category consists of
thrusters in which a current sheet is formed and accelerated in the direction perpendicular to the
electromagnetic coil. These thrusters are characterized by open magnetic flux surfaces in the gap
between the coil and the plasma current loops, with the flux surfaces exiting the gap at the extents of the
coil and current sheet. The main thruster of this type in the literature is the Pulsed Inductive Thruster
(PIT) [3], though theta-pinch and conical theta-pinch devices can also be operated in this mode [4].
The other category is comprised of thrusters in which closed magnetic flux surfaces are embedded
within and aid in confinement of the plasma. Plasmas in this configuration are generally known as
compact toroids, with those under development for spacecraft propulsion known as field-reversed
configuration (FRC) thrusters [5] or plasmoid thrusters [6].

It is a goal of the present paper to provide a review of the state-of-the-art for all IPPT research and
development. There is a comprehensive review of the open magnetic flux surface planar thrusters [7]
and a review of FRC plasma devices as they relate to fusion [8], but to the authors’ knowledge there
has never before been a single publication that presented a technological review of all open and
closed magnetic flux surface IPPT types. We discuss the major thruster variants, describing their
modes of operation and presenting any available experimental measurements that aid in quantifying
propulsive performance. The modeling techniques that have been applied to IPPTs are also reviewed,
with emphasis placed on the insights that have been gained by these efforts. Finally, we discuss
the major subsystems needed to operate an IPPT, describing the current state-of-the-art and present
limitations of these subsystems and their constituent components.
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The other purpose of this paper is to describe possible paths to advance IPPTs beyond the
current state-of-the-art. Included in this description is a listing of the present gaps in technological
capabilities or basic understanding of physical processes in these thrusters or their constituent
subsystems. Following the same structure as the review of the present state-of-the-art, we provide
a discussion of various potential means to improve different thruster variant designs by enhancements
to current modeling capabilities and through advancement in the capabilities of specific subsystems
and components.

2. Review of Inductive Pulsed Plasma Thrusters

We proceed with a description of the different IPPT variants and their inherent properties and
operating characteristics. The results of key test campaigns are summarized and, when available,
the measured performance for each thruster variant is presented. The specific impulse (thrust per unit
weight flow of propellant) in any pulsed thruster is:

Isp =
ue

g0
=

Ibit
mbitg0

(2)

where ue is the average exhaust velocity of all the propellant injected into the thruster for a pulse, g0 is
Earth’s gravitational acceleration constant, Ibit is the impulse bit or impulse per pulse of the thruster,
and mbit is the mass bit or injected propellant mass per pulse. Likewise, the thrust efficiency in a pulsed
thruster is the ratio of directed kinetic energy in the expelled plasma jet to the initial stored electrical
energy E0, and is given as:

ηt =
mbitu2

e
2E0

=
I2
bit

2mbitE0
(3)

2.1. Open Magnetic Flux Thrusters

Open magnetic flux IPPTs have an inductive coil configured such that when a capacitor bank is
discharged by closing a switch, an azimuthal current is driven in the coil. If there is an ionized gas
over the face of the coil, the time-varying current in the coil will induce a counter-rotating azimuthal
current sheet in the plasma that mirrors the geometry of the driving coil, as illustrated in Figure 1a for
a planar thruster variant. The coil and plasma currents produce a concentrated axisymmetric magnetic
field in the r-z plane that is sandwiched between the two current rings. The plasma is accelerated
to high exhaust velocities in the direction perpendicular to the coil face by the Lorentz body force
arising from the interactions of the plasma current and magnetic field. Any gas that is encountered
by the accelerating current sheet may be entrained in the sheet. The representative discharge current
waveform in Figure 1b shows the relative timescale and magnitude of the current in an IPPT.

2.1.1. Planar Thrusters

The IPPT variant that has seen the most sustained development work as a propulsion system is the
planar thruster known as the Pulsed Inductive Thruster (PIT), researched by Dailey and Lovberg [3].
This thruster type has been the subject of many past experimental studies and was discussed in detail
in a comprehensive review by Polzin [7]. What follows is a summary of the major experimental results
described in that review, as these results represent the current state-of-the-art for planar IPPTs.

Significant work on the PIT was aimed at minimizing the delay time between the initiation of the
external current pulse and the breakdown of the gas over the face of the coil. This was accomplished
by increasing the current rise rate in the coil, as this generates stronger fields in the gas and serves
to more rapidly ionize the propellant. The current rise rate can be raised by increasing the initial
charge voltage on the capacitor bank or by decreasing the parasitic or stray inductance in the circuit.
Many tests over a number of years were conducted in the 15–24 kV range. However, the biggest
improvement was realized in the PIT MK V and MK Va where the coil was reconfigured from a number
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of parallel Archimedes spirals connected to a single capacitor bank to the Marx-bank configuration
shown in Figure 2 [3]. In this configuration, the azimuthal voltage initially applied to the coil is
double that of any individual capacitor, so the nominal 15–16 kV of capacitor charge appears as a net
30–32 kV initial azimuthal voltage. The Marx-bank configuration also has the advantage of adding
the stray inductance for each leg of the circuit in parallel, yielding a much lower net stray inductance
for an overall lumped-element circuit. The combination of greater net azimuthal voltage and lower
stray inductance resulted in a much greater current rise rate in the thruster, reducing the delay in the
breakdown of the propellant and also producing a far more uniform current sheet over the coil face [7].

Figure 1. (a) Schematic showing the basic operation of a planar IPPT, where the Lorentz body force f in
the axial direction arises from the interaction between the azimuthal plasma current density j = −jp θ̂

and the radial magnetic field B = Br r̂. (b) Sample discharge current from the PIT MK Va for one of the
nine parallel coils (from [9]).

Figure 2. PIT MK V and MK Va Marx-generator coil configuration: (a) one complete Marx-generator
loop and (b) the nine complete loops comprising the entire coil (from [3]).

The injection of gas in the PIT is also a major issue that was addressed over a number of
experimental campaigns. The primary problem is that injected gas can readily escape to the vacuum of
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space before it has been electromagnetically accelerated. This escaping gas moves slowly compared to
the portion of the gas that is electromagnetically accelerated, reducing the average ue of the injected
gas. To address this issue, a tall conical structure was located along the centerline of the thruster with
nozzles that injected gas towards the thruster face as depicted in Figure 3. It was shown that the gas
stagnated and had to first spread radially along the coil face before it could escape to vacuum, yielding
a somewhat uniform propellant distribution over the coil [3,10]. After the gas had moved radially
outward but before too much had the opportunity to escape, the current pulse was initiated, ionizing
and accelerating the gas.

Figure 3. Schematic showing a typical propellant injection scheme employed on the PIT (from [3]).

Initial work on the PIT involved coils with outer diameters of 20 and 30 cm [11,12], but most later
iterations had coil diameters of 1 m [3,13,14]. The distance over which the coil electromagnetically
interacts or couples with the gas is, to first order, a fixed fraction of the overall coil diameter.
Consequently, increasing the coil diameter increases the overall interaction distance. All other things
being equal, increasing the interaction distance will increase the overall amount of injected gas that is
within the coupling region when the thruster circuit is discharged. The nature of the reduction in the
electromagnetic interaction as a function of distance is such that the closer the gas is to the coil, as a
fraction of the overall interaction distance, the greater the potential electromagnetic interaction.

The PIT MK V (4.5 µF bank capacitance) and MK Va (9 µF bank capacitance)—both configurations
are sometimes collectively referred to in the literature as the MK V—represent the current IPPT
state-of-the-art in terms of thruster performance. Of all IPPTs, there are more direct thrust measurements
for these variants than for all other thruster concepts in the literature [7]. These thrusters have published
thrust measurements for single-pulse operation on a number of different propellants, specifically helium
(He), carbon dioxide (CO2), argon (Ar), ammonia (NH3), and simulated hydrazine (N2 + 4NH3). Of all
these propellants, the highest performance was achieved on ammonia, with efficiencies of over 50% in
the MK Va [3] as illustrated in Figure 4. Notably, this high efficiency was demonstrated over a broad
range of Isp, which is very interesting from a mission planning perspective because it shows a range
over which the Isp can be throttled without a significant reduction in performance. In the same way that
any electric motor exhibits a peak in efficiency as a function of motor speed, this constant high efficiency
regime was understood as operation in the regime where there is a match between the external circuit
and gas acceleration timescales such that the transfer of electrical energy into kinetic energy of the
plasma is maximized. Finally, it was shown that the efficiency was reduced and the Isp did not rise as
quickly as a function of increasing specific energy (E0/mbit) when the discharge energy per pulse was
∼2600 J. This observed trend is presently not well understood.
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There were attempts to use preionization to increase the primary discharge ionization rate in
planar IPPTs, though the results of such experiments were decidedly mixed. In the 30 cm planar IPPT
a low energy fast current pulse was driven through the acceleration coil prior to the main discharge [12].
This did preionize the gas, but the fields produced by the current in the coil have the same orientation
as those that accelerate the propellant, resulting in the preionized gas being electromagnetically pushed
a finite distance away from the coil face before the main discharge pulse. Energy coupled into the
propellant at the location of the now-displaced preionized gas, but as this location was further from
the coil, there was less potential for electromagnetic work.

Figure 4. (a) Specific impulse and (b) thrust efficiency as a function of specific energy for the PIT MK
Va thruster operating on ammonia propellant (data from [3]).

In the Faraday accelerator with radio-frequency assisted discharge (FARAD) device a planar coil
was used in conjunction with a gas that was ionized in an RF discharge and directed to the coil face by
an applied radial magnetic field [15,16]. The discharge energy was much lower in FARAD compared
to the PIT (<100 J compared to 4 kJ), so the plasma current would not form without the presence of the
preionization. Testing of the initial FARAD proof-of-concept device demonstrated that preionization
could be used to lower the main discharge requirements on propellant breakdown, but further study is
required to more properly quantify this effect. In a later higher-energy 100 J/pulse implementation of
the FARAD concept, shown in Figure 5a, a pulsed RF vector inversion generator (VIG) discharge [17]
preionization scheme was employed. In this thruster at the discharge energy levels tested, the main
discharge was sufficient to ionize the neutral gas without preionization and no attempt was made to
more thoroughly quantify the effects of preionization on reducing the breakdown voltage or improving
thruster performance.

Figure 5. (a) The FARAD thruster (from [17]), (b) The 27 cm diameter planar IPPT (from [18]).
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The NASA-Marshall 27 cm diameter planar IPPT, shown in Figure 5b, was assembled to test cyclic
operation with all the major subsystems of an IPPT, including a solid-state switching system, a pulsed
gas valve, and preionization [18]. The thruster was designed to operate at cyclic rates up to 30 Hz and
average powers in the range of 1–5 kW. The acceleration coil consisted of six two-turn spiral-wound
leads in parallel, driven by a 10 µF capacitor. The switch used was a hockey-puck type thyristor
rated for a maximum hold-off voltage of 4.5 kV, a peak current of 30 kA, and a maximum dI/dt of
22 kA/µs. A fast pulsed gas valve, with an opening time of 300 µs, was used to inject propellant gas
(argon) over the coil face. The device had a DC glow discharge preionizer. As with FARAD, the main
bank discharge was able to ionize the gas by itself, and there was no systematic study of the effect
of the preionizer. The thruster was tested in vacuum, however to-date there have been no thrust
measurements on the device.

2.1.2. Conical Theta-Pinch Thrusters

In a conical theta-pinch (CTP) IPPT operating in the open magnetic flux mode, a current sheet
forms on the interior surface of a conical coil and is accelerated in both the axial direction and
radially-inward as illustrated in Figure 6. There has been significantly less research performed on open
magnetic flux CTP devices relative to the planar IPPTs. It was hypothesized that the CTP geometry
may have an advantage over planar thrusters because the propellant would be better contained within
the volume defined by the conical coil. This geometry was not without potential issues, however.
Specifically, since the accelerating force is in the direction perpendicular to the coil face, radially-inward
motion will be imparted to the gas that must be converted by some means to axial motion if it is to
produce thrust.

Figure 6. Schematic showing the basic operation of an open magnetic flux conical theta-pinch inductive
pulsed plasma thruster. The Lorentz body force f, with components in the radial axial directions, arises
from the interaction between the azimuthal plasma current density j = −jp θ̂ and the radial and axial
magnetic field components B = Br r̂ + Bz ẑ.

Hallock et al. [4,19] performed testing on CTP-IPPTs proof-of-concept devices fabricated with
cone angles of 20◦, 38◦, and 60◦, measured from the centerline of the thruster. The exit diameters for
these three coils were approximately 15, 23, and 25 cm, respectively. Tests were conducted in both
the single pulse mode and at repetition rates up to 5 Hz and discharge energies up to 500 J/pulse.
While other pulsed thrusters have operated at much faster pulse rates and greater average power
throughput, their discharge energies per pulse were more than two orders of magnitude lower than the
CTP testing. Also, like the PIT series of thrusters, the performance was directly measured on a thrust
stand for single pulse and repetition rate operation.
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Two different gas injection schemes were employed in the CTP testing. In the first scheme, gas
was injected from the back of the thruster at the location illustrated in Figure 6 labeled ‘back gas
injection’. This resulted in exceptionally low impulse bit measurements, implying that only a small
amount of the injected gas was reaching the coil face while most of the gas remained nearer to the
centerline and too far from the coil to be effectively accelerated. To test that hypothesis, a scheme
was implemented to inject gas directly against the coil with a swirl imparted to the propellant to hold
it against the face longer. This appeared to partially remedy the problem as the impulse bit of the
thruster did indeed increase by almost a factor of 4–5 relative to when gas was injected from the back
of the thruster [19].

Even when the gas was injected against the coil face, the efficiencies based on thrust measurements
were below 6% on argon [4]. These data compare unfavorably with the ∼15–30% efficiencies measured
with argon in the PIT MK I and MK V planar thrusters [7]. Interestingly, the impulse bits and efficiencies
were greatest for the 38◦ cone angle, with markedly lower values measured for the 20◦ and 60◦ cone
angles. One conclusion from the experimental data was that the radial velocity imparted to the gas was
simply not being effectively converted to axial motion, which can result in significant efficiency losses.
However, that would imply that the largest cone angle should have the best performance, which was
not the case. It was noted that the smaller, lower power planar IPPTs were less efficient than larger,
higher power PITs. The results of that work point to additional loss mechanisms in the CTP-IPPTs
tested, specifically incomplete current sheet formation and excessive dissipation of energy in the
entrainment of gas encountered farther from the the coil face where the electromagnetic acceleration
force is reduced.

Preionization techniques were tested in the CTP geometry [19]. Application of a DC voltage to
ionize the gas before the pulse was implemented, and for gas injection from the back of the thruster
this preionization was necessary in ionizing the gas over the coil face during the main discharge.
It was found for the discharge energies tested that when the gas was injected directly against the
coil preionization was not required and, in fact, had no observable effect on the discharge current
waveform or the measured performance. Consequently, it was not employed for the CTP performance
measurements previously discussed. A second technique used a microwave-driven electron cyclotron
resonance (ECR) discharge where permanent magnets oriented along the outside of the coil would
form regions of cyclotron resonance along the inner face of the acceleration coil. While this technique
succeeded in producing a luminescent plasma at microwave power levels up to 3 kW, it was discarded
because it presented logistical challenges in terms of transferring the power onto the thrust stand.
In addition, the high frequency waves were driving currents in the thruster coils that were causing
damage to the thruster and insulation.

2.2. Closed Magnetic Flux Thrusters

Closed magnetic flux IPPTs are similar to open magnetic flux IPPTs from a circuit standpoint:
on closing a switch, energy stored in a capacitor is discharged as current through an inductive coil.
Under certain circumstances the current induced in the ionized propellant gas can produce a closed
internal magnetic field topology. Plasmas embedded within such a closed magnetic field structure are
referred to as plasmoids or compact toroids. The closed magnetic flux isolates the plasmoid from its
surroundings and enables both passive (thermal) and active (electromagnetic) acceleration. Compact
toroids fall into two broad categories: spheromaks, which have both poloidal and toroidal magnetic
fields, and field-reversed configurations (FRC), which have poloidal fields only [8]. Each of these
categories is illustrated schematically in Figure 7.

Closed magnetic flux IPPT research has mainly focused on the formation and acceleration of
FRCs [20]. The FRC plasma is characterized by an azimuthal current density and no azimuthal
magnetic field. The magnetic field vector instead lies primarily in the meridional (r-z) plane. A high
plasma beta, wherein the thermal energy density of the plasma is comparable to the magnetic energy
density, is required to achieve the closed flux configuration. We note here that the plasma beta (typically
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defined as the ratio of the plasma pressure to the external magnetic pressure) is a local quantity and is
not necessarily all that useful when discussing these types of thrusters. In fact, this value can exhibit
a wide variation within the plasma and greatly exceed unity at certain points (at the O-point of an
FRC, where the magnetic field vanishes, beta approaches infinity). When discussing beta in an FRC
context, what is often meant is the volume-averaged beta (〈β 〉) [8,21,22]. This term is derived based
on an axial balance of the tension of the field line and the plasma pressure in the FRC. The derivation
of 〈β 〉 assumes a prolate, axisymmetric FRC inside a cylindrical coil that is “sufficiently” long such
that the field lines are straight at the mid-plane and at the ends of the coil. A result of this analysis is

〈β 〉 = 1− 0.5
(

rs

rc

)2
(4)

where rs and rc are the separatrix and coil radii respectively. Typically, the ratio of radii is approximately
equal to 0.5, which makes 〈β 〉 roughly equal to unity. An FRC that extended to radially fill the volume
inside the coil would only have a minimum 〈β 〉 of 0.5 (i.e., 0.5 is the lower theoretical limit of 〈β 〉
in these devices), so in practice, 0.5≤〈β 〉<1.0, with some fusion FRC experiments achieving 〈β 〉 of
∼0.9 [23].

Figure 7. Schematic illustrations of conical coil sets containing (a) a spheromak plasma and (b)
a field-reversed configuration (FRC) plasma, showing the directional sense of the current in the coils,
the azimuthal plasma current jp, and poloidal magnetic field Bpol , the magnetic field external to the
plasma Bext, and the toroidal magnetic field Btor in the spheromak configuration.

The ability to achieve a high 〈β 〉 motivated intense FRC plasma research for compact fusion
energy reactor applications. The fusion energy research community pioneered the idea of inductively
accelerating two FRC plasmas to high velocities (∼100 km/s) and colliding them to produce a single
plasmoid within a confinement chamber [24,25]. In this case, the main motivations for accelerating
FRCs were to provide kinetic stability during formation and repurpose plasma kinetic energy for
heating and compression during confinement. While we do not wish to provide an in depth discussion
of instabilities here (the discussion of FRC stability being the subject of numerous papers), we note
that what was long considered to be the most dangerous instability was the m = 1/n = 1 internal tilt
mode [23,26], which is not driven by 〈β 〉. In most cases, the 1–10 µs timescales for plasma thruster
applications is too short for instabilities to greatly impact the plasma before it is expelled.

FRC plasmas can be formed through a variety of different processes. In this section we will classify
concepts according to their formation method and review different test articles that have applied these
techniques to develop accelerators for in-space propulsion.
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2.2.1. Field-Reversed Theta-Pinch FRCs

The first FRCs were created using a method referred to as field-reversed theta-pinch (FRTP)
formation [27]. FRTP formation (illustrated in Figure 8) begins with a background applied axial
magnetic field embedded within a partially ionized plasma (often referred to as the preionization
plasma). A strong pulse of current is generated in a coil or coils placed on the outside of the
plasma chamber and aligned concentric with the plasma. The coils are designed to create a magnetic
field (forward field) that opposes the magnetic field initially embedded in the plasma (reverse field).
If the current rise time is faster than the inductive decay time of the plasma, the reverse field is unable
to diffuse from the plasma and a closed magnetic flux topology is formed. A well-defined flux surface
(separatrix) separates the reverse and forward fields, and provides stability to the plasma during
acceleration and translation [28]. Radial compression of the FRC increases the magnetic field strength,
which simultaneously increases the field-line tension and causes the FRC to contract axially. Radial and
axial compression of the plasma occurs during this process prior to reaching an equilibrium state
wherein the external magnetic pressure is balanced by the plasma pressure. Controlling magnetic
field reconnection through programmed formation of the FRC proved to be crucial in creating stable,
long-lived FRC plasmas [8]. For IPPT applications using conical theta-pinch geometries, research
suggests it is possible to achieve this closed-flux equilibrium state on timescales faster than the ejection
time of the plasmoid [29]. However, uncertainties exist regarding the scalability of FRTP to energy
levels useful for electric propulsion, the sensitivity to preionization, the recovery of thermal energy
obtained during compression, and the quantification of potentially significant plasma-wall interactions
during field-reversal.

The Plasmoid Thruster Experiment (PTX) [6,30,31] used a conical theta-pinch coil to both form
and accelerate plasmoids. The primary acceleration mechanism is the Lorentz body force caused
by the interaction of the azimuthal plasma current and the applied field generated by the coil.
Some acceleration may also be due to the conversion of thermal energy to directed kinetic energy when
the plasma expands in the magnetic nozzle formed by the coil, however this contribution has to-date
not been quantified. In PTX, plasmoids were formed by discharging a capacitor charged to 35 kV
(energy of ∼350 J) through a single-turn conical theta-pinch coil with a 17.5◦ half-angle. The resulting
discharge had a peak current of 50 kA with a ringing frequency of 500 kHz. The plasma was formed in
a Pyrex tube connected to the rest of the vacuum chamber while the coil was located outside the vessel.
PTX used the first/second half-cycle formation technique first used in FRTPs [8]. In the first half-cycle
the plasma is formed (pre-ionized) and seeded with the reversed (bias) field. The subsequent half-cycle
applies the forward field causing the magnetic field lines to reconnect into a closed field-line structure.
A separate Blumlein preionizer (frequency of ∼4.5 MHz) was attached to the coil, but only used a few
times before it failed due to an interaction with the main bank. Propellant gas was injected using a fast
pulsed gas valve (PGV) with a plenum isolated from the gas supply by a limiting orifice. Owing to
the characteristics of the circuit and the switch (in this case, a Perkin-Elmer GP-32B spark-gap) PTX
could only be operated over a narrow range in voltage; in practice it was almost always set to 35 kV.
Experimental conditions were varied by changing the gas pressure in the plenum and the delay time
between the valve opening and the capacitor discharge.

A wide array of diagnostics was used with PTX. A three-channel excluded flux-array under
the theta-pinch coil (later expanded to six channels) was used to determine the location and shape
of the separatrix. Quadruple Langmuir probe measurements were performed to determine the
evolution of the electron temperature, plasma density, and ion Mach number. Line integrated
plasma density was measured with a quadrature heterodyne HeNe interferometer, similar to the
system used in Refs. [32–34]. Additional measurements were performed using internal magnetic
field probes, a 0.3 m spectrometer, and a 100 Mframe/s framing camera. End-on imaging of the coil
showed that the preionization occurred during the second half-cycle (after the first zero-crossing in
current) [6]. The interferometry data show that, for long valve delay times, the plasma pushes and
accelerates neutral gas ahead of the plasmoid [31]. Electron temperatures measured downstream
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with the quadruple Langmuir probe were up to 20 eV for hydrogen and lower than that (∼8 eV)
for argon [30], although there were indications that the temperatures were much higher closer to
the coil. Magnetic probe data exhibited a double-peak structure suggesting the formation of two
distinct plasmoids—a hypothesis that was consistent with the high-speed imaging. Optical velocimety
measurements indicated argon velocities of ∼22–28 km/s, providing order of magnitude agreement
with the quadruple Langmuir probe measurements. Excluded flux array measurements indicated
that a closed field-line plasmoid was created with argon but not with hydrogen [35]. No evidence of
closed flux surfaces was observed downstream of the coil. It was surmised that with hydrogen, the
plasma was rapidly expelled out of the coil before reconnection could occur.

nominal sequence of events during FRTP formation in a con-
ical geometry similar to that of MSX and FRCHX. Prior to
formation, a pre-ionized volume of plasma with an embed-
ded reverse axial magnetic field is established. The polarity
of the axial field is then quickly reversed over a timescale
shorter than the inductive decay time of the plasma (i.e., L/R
time), and the imposed forward field reconnects with the
trapped reverse field to form a closed toroidal magnetic to-
pology inside a simply connected separatrix. The sudden rise
in forward field drives a radial implosion that rapidly heats
the plasma through a combination of compression, strong
shocks, and flux annihilation. The h-coil is then crowbarred
at maximum current to maintain a strong forward field for ra-
dial confinement, and the plasma undergoes a short period of
radial oscillation, eventually leading to equilibrium (radial
pressure-balance), followed by slower axial contraction, os-
cillation, and equilibration to a state of axial and radial pres-
sure balance.

A. Flux-trapping in a cylindrical h-pinch

During field-reversal (between a and b in Fig. 1), the
plasma can expand at up to the radial Alfv!en speed as the

axial field swings toward zero. When the forward field rises
to a value exceeding the trapped reverse field (the plasma is
still relatively cold at this point), the plasma is driven radi-
ally inward or “lifts-off” the wall. This marks the end of the
reconnection phase of formation, after which point trapped
flux can only decrease. The trapped flux at lift-off is approxi-
mately /LO ! AtBLO, where At is the area of the discharge
tube and BLO is the field at lift-off time.

The inertial-confinement flux-trapping model, originally
proposed by Green and Newton,20 assumes that flux is con-
vected through the wall at the radial Alfv!en speed1 during
field-reversal. Under this model, the trapped flux at lift-off
can be estimated using

/LO

/o
¼ 1# G2

o; (1)

where

Go ¼ Bo=BGN; (2)

Bo is the initial reverse bias field, and /o is the initial reverse
bias flux. BGN is the Green-Newton field; the value of bias
field at which the radial Alfv!en transit time equals the time
needed to reverse the initial bias field

BGN ¼ ðloqoÞ
1=4E1=2

h ; (3)

where lo is the vacuum magnetic permeability, qo is the ini-
tial mass density, and Eh is the applied azimuthal voltage at
the tube wall during field-reversal. This model predicts lift-
off flux for reversal timescales faster than the inertial radial
Alfv!en time and has historically matched experimental data
in the range Go!0:5.21

When the reversal timescale becomes comparable or lon-
ger than the inertial radial Alfv!en time (i.e., when Go " 1), a
significant amount of plasma comes into contact with the
wall, during which time the trapped reverse field is supported
by a pressure-bearing sheath until the axial field rises to a suf-
ficient value for lift-off to occur. Practically, this behavior
begins to become important at Go " 0:5. Under these condi-
tions, the trapped flux at lift-off time can be estimated using
the sheath-confined model described by Steinhauer,22,23 which
is similar to that of Vekstein,24 valid for reversal timescales
slower than the inertial radial Alfv!en time

/LO

/o
¼ exp #0:74Go

"N
#1=4

! "
; (4)

where "N ¼ N=N& is the normalized line density with N&

¼ 2pmi=e2lo ¼ 6:46 ' 1017 m#1 for deuterium, mi is the ion
mass, and e is the elementary charge.25 The normalized line
density can be conveniently expressed as

"N ¼ 2:4 ' 103por2
t ; (5)

where po is the initial gas fill pressure and rt is the discharge
tube radius.

The radial compression and axial contraction phases of
formation (b and c in Fig. 1) are also associated with rapid
flux loss, primarily due to high anomalous resistivity and

FIG. 1. Resistive MHD simulation illustrating FRTP formation in a conical
h-pinch matching the MSX geometry using typical gas fill and magnetic
conditions. Magnets are indicated by heavy black lines, the quartz discharge
tube by a double black line, magnetic field contours by thin black lines, and
plasma density is represented in grey-scale (auto-scaled for each frame).
The initial plasma was assumed to be fully ionized with no ringing-h cycle
preceding field-reversal. The following stages are shown: (a) reverse bias
and pre-ionization; (b) field-reversal, radial compression, and reconnection;
(c) axial contraction and equilibration; (d) acceleration and ejection. See
Fig. 5 for MSX schematic and scale.

042518-2 Weber, Intrator, and Smith Phys. Plasmas 22, 042518 (2015)

Separatrix

Pre-Ionization 
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Figure 8. Schematic showing field-reversed theta pinch formation for closed magnetic flux thrusters:
(a) preionization plasma is introduced into a background magnetic field; (b) a strong pulse of current
generates a time-dependent magnetic field with polarity opposing the initial background magnetic
field that compresses the plasma both radially and axially; (c) a closed magnetic field structure confines
the plasma within a separatrix that divides the forward and reverse fields; and (d) magnetic field
gradients in the axial direction accelerate and eject the resulting plasmoid (Reproduced/modified
from [29]; with the permission of AIP Publishing.).

The PT-1 plasmoid thruster shown in Figure 9 was fabricated as a brass-board device based on
experience derived from PTX [36]. It had separate drive and bias coils, each consisting of four parallel
three-turn leads wound on an alumina form, and each driven by its own capacitor bank. In series with
the bias coil, fore and aft of it, were two reverse-wound field-shaping coils. The purpose of these were
to create a cusp-field on either end of the coil to promote faster and better controlled reconnection.
PT-1 could be operated in two modes: a plasmoid thruster mode with the bias coil driven in the
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opposite sense to the drive coil, or a conical theta-pinch mode with the bias and drive coils driven in
the same sense. Both drive and bias circuits were switched with spark-gap switches, later replaced
with thryristors. Glow discharge and VIG preionizers were attempted, but owing to programmatic
considerations, no extensive testing was done with PT-1.

The Magnetically Accelerated Plasmoid (MAP) experiment [37] also employed a conical
theta-pinch coil to form and accelerate FRC plasmoids. In addition to the main theta-pinch coil,
MAP possessed a series of downstream magnetic coils that were sequentially pulsed to provide
additional acceleration by establishing a traveling magnetic wave that could electromagnetically push
the plasmoid. Experiments successfully demonstrated the power supply and switching technologies
required to form the magnetic wave. Preliminary results on a deuterium-helium gas mixture measured
plasmoid velocities up to∼180 km/s. By combining density measurements from a HeNe interferometer
with FRC equilibrium measurements from magnetic probes, the MAP experiments were the first to
provide a technique for estimating the mass contained within the plasmoid.

Figure 9. The PT-1 plasmoid thruster test article.

The Missouri Plasmoid Experiment (MPX) [38,39] was designed to study the physics of FRTP
plasma formation with heavy gases when operating at discharge energy levels of relevance to electric
propulsion. Experiments focused primarily on the preionization phase of FRC formation. Early results
demonstrated a strong dependence of preionization energy efficiency on gas pressure for both air
and argon over a pressure range from 0 to 60 mtorr [38]. Argon demonstrated greater shot-to-shot
repeatability and higher energy transfer efficiency at lower pressures, where the energy transfer
efficiency was defined as the energy absorbed into the plasma as a fraction of total pulse energy.
The maximum energy transfer efficiency for argon was measured to be 25% and occured nearly 10 µs
(roughly four discharge periods) after pulse initiation. Notably, it was not determined how energy
transferred from the coil was distributed among various plasma energy channels such as ionization,
heating, and acceleration. Application of a low-power DC plasma discharge during preionization was
later found to improve energy transfer at low pressures [39]. Results from MPX highlight significant
concerns regarding the ability of FRTP to form FRC plasmas at pressures and timescales consistent
with the energy, circuit, and plasma dynamics constraints of IPPTs.

2.2.2. Rotating Magnetic Field FRC Thrusters

The Rotating Magnetic Field (RMF)-FRC thruster differs from theta-pinch devices in the
mechanism employed to drive the azimuthal current that forms the plasmoid. In the RMF-FRC,
this current results from a azimuthaly-rotating transverse magnetic field applied to the plasma.
Once the gas is ionized, the current both aides in sustaining the plasma discharge and gives rise
to an axial Lorentz body force resulting from interactions with the radial components of an applied,
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background magnetic field. The RMF-FRC has in principle a few advantages over other methods
for generating FRC plasmoids. For example, in contrast to purely pulsed based methods such as
theta-pinches, the RMF can operate in a pulsed or a continuous wave mode where the rotating magnetic
field continuously drives a plasma current. The RMF-FRC requires substantially lower currents to drive
the plasmoid since the necessary azimuthal current depends on the frequency of the RMF rather than
the amplitude. Thus, the voltage necessary to drive the currents for the RMF field can be significantly
lower than in pulsed FRC-generation methods [40].

The RMF current drive mechanism was first proposed for the purpose of plasma confinement
by Blevin and Thonemanan [41]. Over the following decades, several institutions researched RMF
plasmoids for fusion applications. Formation, sustainment, and translation were key aspects studied
by the groups [40]. Researchers at the University of Washington and Mathematical Sciences Northwest
(MSNW) built on the initial translation work, exploring a thruster concept based on the RMF-formation
of an FRC which is then expelled using an applied magnetic field with an axial gradient [42]. A number
of research groups continue to investigate the feasibility of RMF-FRC thrusters for propulsion
with averaged power levels ranging from 1 kW to 100 s of kW. Open challenges associated with
testing these devices include thermal loading of the circuit components, potential arcing between
high-voltage antennae and the surrounding plasma environment, and operation of the thruster
and power processing unit (PPU) for appreciable lengths of time (minutes or greater) to properly
resolve thrust measurements at steady state. In large part due to these technical obstacles, the full
capabilities of RMF-FRCs have yet to be demonstrated. It remains unclear as to whether this particular
implementation can achieve performance levels that are competitive with other concepts.

Principle of Operation

We review a simplified model for RMF-FRC operation. This model is based on the derivation first
presented by Blevin and Thonemann [41]. The key elements in the formation process are illustrated
in Figure 10. Neutral gas with a small amount of seed plasma from a preionizer fills the discharge
chamber. This plasma is confined by a steady background magnetic field with a radial gradient,
given in cylindrical coordinates as

Bs = Bs,r r̂ + Bs,zẑ. (5)

Two sets of saddle coils are oriented perpendicular to each other and phase-shifted currents with
frequency ω are driven through these coils generating alternating magnetic fields that are 90◦ out of
phase. The combined effect of these coils creates a RMF of the form

BRMF = Bo cos(ω t)x̂ + Bo sin(ω t)ŷ, (6)

where Bo is the amplitude of the magnetic field. While a real RMF would have spatial variation,
this idealization of the field does not. The RMF frequency should be much greater than the ion
cyclotron frequency but much less than the electron cyclotron frequency to ensure that the induced ion
currents are much smaller than the electron currents. The combination of Faraday’s law of induction
and the generalized Ohm’s law for an infinitely long plasma column show that the time varying RMF
magnetic field produces an electric field that in turn drives an azimuthal plasma current. The electron
Hall parameter is defined as Ωe = Bo/ (η nee), where η is the plasma resistivity, ne is the electron
density, and e is the elementary charge. In the limit of low plasma resistivity, Ωe will be much greater
than one and the electrons will rotate in sync with the RMF. In this case, the plasma current density as
a function of radial position is:

jθ (r) = −neeω r. (7)

where ne is assumed constant.
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Figure 10. RMF-FRC Operation—(a) Side view cross-section in the r-z plane of the thruster illustrating
how ionized gas is injected into the discharge chamber. A steady bias magnetic field with radial
gradient is present. (b) End-on view of the thruster in the r-θ plane depicting two sets of coils oriented
in the x- and y-directions that generate a rotating magnetic field (RMF) by using sinusoidal currents at
frequency ω applied 90◦ out of phase. The RMF induces axial and azimuthal currents. (c) Side view
of the r-z plane illustrating FRC formation. Large azimuthal currents form the plasmoid and interact
with the external radial magnetic field component to axially accelerate the plasmoid via a Lorentz
body force.

The azimuthal current drives field-reversal in these devices. The current gives rise to a diamagnetic
field that opposes the applied magnetic field of Equation (5), reversing it close to centerline and forming
a plasma body that is magnetically isolated. The above formulation, specifically Equation (7), illustrates
a key advantage of RMF-FRC thrusters. In principle, if the resistivity is sufficiently low, the current
that is driven in the azimuthal direction is independent of the current in the driving coils. This is in
contrast to theta pinch methods or other pulsed methods that require current levels of kA or greater to
generate a reversed field configuration.

There are multiple mechanisms that have been proposed to date by which RMF-FRCs may be
axially accelerated to generate thrust. These include a Lorentz body force that results from interaction
with the applied field [42], a self-field-derived Lorentz body force [43], and thermal-to-kinetic energy
conversion [44]. We proceed with a brief discussion of each mechanism.

Lorentz body force via applied field: Slough et al. [42] proposed that the azimuthal plasma current
driven by the RMF in Equation (7) interacts with the radial component of an the applied external
magnetic field in Equation (5) to give rise to a Lorentz body force:

Fz =
∫

V
Jθ Bs,rdV, (8)

where the volumetric integral is performed over the plasma volume to yield the total force. This result
suggests that the force on the plasmoid scales linearly with the RMF-driven current.

Self-field acceleration: A self-field acceleration mechanism may comprise part of the total thrust
mechanism. In many RMF-FRC’s, there is a component called the flux conserver that acts to sustain
a constant flux on the short timescales of FRC formation and ejection. The flux conservers consist of
either metallic straps concentrically placed along the thruster cone or actually comprise the cone itself.
As the plasmoid forms, the rapidly changing plasma currents produce a magnetic field that couples to
the conductive material in the flux conservers. This process will in turn drive a mirror current which
can act on the plasmoid. It has been proposed that the resulting force will scale as Fz ∝ J2, similar to
other pulsed inductive devices where J is the RMF plasma current (c.f. [43]).

Thermal-to-kinetic energy conversion: Slough et al. [42] posited that acceleration in the RMF-FRC also
may stem from the conversion of thermal energy, introduced by Ohmic heating of the plasma through
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the RMF current, to directed kinetic energy via adiabatic expansion. In this case, the flux conservers
combined with the self-contained nature of the RMF-FRC both work to prevent thermal losses to the
walls of the chamber and instead redirect this energy into directed thrust. The kinetic energy of the
propellant (and by extension the force) is related to the change in the enthalpy of the plasmoid as it
is accelerated.

Although it is likely that all three mechanisms may contribute to thrust generation in FRC-RMF
devices, to date, it is not known if one is dominant or indeed how the total thrust is distributed between
these three mechanisms. This ambiguity largely stems from the lack of experimental performance
measurements that would permit evaluation of the predicted scalings for each mechanism.

Review of RMF-FRC Test Articles

The potential for high performance of RMF-FRC thrusters has served as motivation for the
fabrication and testing of a number of test articles. The Air Force Research Laboratory, Tokyo University,
University of Washington, MSNW, and University of Michigan have all developed systems of varying
capabilities. The thrusters share common design elements, namely that each has a preionizer,
RMF antennae system, and a steady bias field. Additional components and capabilities may be
present to suit the institutions specific experimental goals. Although these test articles have different
geometries and operate at power levels (ranging from 500 W to 100s of kWs), the work on these
devices shares the common goal of improving understanding of thrust generation and ultimately
demonstrating performance. Unfortunately, direct thrust measurements have not been performed for
these thrusters and test articles.

The electrodeless helicon plasma thruster (Figure 11a) leveraged the Large Mirror Device (LMD)
configuration to study the acceleration of high density helicon plasmas [45]. It consists of a quartz
tube that gradually expands as it enters a drift vacuum chamber. Permanent magnets placed
along the tube act as a magnetic nozzle, and an RMF acceleration stage was added to the design.
The helicon plasma source was typically operated at 1 kW and the RMF coil were driven at 1 MHz
with a peak-to-peak current of up to 100 A. Operation of the RMF stage produced an observed increase
in the axial ion velocities, which was attributed to three possible factors. The first is that the azimuthal
induced current by the RMF leads to acceleration through the Lorentz body force arising through the
interaction of the current and applied radial magnetic field component. Second, it was hypothesized
that a strong radial density gradient forms, producing a diamagnetic current that interacts with the
applied field to yield a force. Finally, an axial pressure gradient in the gas could be contributing to the
thrust. Interestingly, the growth in all three possible acceleration mechanisms scales with increasing
plasma density, which the RMF-driven azimuthal current promotes quite effectively [46].

The electromagnetic plasmoid thruster (EMPT) (Figure 11b) was a low power 500–5000 W pulsed
RMF device [47]. The goal of the development effort was to demonstrate continuous wave (CW)
operation (up to 50 pulses) of a plasmoid thruster and its PPU. It was the first IPPT configuration to
demonstrate CW operation with a steady-state propellant flow, operating at average power levels up
to 1 kW. The pulse rate was 2800 Hz at pulse energies of 2 J for single pulse and 12.7 J for multi-pulse
operation. The thruster consisted of a conical quartz tube with bias field magnets and RMF antennae
placed along the length of the tube. It used a small electrode at the base of the thruster as a preionizer.
Performance was estimated using a ballistic pendulum thrust measurement in conjunction with
Langmuir probes to obtain time of flight data. Operation of the RMF at increased repetition rates
resulted in greater mass entrainment and use of the propellant relative to single pulse operation.
Impulses of up to 0.12 mN-s were observed for 6 ms gas puffs which generated nine plasmoids.

The RP3-X (Figure 11c) is an RMF-FRC test article with four coils that line the thruster cone and
are arranged in such a way as to create the necessary rotating magnetic field [48]. The thruster itself
is vacuum sealed with the exit plane attaching to a larger vacuum chamber. It can operate at a pulse
frequency of 10 kHz and an energy of 5 J per pulse. It has operated on xenon propellant with an
applied 300 G magnetic field [49].
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The electrodeless Lorentz force thruster (ELF) (Figure 11d) was a prototype device fabricated to
demonstrate high power RMF-FRC operation. It was envisioned to be scalable to 10–100 kW to compete
with other high power state-of-the-art electric thrusters, specifically Hall thrusters. The inductive
nature of the thruster makes it possible to operate on chemically active propellants that would
damage the electrodes in other thruster options. The thruster performance is affected by the choice
of propellant, but for any selected propellant the thruster is throttleable to higher power densities
without any additional alterations to the overall thruster configuration [50].

Figure 11. RMF-FRC test articles: (a) Schematic of Tokyo University electrodeless helicon plasma
thruster (from [45]; licensed under a Creative Commons Attribution (CC BY) license), (b) MSNW
electromagnetic plasma thruster (from [47]; reproduced with permission of the author), (c) Air Force
Research Laboratory RP3-X thruster (from [49]), (d) MSNW electrodeless Lorentz force thruster
(from [51]; reproduced with permission of the author), (e) CAD model of the University of Michigan
RMF thruster (from [43]; reproduced with permission of Electric Rocket Propulsion Society).

The ELF preionizer consists of an electrode connected to a puff valve, which serves to partially
ionize the neutral gas as it is injected. The thrust chamber consists of a 42 cm long conical quartz cavity
with a 16◦ half-angle. The thruster is wrapped with flux conservers, which are sections of copper strap
that act to conserve the total axial flux on the timescales of FRC formation and translation. Outside
of the flux conservers are a series of coils that produce the magnetic bias field necessary for field
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reversal and plasmoid acceleration. Finally, the two pairs of RMF coils are located outside the bias coils.
These are copper straps run the length of the thruster cone and are responsible for producing the large
rotating magnetic fields that induces the azimuthal current. The thruster exhausts into a small vacuum
chamber, which serves as a drift area permitting the study of plasmoid translation physics [44].

Although it was fabricated to operate in a CW mode at a pulse rate of multiple kHz,
PPU constraints limited the number of possible pulses in a given time period. Published data center
on a “standard” shot with a discharge energy of 46 J at a 300 kHz RMF frequency. Operating at this
condition on nitrogen, it was estimated that 16% of the total input energy was deposited into the
plasma as thermal and magnetic energy. Of that, it was further estimated that half was converted into
kinetic energy, resulting in an efficiency of 8%. Radiated energy was the dominant estimated energy
loss mechanism, at 78% of the total input energy [51].

The University of Michigan (UM) RMF-FRC thruster (Figure 11e) is based on the ELF design and
includes lessons learned from past RMF test campaigns. The thruster is designed to operate at a pulse
rate of 1 kHz, which is much faster than the characteristic response of standard thrust stands and
should permit performance measurements using conventional electric propulsion thrust stands [52].
If successful, this would represent the first direct thrust measurements on an RMF-FRC test article.

The UM-RMF thruster preionizer is based on a cylindrical, lanthanum hexaboride (LaB6) hollow
cathode. Preionized propellant is injected through the central bore of the cathode, with additional
neutral propellant injected in a ring-pattern surrounding the cathode. The bias field is generated by six
conically arranged aluminum bobbins wrapped in magnet wire which also act as the thruster cone.
The cone half angle is 16◦. Each bobbin measures 7 cm in length and is electrically isolated from the
other bobbins to prevent eddy currents from developing along the length of the cone. Embedded
between the magnet wire and bobbins is a cooling loop to mitigate thermal loading when operating the
magnets at high currents (∼10 A each). The bias coils are designed to provide a peak centerline axial
field of 300 G. Lining the inside of the thruster cone are two RMF antennae, each consisting of two
current loops arranged in an orthogonal orientation with respect to each other. The antennae consist of
0.25-in diameter copper tubing. Cooling water can be flowed through the antennae when operating
at higher power levels. The system baseline is to operate with a peak current of 4.5 kA, which was
selected to ensure full penetration of the RMF field into the plasma [43].

At a 1 kHz pulse rate, the average input power to the UM-RMF thruster is approximately 30 kW
per antenna. The capacitor banks in the PPU can be changed to produce different RMF frequencies.
A set of 24 µF and 660 nF capacitor banks have been constructed to provide RMF frequencies of 20 kHz
and 300 kHz respectively. The antenna, PPU circuit elements, magnetic field strength and shape,
and amount of seed plasma can all be varied, permitting the exploration of a wide parameter space.
This test article has yet to be operated. The current status of the UM thruster as of the writing of this
article is that it has been assembled but has not been operated.

Technical Obstacles to Testing

There are a number of technical challenges in implementation and operation of RMF-FRCs.
The high voltages necessary to drive the RMF currents in the antennae can result in electrical arcing to
the surrounding conducting material. The large currents can give rise to excessive heating of the circuit
and thruster components. Many thrusters are attached to a flange on a vacuum chamber and eject the
plasmoids into a weaker bias field, making it difficult to confirm detachment of the plasma from the
applied field. It is also challenging to operate the various circuit components at high power levels
(10 kW and greater). Coupling the power into the thruster is hampered by losses to the surrounding
structure and resistive losses in the the circuit components. Losses can be mitigated by placing the PPU
near the thruster in the vacuum facility, but this introduces issues related to high-voltage arcing and
thermal loading in the PPU itself. Finally, operation at high power requires sufficiently high pumping
speeds to maintain low background pressures for extended periods of time.
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2.2.3. Annular FRC Thrusters

The annular FRC thruster (AFRC) is a variation on the theta-pinch FRC that uses two sets of coils
to drive an azimuthal current in the plasma [53], as illustrated in Figure 12. In this implementation,
the plasmoid forms in the annulus between the two coils. The AFRC was proposed as an alternative to
theta-pinch FRCs as the former can operate at lower voltages (1 kV compared to 10 s of kV) and the
addition of the second coil permits the formation of the plasmoid on much shorter time scales relative
to the standard theta-pinch FRC. If the outer coil is angled, the magnetic field has an axial gradient
and the radial magnetic field component couples with the azimuthal current to yield a Lorentz body
force that accelerates the plasmoid. The use of two coils also introduces more flexibility and control of
the acceleration process. The inner coil is primarily used to add flux to the plasmoid while the outer
coil provides a counter pressure to confine the plasma. The coils can be operated synchronously or
independently, although the latter requires the addition of a second power supply [54].

Figure 12. Diagram of an AFRC thruster (from [53]).

The first AFRC device was developed in 1963 by Phillips et al. [55] to study the formation physics
of plasmoids for fusion experiments. Several other groups implemented similar configurations, and in
1967 Alidieres et al. [56] demonstrated the first translation of an AFRC plasmoid. To accomplish this,
a radial magnetic field created by an iron circuit was introduced. While translation speeds of up to
200 km/s were observed, energy conservation analyses indicated that only a small fraction of the
plasma was accelerated.

The use of the AFRC for high power electric propulsion was first realized in the experimental
coaxial field reversed configuration thruster (XOCOT) [57]. The first stage of the experiment, dubbed
XOCOT-S, was a study of AFRC plasmoid formation on argon and xenon. The device operated at
discharge voltages of less than 1 kV with peak discharge energies of 1.1 kJ. The experiments explored
the production of high density plasmas, although it was noted that insufficient preionization resulted
in poor formation during the first half cycle of the discharge.

Knowledge gained from the XOCOT-S experiment was used to inform the second stage of the
study, the XOCOT-T3, shown in Figure 13. The experiments performed by Hill [54] aimed to study
the translation of AFRC-generated plasmoids. The outer coil was angled to introduce the radial
magnetic field component necessary to yield the Lorentz body force that would accelerate the plasma.
The coils were operated in a parallel mode powered by a single pulsed supply at frequencies of
10 kHz and 20 kHz and discharge energies of 0.1, 0.5, and 1 kJ/pulse. Magnetic field probes observed
plasmoid formation between the coils, but for all conditions tested there was no evidence of plasmoid
translation and no downstream observations of coherent plasmoid structures. Plasmas that did appear
downstream were attributed to a thermal jet escaping from the AFRC.
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Three hypotheses were put forth to explain the failure of the plasmoid to translate. The first
is that there was an inherent induction limit for the system which limited the current driven in the
plasma to levels insufficient to form a plasmoid. The second is that the plasma had low electrical
conductivity, owing to low electron temperatures, resulting in rapid magnetic field diffusion that
short-circuited the FRC formation process. It was determined that temperatures greater than 20 eV
could reduce the rate of magnetic field diffusion to the level that would permit plasmoid formation.
Finally, a plasma instability of some type could have resulted in the destruction of the plasmoid before
it was able to translate downstream. As of this writing, measurements have yet to validate any of
these hypotheses.

Figure 13. XOCOT-T3 experiment (from [54]; reproduced with permission of the author).

2.3. Summary of Experimental Data

Presented in Table 1 is a summary of operating parameters and test data measured for various
IPPTs. In this table we have only listed the thrusters for which there exists at least a partial record
of data in the literature. Most telling is the lack of data to quantify the performance of most of these
thrusters. To develop greater understanding of IPPTs and facilitate future modeling efforts, future test
campaigns must focus on gathering more complete sets of data on the performance and operating
conditions of different thruster concepts.

Table 1. Summary of operating parameters and test data for various IPPTs. (* data not available,
** equivalent circuit voltage, *** equivalent circuit current, + estimated value, ++ not applicable).

Experiment Isp Ibit ηt Bpk 〈β〉 V0 Ipk
[s] [mN-s] [%] [T] [kV] [kA]

PIT MK Va (open flux) [3] 2000–7000 50–120 40–55 0.55 ++ 30–32 ** 135 ***
CTP-IPPT (open flux) [4] 1000–4500 0.1–1 <6 + * ++ 5 18
MSFC-IPPT (open flux) [18] * * * * ++ 3 7.4
PTX (closed flux) [35] * * * 0.5 * 35 50
PT-1 (closed flux) [36] * * * 0.1 * 3 14
1 kW EMPT (closed flux) [47] * * * 0.03 ∼0.5 1.3 1
50 J/pulse ELF (closed flux) [51] * 0.4 * 0.04 ∼0.5 10 *
30 kW ELF (closed flux) [58] * * * 0.01 ∼0.5 3 3

3. Review of Modeling Techniques

Multiple modeling techniques have been applied to IPPTs over the years, from simple
one-dimensional models to full two- and three-dimensional magnetohydrodynamic (MHD) approaches.
In the following section, we review the various models employed to develop an understanding of IPPTs
and note the major insights gained with each model.
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3.1. Open Magnetic Flux Thrusters

The modeling of open flux thrusters has primarily focused on modeling the acceleration process
and capturing the electromagnetic coupling between the external primary circuit and the accelerating
plasma circuit. Most models for these types of thrusters assume that the gas is already ionized to
a sufficient degree to conduct current, and while some of the models do permit additional ionization
during the discharge, they do not account for the initial breakdown process.

3.1.1. Planar Thruster Modeling

The primary model used for planar IPPTs in the literature for several years is a lumped-element
circuit model coupled to a one-dimensional momentum equation [3,7,13,59,60]. The circuit can be
drawn in the manner shown in Figure 14a. In the figure, the initial charge voltage on the capacitor C
drives current I1 in the primary circuit, through circuit elements with external resistance Re, stray or
parasitic inductance L0, and coil inductance LC. The primary circuit couples to the plasma like
a transformer with mutual inductance M between the circuits. An induced secondary plasma current
I2 is driven through an inductance LC and a plasma resistance Rp. It is straightforward to rearrange the
circuit into the equivalent configuration shown in Figure 14b, and this permits the writing of first-order
ordinary differential circuit equations that can be used to numerically solve the electrical problem.

Figure 14. Circuit models: (a) general lumped-element representation of an IPPT and (b) equivalent
circuit (after [16]).

The key to coupling the circuit equations and the motion of the plasma lies in the mutual
inductance term, which is a function of the separation distance between the primary and secondary
circuits. This dependence can be found experimentally using a conducting metal disk to simulate the
plasma at different downstream positions [13], or it can be found numerically using a solver to simulate
the magnetic field as a function of plasma position [19,59,61,62]. Since the acceleration problem has no
closed form solution and must be calculated numerically, it is straightforward to use a table lookup for
the mutual inductance function. However, it has been found and validated in several studies that the
mutual inductance for a planar IPPT can be curve fitted using a function of the form

M = LC exp
(
− z

2z0

)
(9)
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where z is the axial direction of motion of the plasma and the curve fit parameter z0 is the decoupling
length, which represents the characteristic length scale of electromagnetic interaction between the
two circuits.

The axial linear propellant density distribution in front of the coil is ρA (z) and it can assume
several potential configurations. The plasma sheet is assumed to possess an initial mass of propellant
m0 and to entrain and accelerate to the sheet speed all propellant encountered as the sheet moves. The
overall mass in the sheet is

m(t) = m0 +
∫ t

t=0
ρAvzdt (10)

where vz is the time-dependent velocity of the plasma. Finally, the momentum of the plasma is
governed by the equation

LC I2
1

2z0
exp

(
− z

z0

)
= m(t)

dvz

dt
+ ρAv2

z (11)

where the term on the left side of the equation represents the electromagnetic force on the plasma,
the first term on the right side represents the momentum invested in accelerating the already-entrained
propellant, and the second term on the right side represents the momentum that must be expended to
entrain propellant encountered by the plasma, ‘instantaneously’ accelerating it to the current sheet speed.

While the model is relatively straightforward to solve, a simple examination of the governing
equations reveals much about the nature of these thrusters and their operation. The mutual inductance in
Equation (9) and the corresponding electromagnetic force in Equation (11) both decrease exponentially as
a function of separation distance, showing the importance of accelerating the propellant while it is near
to the coil face. In addition, the last term in Equation (11), which involves the entrainment of propellant
encountered by the moving plasma, reduces the useful additional acceleration that can be performed
for a given level of electromagnetic force, implying that neutral propellant should be entrained early in
the discharge cycle when the plasma velocity is still low so as to reduce entrainment losses.

Polzin et al. [16,60,63] nondimensionalized the one-dimensional coupled equation set and
generated solutions over the parameter space represented by the remaining nondimensional
parameters to gain insight into the performance scaling trends in planar IPPTs. This work provided
a mathematical foundation to understand findings in the PIT MK V and MK Va data that had previously
been explained through less rigorous experimental intuition. The most important new finding was the
derivation of a dynamic impedance parameter

α =
C2V2

0 LC

2mbitz2
0

(12)

where V0 is the initial charge voltage on the capacitor bank. It was shown that this term can be
decomposed into several dimensionless ratios, with the most insightful being a ratio of the natural
period of the external circuit to the time interval over which the motion of the plasma will increase the
inductance of the external circuit by one unit of L0. Another independent circuit model study found
substantially similar results [59]. A broad maximum in efficiency as a function of α was discovered,
and it was further shown that the operating parameters of the MK Va spanned a range of α that
included the maximum efficiency from the modeling, with a reduction in efficiency of only a few
percent at the extremes of the experimental data range. The values of α computed for the MK V, on the
other hand, were more removed from the values that yielded maximum efficiency, explaining the
lower performance relative to the MK Va. The work also rigorously showed that greater acceleration
occurred for highly underdamped circuits and for propellant distributions where most of the injected
mass was close to the acceleration coil. This combination of conditions results in high peak currents
and correspondingly high accelerating forces while the plasma and coil are still near enough for
appreciable acceleration to be imparted to the former.
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The one-dimensional acceleration model was upgraded to include the time-evolution of energy in
the plasma and to more realistically represent the plasma state properties [64]. Simulations were useful
in calculating the partitioning of energy between different energy sinks in the plasma as a function of
time and the controllable parameters of the discharge. An examination of the relative magnitudes of
these different sinks highlighted the less-useful dissipative modes that could increase at the expense of
useful plasma acceleration.

Mikellides et al. [65–67] performed 2-D axisymmetric modeling using the multiblock arbitrary
coordinate hydromagnetic (MACH) code. This was the first major time-dependent simulation of the
plasma evolution using an MHD solver, though a pair of upgrades had to be implemented during
the course of the research to improve the results. In the most recent simulations, at each timestep
the computed magnetic field and plasma resistivity were integrated over the solution domain and
used to insert the effects of time-varying resistive and inductive plasma circuit voltage losses into
the model governing the solution for the time-dependent external circuit current [67]. Also, a new
non-equilibrium equation of state model for ammonia was developed and included to more accurately
model the MK Va data [68].

The MHD modeling provided some interesting insights into planar IPPT operation [7,66,67]. A good
match was obtained for the first half-cycle of the external circuit current and the computed thruster
performance mostly exhibited good quantitative agreement with the MK V and MK Va experimental data
for multiple propellants. The time-evolution of the plasma in two dimensions was insightful in showing
first that the plasma maintained remarkable radial uniformity and also in demonstrating the amount of
accelerated plasma that impacted the central cone located downstream from the acceleration coil face
that was used to inject gas into the thruster. A critical specific energy beyond which efficiency declined
was identified in these results and in computations on a lower discharge energy variant [69]. The specific
energy beyond which efficiency declines exhibits good quantitative agreement with experimental data.
The modeling of performance on ammonia also exhibited very good quantitative agreement with the far
more simple and less computationally intensive one-dimensional coupled performance model. As the
latter did not contain radiation energy losses, this agreement supported the conclusion that radiation
losses in the PIT operating on ammonia were small or negligible.

Che et al. [70] presented a two-dimensional axisymmetric MHD model of an IPPT using
a formulation that coupled the external circuit with the plasma circuit electrical response. In this
work, a separate domain for the drive coil was used to calculate the plasma voltage component presented
to the external circuit. This was found by integrating the azimuthal electric field along the path of
one of the spiral wires comprising the acceleration coil. While a planar coil was studied in this work,
this approach allows for the calculation of the plasma voltage presented to non-planar external coil
geometries as well. Computational domains outside the thruster body were also added to help determine
the effects of nearby conductive structures, namely the walls of a conductive vacuum chamber and
a coaxial capacitor mounting plate located behind the drive coil. It is worth noting the plasma was
assumed to be in local thermodynamic equilibrium (LTE) and electrons, ions, and neutral particles as
having the same temperature. This is in contrast to the model of Mikellides et al. [65], where thermal
non-equilibrium between ions and electrons was allowed with each with their own energy equation.

Using their model, Che et al. [70] simulated the PIT MK I and obtained several interesting results.
A secondary current sheet was observed to form when the current in the drive coil reversed sign during
the second half period of the RLC discharge cycle. This secondary sheet was found to contribute up to
≈20% of the total impulse and did not “short-circuit” the primary current sheet. It was also observed
that Isp and ηt could be kept relatively constant over a range of discharge energies so long as mbit was
adjusted to maintain a constant specific energy (E0/mbit). A critical specific energy beyond which
efficiency declined was not observed within the simulated range of parameters. This may be due to the
fact that the design parameters of the MK I place it well outside of the range of optimized efficiency
achieved in the MK Va thruster. Third, compression of the initial propellant in the direction of the
coil face was found to noticeably improve thruster performance. Reducing radial non-uniformities
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was also found to positively affect propulsive performance to a lesser extent. Finally, conductive
structures located within the decoupling distance of the drive coil were found to adversely impact
thruster performance. The effect was most severe for the interaction with the coaxial grounding plate
located slightly behind the drive coil. Structures located beyond the decoupling distance were found to
have minimal impact, which is in agreement with previous results obtained using the one-dimensional
coupled performance model [62].

3.1.2. Conical Theta-Pinch Thruster Modeling

Hallock et al. [19,71] attempted to expand the one-dimensional plasma acceleration model
coupled to the lumped-element circuit model by modifying it to include the inherent two-dimensional
plasma motion found in CTP-IPPTs. The keys to this work were magnetic field modeling results
and experimental measurements used to determine the functional variation in mutual inductance
between the conical acceleration coil and the plasma moving in either the axial or radial direction.
Putting this into the equation of motion yielded accelerating electromagnetic forces in both the axial
and radially-inward directions, corresponding to the directions of negative gradient in the mutual
inductance. This work did not address the problem of mass entrainment, instead assuming all
propellant mass was initially in the plasma at the start of the discharge. The biggest shortcoming of
the model was the lack of a mechanism to convert radial motion of the plasma into axial momentum.
Finally, while computations were performed for certain cone-angles, the resulting computational
model could not be readily applied to a cone of arbitrary angle.

There were some interesting insights from this effort, despite some gross assumptions
incorporated into the model. With a second degree-of-freedom in the equations of motion, the plasma
can electromagnetically decouple from the coil moving radially as well as axially, and rapid radial
displacement results in a significant reduction in axial acceleration of the propellant. It is tempting to
think that this radial motion could be converted into axial motion, but that conversion will certainly
incur some additional losses due to increased entropy of the gas. This strongly favors the planar IPPT
configuration over the CTP-IPPT, where in the former energy is coupled from the circuit directly into
motion of the plasma in the preferred, axial direction without the need for additional processes to turn
the flow and generate thrust.

Martin [72] also developed a circuit model coupled to radial and axial equations of motion to
investigate the performance of conical IPPTs with cone angles from 10◦ to 90◦ (i.e., planar), treating the
plasma as a radially compressible slug conformal to the coil. The mutual inductance was calculated
using the magnetic field solver QuickField for a variety of plasma locations, with the plasma modeled
as a slug with finite dimensions and a large conductivity. Flux contours for one such calculation, with a
six-fold parallel 2 turn coil with cone angle of 60◦ is shown in Figure 15; this coil is equivalent to the
FARAD coil from Ref. [73] if it were folded in to the specified cone angle. From these results, the total
magnetic energy in the configuration is calculated, and from those are derived the plasma position
dependent mutual inductance values, which are stored in a look-up table and used for interpolation
during solution of the coupled circuit/dynamic equations. The radial equation of motion included
a restoring force due to the plasma pressure which was computed with a simplified equation of state.
The results of this model agreed with those of Hallock et al. [19,71] described above; in particular it
predicted that the maximum efficiency will be attained by a planar coil. These calculations also found
a local maximum in the efficiency (though not an absolute maximum) for a cone angle less than 90◦,
as was observed experimentally in Ref. [4].
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Figure 15. Magnetic flux contours calculated with QuickField for a coil with six two-turn leads in
parallel and a cone angle of 60◦. The plasma thickness is 1 cm. The overall dimensions of the coil are
similar to the FARAD coil of Ref. [73].

3.2. Closed Magnetic Flux Thrusters

Modeling of closed magnetic flux thrusters has focused mainly on understanding FRC formation
and plasmoid acceleration and the impact these processes have on thruster performance. We review
here in increasing order of complexity the modeling approaches that have been applied to date for
FRC thrusters. These include simple scaling laws, equivalent circuit models, and high fidelity full
plasma simulations. In each case, we discuss the model predictions for the key performance metrics
such as specific impulse, efficiency, and thrust.

3.2.1. Thruster Scaling Laws

Scaling laws are simple analytical expressions that relate thruster operating conditions and
geometry to performance metrics. IPPTs are inherently complex devices. High fidelity models are
required to fully capture the physics involved in thrust generation. However, those codes require
significant computational time and complexity, and it may be difficult to determine physical scaling
relations from the simulation results. To circumvent this issue, scaling laws can sometimes be found
by applying numerous assumptions to a model to arrive at first order expressions that capture, to an
extent, the effects key physical processes have on performance.

Efficiency from Energy Conservation

The model introduced by Slough et al. [42] is predicated on the assumption that acceleration of
the RMF-FRC is a two stage process. First, the plasmoid is accelerated by a Lorentz body force that
arises from the interaction of the azimuthal plasma currents and the external magnetic field. Second,
any thermal energy introduced into the plasmoid through Ohmic heating during FRC formation
is recovered through adiabatic expansion. To arrive at a tractable analytical expression for the
work performed by the Lorentz body force, this model employs the assumption of constant FRC
plasma properties in a conical geometry with fully magnetized electrons (see Figure 10c). The kinetic
energy delivered to the plasma by the Lorentz body force can be written as

EK,RMF = πr3
s lac

2eneω Bext sin(α), (13)

where rs is the average radius of the plasmoid, lac is the length of the thruster cone, Bext is the
magnitude of the externally applied magnetic field, and the cone half angle of the thruster is given
by α. Physically, this result shows that the energy of the propellant will increase with the size of the
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thruster, the plasma density of the plasmoid, the RMF drive frequency, and the strength of the external
magnetic field [42]. The conversion of thermal to kinetic energy is found by balancing the plasma and
magnetic pressures to yield

EK,th = ηth

(
Bext

2

2µ0
πrs

2lac

)
, (14)

where ηth = 1 − T/T0. Here, T0 is the initial plasma temperature before expansion and T is the
temperature after the plasmoid is ejected. Equation (14) indicates that the thermal energy converted
to kinetic energy scales as the square of the externally applied magnetic field. The total efficiency is
found by summing Equations (13) and (14) over the total energy expended in the system. Weber [51]
identified each of the relevant energy loss modes to further deconstruct the energy flow in the system
to find an overall scaling law for efficiency:

η =
EK,RMF + EK,th

EKE + Eth+B + Eiz + Eη + Esc + Econv + Erad
. (15)

The energy sinks in the denominator are: kinetic (EKE), thermal and magnetic (Eth+B), ionization
(Eiz), resistance in the flux conservers (Eη), screened RMF (Esc), convection (Econv), and radiation (Erad)
energy losses. Not included are the losses in the driver circuit, so Equation (15) only accounts for the
energy imparted to the plasma by the RMF.

While Equations (13) and (14) are predictive, provided the underlying assumptions are valid and
the plasma density is known, Equation (15) for the accelerator efficiency is not. This phenomenological
model has been successfully used in understanding the contributions of different energy loss
mechanisms to thruster efficiency at a given operating condition. In analyzing experimental data from
the ELF thrusters, for example, it was found that the overall estimated efficiency was 8%. The scaling
model was used to show that the dominant efficiency loss term was radiated energy (78% of
total energy), and that the conversion of total thermal and magnetic energy to kinetic energy was
approximately 50% [51].

Performance Metrics from Asymptotic Analysis of Equivalent Circuits

Woods et al. [74] derived analytical scaling laws for the impulse, thrust, and efficiency using
an asymptotic treatment of an equivalent circuit model of an RMF-FRC. Specifically, they examined
the case of high RMF field strength where the electrical load presented to the driving circuit by the
plasma can largely be neglected. Subject to the further simplifying assumption that the plasma can
be represented as a cylinder with constant density, they found the following results for impulse (I),
maximum force generated by the thruster (Fz,max), and efficiency (η):

I =
Fz,max

α
ln
(

1 +
E0µ2

o N2

2CL2l2
s ω2(B2

s,r + e2n2η2)

)
(16a)

Fz,max =
2
3

πenω r3
plpBs,r (16b)

η =
1

ME0

[
Fz,max

α
ln
(

1 +
E0µ2

o N2

2CL2l2
s ω2(B2

s,r + e2n2η2)

)]2

(16c)

Here α is the damping constant of the circuit, E0 is the initial input energy, N is the number of turns in
the RMF coils, C is the capacitance, L is the inductance, Bs,r is the background radial magnetic field
strength, ω is the RMF frequency, and ls is the length of the RMF coils. The plasma slug has a length
and radius of lp and rp, respectively, and a mass of M.

Holding all other parameters constant, Equation (16c) suggests that there is an optimal input
energy to achieve a maximum efficiency. Physically, the reason for this is believed to be related to
current generation as described in Section 2.2.2. The maximum current arises when the electrons
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are fully magnetized. Increasing the initial discharge energy E0 from a low value increases the
magnetization of the electrons, leading to increased thrust efficiency. However, after the electrons are
fully magnetized, any further increase in E0 is wasted, decreasing overall efficiency. This predicted
optimum efficiency as a function of E0 has yet to be experimentally validated, and we note more
generally that these scaling laws have yet to be compared against an actual experimental configuration.

Challenges in Deriving Scaling Laws

While scaling can provide fundamental physical insights into the physical processes in a thruster,
the assumptions used to arrive at these analytical descriptions generally restrict the applicability of
these scaling laws to limited cases. There are ongoing efforts to expand the set of scaling laws associated
with RMF-FRC operations, and to validate and verify these scalings laws against experimental
data. However, using lower-fidelity or simplified models to capture the complex interactions of
the plasma and the external circuit and going even further to relating those results to performance
metrics has proven to be difficult.

3.2.2. Equivalent Circuit Models

Following the standard approach that has been applied in the past to several IPPTs, there have
been attempts to represent FRC thruster operation with equivalent circuit models. Circuit models
fill an intermediate niche between low fidelity scaling laws and high fidelity plasma simulations.
Depending on the model, significant scaling insight can be gained without the extensive loss of key
physics. However, it can prove challenging to capture the important processes represented by different
parameters, such as the mutual inductance, in a tractable way that clearly relates them to thruster
operating conditions and geometry.

Equivalent Circuit Model for a Stationary Plasmoid

Hugrass et al. [75] were the first to derive a circuit model for RMF-FRCs. It includes a time varying
model for the penetration of an RMF into a plasma and links the process back to circuit components.
The model is not for propulsion purposes, and thus it does not include the axial acceleration of
the plasma.

The RMF is driven by a set of two coils of infinite length acting on a plasma column of fixed
density, also of infinite length (as shown in Figure 16a). By solving Ohm’s, Ampère’s, and Faraday’s
laws, a set of partial differential equations (PDEs) for the axial magnetic vector potential are derived
in cylindrical coordinates r and θ and in time t. These fields are associated with the transverse fields
produced by the coils and plasma currents, and the axial, applied magnetic field. The applied field is
a steady-state background field that is modified by the reverse field produced by the RMF and induced
azimuthal plasma currents. The model revealed significant transient effects as the RMF penetrates into
the plasma. The steady azimuthal current expected of an RMF current drive was observed after full
penetration and magnetization of the electrons. Also after achieving full penetration, the inductance
presented to the circuit by the coils approaches that of the unloaded case while the resistance increases
as energy is deposited into the plasma.
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Figure 16. (a) Geometry used to model the coil and plasma coupling in Ref. [75], (b) current waveforms
of an ELF discharge with and without a plasma in the thruster (from [51]; reproduced with permission
of the author), (c) equivalent circuit model of an RMF-FRC with flux conservers (from [43]; reproduced
with permission of Electric Rocket Propulsion Society).

Calibrated Equivalent Circuit Model to Estimate Energy Deposition in FRC

Weber [51] used a simple circuit model to estimate the energy deposited in the plasma based on
experimental measurements for the ELF thruster. The load of the plasma is modeled as a resistance
term that can be substituted into the circuit. The waveform produced in the circuit model was adjusted
by changing the characteristic plasma resistance until the model matched the waveform recorded
when the ELF thruster was discharged. This characteristic resistance was then used to calculate the
energy absorbed by the plasma. Experimental current waveforms of an ELF discharge with and
without a plasma in the thruster are shown in Figure 16b. For a standard shot, the absorbed energy
was calculated to be 46 J.

Circuit Model for Second Stage Acceleration of an FRC Plasmoid

Little et al. [76] used a lumped circuit to model the second stage for an RMF-FRC, which consisted
of a series of flux coils downstream of the RMF coils. The flux coils are pulsed as the plasmoid
traverses downstream, adding energy to the plasmoid while the latter simultaneously pushes or
entrains neutral gas as it translates. The equivalent circuit is similar to those in other inductively
coupled closed magnetic flux thrusters. The driving circuit consists of a charged capacitor discharged
through an RLC circuit that is coupled to the plasmoid, represented as a separate circuit, through
a mutual inductance term.

Expressions for the mutual inductance were derived using plasma current equilibrium
expressions [77]. The interaction between the external discharge and the plasmoid current gives
rise to an axial Lorentz force. As the model includes only the effects of a coil placed downstream of the
RMF region, it is unable to predict initial plasmoid formation and acceleration. The model, however,
did show good agreement with experimental data. [76].

Equivalent Circuit Model for FRC Translation including RMF Coils

Woods et al. [43] presented a one-dimensional slug model for the acceleration of a plasmoid
in an RMF-FRC (Figure 16c). In this model, each antenna is modeled as an LRC circuit coupled to
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a plasma possessing finite resistivity. The plasma is a conducting slug of fixed cylindrical geometry and
constant, uniform density in r and θ. The plasma also couples to a flux conserver. Expressions for the
flux linked by the plasma to the RMF antennae, φx,y and the emf that drives the plasma current,
εRMF, were derived, but to find this coupling the self-inductance of the plasma was neglected.
The acceleration of the FRC consists of two effects. The first is an electron Hall parameter scaling written
as Ω2

e /(1 + Ω2
e ) and stemming from the RMF driven current interacting with the radial magnetic

field. Thus, for sufficiently strong rotating magnetic fields, the Lorentz body force on the FRC reaches
a maximum value. Acceleration also arises due to the interaction of the magnetic field produced by the
circulating plasma current and the induced currents in the flux conservers. This has a J2 current scaling
as seen in other IPPTs [61]. There are ongoing efforts to better understand the mutual inductance
coupling between the plasma and RMF currents.

Equivalent Circuit Model for Annular FRC Translation

Hill [54] introduced a circuit model coupled to a one-dimensional translation model for an annular
FRC plasmoid represented as a slug. The circuit diagram in Figure 17 depicts a capacitor connected in
parallel to two inductors representing the inner and outer driving coils. Each coil separately couples
with the plasma through a mutual inductance term. These terms were calculated using the COMSOL
finite element program by modeling the plasmoid as a metal slug and moving it to different axial
locations relative to the coils. An empirical expression was derived from the simulation data, with the
mutual inductance decreasing exponentially with axial location, similar to other inductive plasmoid
thrusters. The force on the plasmoid is calculated as the axial change in magnetic energy coupled to
the plasmoid by each coil. No thermal effects are considered in the model. The force scales as the
sum of the square of each coil current times the axial change in mutual inductance. The model was
non-dimensionalized and a genetic algorithm was used to optimize the design for peak acceleration
efficiency. To date, this model has yet to be validated with any comparisons against experimental
data [78].

Figure 17. Equivalent circuit model of an AFRC (from [54]; reproduced with permission of the author).

Challenges with Equivalent Circuit Modeling

A key challenge for equivalent circuit modeling is accurately capturing the coupling between
the plasma and the RMF coils through mutual inductance terms. Both Hugrass et al. [75] and
Woods et al. [43] derived flux coupling terms to represent these effects. However, the former derived
a complicated PDE system that can only be solved numerically, limiting the scaling insight that can
be gained. The latter arrived at a more tractable ODE (in time) representation, but this came at the
cost of neglecting the self-inductance of the plasma. The model also does not account for the process
of RMF penetration into the plasma, and the FRC equivalent circuit models do not contain modeling
of any thermal effects. This poses a potential problem as there is evidence that adiabatic expansion
of the plasma may be a key acceleration mechanism [51]. There are ongoing efforts to model these
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processes within the circuit elements (such as the mutual inductance) that can be calibrated to match
experimental data but still retain the simplicity and insights that can be gained using equivalent
circuit models.

3.2.3. High-Fidelity Models

High fidelity simulations represent the most complex form of thruster modeling. The physical
processes the model can capture are limited to the numerical code used. While codes can be expanded
to account for a range of effects, this comes at the cost of computational time and it may be difficult to
use the results to determine the physical mechanisms driving performance. Nevertheless, high fidelity
modeling is a powerful tool for predicting performance of a thruster and in particular it can be
leveraged to model in-space performance.

Magnetohydrodynamic (MHD) Fluid Models

The MHD code Moqui has been used extensively to model the plasma dynamics of FRC formation
and translation [79] (example results presented in Figure 18a). Moqui features an adaptive grid that
is able to identify and move with a translating FRC. The solver is able to increase the grid resolution
in regions of strong magnetic field and high pressure gradients. This approach provides a balance
between physical fidelity and computational efficiency that has proven to be valuable during the
preliminary design and analysis of FRC thruster experiments, including PTX, MAP, and ELF.
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Figure 7. Comparison of various global parameters for the
MAP thruster with and without magnetic nozzle. Time
period covers the FRC formation acceleration. and ejection for
the calculations shown in Figs. 6 and 8. Red line indicates 
calculation without a magnetic nozzle. This case (Fig. 8) has a
passive coil at the exit of the thruster, and is similar to the initial
experimental design. 

algorithm that locates the FRC and concentrates the grid in that region. 
From Eqs. (9) and (20) it would appear that the directed energy increases with thruster size. Previous

experimental work defined to some degree the boundaries for MAP. For several practical reasons it was decided that 
the maximum coil voltage would be ~ 10 kV, and the maximum operating gas fill would be 4 Pa (30 mTorr) typical
of previous FRC experiments where long lived FRC have been routinely formed. (WN >> WA). The voltage is also 
within range of series operated solid state switches for future rep rated operation. The coil radius of ~ 0.1 m was 
chosen again based on the wealth of 
experimental data that exists for this size, as 
well as the fact that it is large enough to
achieve multi megawatt thrust power with a 
rep rate of less than 1 kHz. The accelerator 
length was variable, with increasing length
reflecting a nearly linear increase in FRC exit 
velocity. The accelerator length was based on 
a length that was sufficiently long to provide 
a solid test of the theory, yet kept the final
FRC kinetic energy below 5 kJ to minimize 
possible damage to internal diagnostics and 
vacuum boundaries. The MAP thruster
numerical calculations were conducted using 
these constraints. The results shown in Fig. 6 
show the formation, acceleration, and 
expansion/ejection of the FRC. Key 
parameters are plotted in Fig. 7. It is 
noteworthy to observe that the heating of the 
FRC while it is in the accelerator section of 
the thruster (~ up to 7 Psec) is converted to 
directional energy by the magnetic nozzle 
during expansion. There is only ~ 150 J of
thermal energy remaining in the FRC at the end. This is compared to the directed energy KE ~ 3.3 kJ. The frozen 
flow loss is thus quite negligible. 

The formation and accelerator coils overlap to
some degree, as this leads to the minimum
formation time which minimizes the FRC losses.
It also acts as a better representation and match of
the coil rise time to that of a propagating wave
transmission line. This manner of generating the
driving magnetic field waveform is ultimately the 
goal for the thruster. For the initial experiments, 
the field is propagated by a sequential discharging
of the magnets. This is also how the code was 
operated as well. A future upgrade to both code
and experiment will be the formation of a discrete 
traveling wave as was done in the Propagating
Magnetic Wave Accelerator (PMWAC) 
demonstration experiments11. The initial
experiments will not have a magnetic nozzle 
section. This simplifies the implementation of the 
accelerator as a large dielectric chamber is not
required to house the larger nozzle structure. It
also allows for the evaluation of the accelerator
efficiency independent of the nozzle physics. A
numerical calculation based on the actual
experimental design is shown in Fig. 8. A 

Figure 8. Flux and density contours for a numerical
calculation of the MAP thruster as constructed for
initial acceleration experiments. Black lines are flux
contours in the FRC. Axis and density bars are in units of
cm. 

11

I.V. Summary of Modeling Results
The Plasma Science and Innovation Center (PSI) at the University of Washington has developed a two-fuid

model of interaction plasma and neutral fluids[12]. This model is based on the SEL-HiFi code [13], a 3D MHD code 
with advanced features that are ideal for modeling this complex interaction. SEL-HiFi uses a flux-source form for
inputs, is completely implicit with an adaptive grid with high-order spectral elements. To this code Dr. Meier as
added the capability to investigate a neutral fluid with resonant charge exchange, electron-impact ionization, and
radiative recombination reactions. Braginskii closures are used for the plasma, and Chapman-Enskog hard sphere
closures are used for the neutral gas. And while experimental validation is on-going with the latest experimental 
results, presented here is a summary of results obtained from early simulations runs and presented at the 2011
Innovative Confinement Concepts meeting.

Figure 21 and Figure 22show results from a propagating FRC interacting with a background neutral gas. In
these cases, the total plasma mass of the FRC and neutral mass of the interaction region are equal. Additionally, the 
neutral mass is centered on axis as in the experiment and extends for 50 cm downstream. In these simulations a 30
microgram FRC is colliding with a 30 microgram Neon region after being initialized to 26 km/s axial velocity.
Figure 21 shows the neutral density and momentum during the FRC interaction. It is clear that the FRC compresses
and accelerates the neutral propulsion. Additionally, there is evidence of some ionization of the neutral gas. Figure
22 shows the plasma pressure increase as the FRC interactions with the neutral pressure. Finally, as you would
expect, there is an increase in diamagnetism and a slowing of the FRC as it passes through the gas.

Figure 21. Neutral density psuedocolor plots for baseline ELF simulation with a Gaussian radial neutral gas
profile. Black and white arrows indicate the direction and magnitude of plasma and neutral momentum,
respectively. Clear neutral entrainment is seen.

Figure 22. Pressure psuedocolor plots for baseline ELF simulation. Clear neutral entrainment, pulse sharpening,
and increase in external magnetic field pressure are seen.
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Figure 18. Numerical simulations of FRC thrusters: (a) Moqui simulation showing acceleration of
a plasmoid using sequentially pulsed magnets (from [80]; reproduced with permission of Electric
Rocket Propulsion Society), (b) SEL-HiFi simulation shows neutral entrainment by a translating FRC
(from [81]; reproduced with permission of the author).

Entrainment of neutral particles by a translating FRC has been investigated using the three-
dimensional MHD code SEL-HiFi [81] (example results presented in Figure 18b). The plasma-neutral
interaction was modelled by adding equations for ionization, recombination, and charge exchange
between the plasma and a neutral fluid. Simulations showed that the response of the neutral gas to the
passing FRC exhibited a strong dependence on electron temperature. For Te > 10 eV, downstream
neutrals were entrained primarily through ionization, whereas charge-exchange collisions dominated
for Te < 5 eV. Momentum is transferred to the neutral gas in both cases, however, frozen flow losses
increase with increasing ionization reaction rates. For this reason it was concluded that charge-exchange
is the most energy efficient process for neutral entrainment in FRC thrusters.

Two-Fluid Models

RMF-FRCs are inherently complex and due to their pulsed nature, it is critical to capture the
transient behavior. Significant high fidelity modeling has been performed at AFRL to study plasmoid
formation physics [48]. The numerical code is an r-θ multi-fluid plasma model, which is a departure
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from previous FRC modeling that treated the plasma using MHD. Data from the RP3-X experiments
are compared with simulation data, and computational results have shown penetration of the RMF
field into the plasma column over time in a manner commensurate with the results of Ref. [82].

Kinetic Models

The work of Brackbill et al. [83] has been leveraged by AFRL to model the translation of RMF
plasmoids with a focus on neutral propellant entrainment by the plasmoid [48], which has been
proposed as a possible means to increase thruster performance. The effort models collisional processes
of plasmoids traveling at high velocities, which incorporate effects from kinetic theory. The kinetic
solver Celeste3D, which captures the complex chemical and physical processes associated with neutral
gas entrainment, is used in the r-z plane.

High Fidelity Modeling Challenges

There are ongoing obstacles associated with high fidelity modeling. The simulations can require
substantial computational resources depending on the modeling hierarchy used. Modeling each of the
three stages of RMF-FRC operation—preionization, plasmoid formation, and translation—presents
unique challenges. Broadly speaking, it is difficult to capture all three stages within one model that
properly treats the collisional processes, the plasma and field physics, and various multi-scale effects
that range from high-speed plasmoid formation to the relatively slower acceleration and ejection of the
plasma. The inherent non-linearities of the problem also present issues for convergence. The difficulty
of developing higher fidelity models is compounded by the lack of detailed internal experimental
data on RMF-FRC formation for validation and calibration.

4. Review of Major Subsystems

IPPT systems are comprised of several subsystems that act in conjunction to operate a thruster.
The propulsive performance often heavily depends on and is very sensitive to how well these
subsystems perform both independently and when coupled with other subsystems in a thruster
assembly. For example, the dynamic coupling between the plasma and drive circuit, drive circuit
losses, and initial propellant gas distribution all have significant impacts on the performance of an
IPPT. One key example of this is the importance of the dynamic impedance parameter presented in
Equation (12), which relates the period of the drive circuit (electrical circuit response) to the residence
time of the current sheet near the coil face (plasma acceleration) in open magnetic flux IPPTs.

Often the major subsystems can be independently upgraded or improved to incorporate new
advances or technologies. We proceed with a review of the major IPPT subsystems, with an emphasis
on the present state-of-the-art and implementations in different test articles.

4.1. Power

The circuit configurations and components used to produce the short, high current pulses in
the drive coil that are ultimately responsible for plasma acceleration and PPU configurations used to
convert electricity delivered by the spacecraft electrical system to the currents and voltages required
by the thruster are reviewed in this section. The conventional RLC discharge circuit found in many
IPPTs is reviewed on the component level, with particular emphasis on the energy storage capacitors
and the switches used to discharge stored energy through the drive coil.

4.1.1. Power Processing Units

In the case of an IPPT, the PPU performs the role of charging the energy storage capacitor banks
to the high voltages required for efficient thruster operation, as depicted in Figure 19. Since most
satellites operate at nominal voltages ≤200 V [84], the PPU often must provide a voltage step-up of
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one to two orders of magnitude. Crucially, this must be performed with high efficiency so that the
overall system efficiency is not unduly impaired and so as to reduce PPU thermal loads.

PPUs for IPPTs are still in the early stages of development when compared to those available for
flight-qualified EP systems such as Hall or ion thrusters. Most IPPT PPU development to-date has
centered around the EMPT and ELF thrusters. A PPU for the UM RMF-FRC thruster has been the
subject of recent design efforts but has not yet been demonstrated in operation [43].
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Figure 19. Diagram illustrating the location and role of the PPU in stepping-up the voltage for an IPPT
capacitor bank.

EMPT and ELF Thruster PPU

PPUs with pulse charging capabilities have been developed and tested with the EMPT [47] and
the ELF thruster [58,85,86] in continuous operation. The basic circuit topology of these PPUs is shown
in Figure 20. The “pulse charging” feature of these PPUs relies on the concept of basic resonant
charging of a capacitor via an inductor. Each time the capacitor is discharged, current begins to flow
through the charging inductor. When the switch closes, the magnetic field energy inside the inductor
attempts to maintain the flow of current, pushing charge onto the capacitor bank. The result is a rapid
increase in the capacitor bank voltage. Simulated voltage and current in a 1 kW version of the EMPT
PPU during thruster operation at 2 kHz may be found in Ref. [47]. The primary advantages of this
method are its relative simplicity, low parts count, and use of passive, rather than active, components
to perform the charging process.
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Figure 20. Simplified circuit diagram of the pulse charging PPU used to recharge the capacitor bank of
the ELF thruster during continuous operation (based on schematic from [86]).

The initial 1 kW version of the EMPT PPU [47] used pulse charging to step-up a 24 V DC input
voltage to 1200 V with high efficiency. This was the first reported attempt to use a method other than
a DC power supply to recharge the capacitor banks of an IPPT. It was found that a small, low voltage
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capacitor could be used to contain the ripple current when pulse charging to ≤5%. Early versions of
the EMPT used two paralleled IGBTs for the discharge/pulsed charging switch. Later versions (also
reported in Ref. [47]) used an array of smaller, higher efficiency IGBT switches. The EMPT PPU was
designed to allow for thruster operation at repetition rates between 500 Hz to 5000 Hz, with 2800 Hz
identified as the optimal repetition rate for this thruster. The high repetition rate EMPT testing
enabled by this PPU is believed to be the first successful IPPT operation at &1 kHz repetition rates.
Thermal testing of the PPU revealed that heat was mostly generated in the pulse charging/discharge
switch and that a distributed switch array was highly beneficial for PPU thermal management.

Further development of the EMPT PPU led to a redesigned 1 kW PPU and a higher power 5 kW
version [85]. The 1 kW version was modular and consisted of multiple switching modules. Each of
these modules tightly integrated a high current IGBT, energy storage capacitors, and driver circuitry
for operating the switch. A single pulse charging circuit was shared between all of the modules, with a
100 V DC power bus feed translating to capacitor bank voltages up to 1600 V. Operation of the PPU
at up to 1 MW peak pulse power and 600 W average power was reported [85]. The 1 kW PPU was
also the first IPPT PPU to demonstrate stable, long-term operation. This version was reported to
have been successfully operated for over 109 discharges and 100 hrs. Steady state thermal operation
in vacuum was also achieved. System longevity was due in large part to the extensive protection
circuitry integrated into the PPU design, which included over-voltage, over-current, and state-of-health
monitoring systems.

It should be noted that the use of the term PPU in [85] refers to the combination of the pulse
charging circuit and switching modules, since here the actuation of the discharge switch is integral
to the recharging of the capacitor bank. Each of the modules contained their own discharge energy
storage capacitors and discharge switch, and all the modules were connected in parallel to form
a distributed discharge module array. The 5 kW PPU was largely identical to the 1 kW version, with the
higher power rating achieved by using six switching modules in parallel. It was found that assembling
these modules in parallel required each to have independent voltage regulation and filtering as well as
high voltage isolation from other modules. Independent fiber optic triggering of each module was
found to be crucial. During testing, the 5 kW PPU demonstrated 3 kW continuous power operation
and up to 5 MW peak pulse power [85].

The EMPT PPU architecture was extended to a 15 kW PPU design for continuous high repetition
rate operation of the ELF thruster [58,85]. For this PPU, the inductive pulse charging was used to
boost a 300 V DC input bus voltage to as high as 4000 V across the main capacitor bank of 1.2 µF.
The final charge on the bank was controlled by varying the input bus voltage and the switch on-time.
The latter controlled the duration that the charging current was applied to the capacitor bank. Similar to
the EMPT PPU, high power operation was achieved using multiple switching modules in parallel.
It should be noted that the modules used for the 15 kW PPU, while topologically similar, were not the
same as those used in the 5 kW EMPT PPU. For the 15 kW PPU, high Q-factor, film capacitors were
used instead of the C0G ceramic capacitors used in the previous design, and higher power IGBTs
were used for the pulse charging and discharge switches. Testing of this PPU demonstrated 15 kW
continuous operation at up to 1 kHz repetition rates, with peak pulse powers as high as 55 MW [85].
An earlier version of the 15 kW ELF PPU incorporated a variable frequency pulse charging circuit
to permit dynamic tuning of the repetition rate to an optimal value, which could change depending
on the propellant being tested [58]. In these tests, repetition rates between 100 Hz to 1500 Hz were
achieved for a nominal capacitor bank charge voltage of up to 2800 V.

“Proto-flight” versions of the ELF PPU have been developed for power levels of 1 kW and
5 kW [86]. The 1 kW variant enabled 1 J/pulse operation and was designated the “J1” PPU. The higher
energy 5 kW PPU consisted of 6 J1 PPUs in parallel. This unit was designated the “J6” PPU.
Circuit schematics and an assembled J6 PPU are shown in Figure 21. Having been successfully
operated for more than 1 billion discharges, the ELF PPU is the most extensively tested for any IPPT.
In addition to power throughput and longevity, these PPU designs have demonstrated steady thermal
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operation in vacuum and have been subjected to vibration, thermal, and radiated EMI testing as
part of an effort to advance the readiness level of the ELF thruster system [86]. Three-axis vibration
testing of the J1 and J6 PPUs found that the resonant frequencies of the two PPUs did not change in
response to random vibrations and high-level sinusoidal sweeps. In addition, no mechanical failures
occurred and both PPUs retained nominal functionality, indicating that the PPUs were capable of
withstanding launch-like vibrational loads. Preliminary in-atmosphere thermal testing of the J6 PPU,
which was attached to a temperature controlled baseplate set to 50 ◦C, revealed elevated component
temperatures≥70 ◦C after several minutes of continuous operation. Even at their peak values, however,
such temperatures were well within the tolerable range of the components tested. Subsequent limited
performance testing indicated that PPU performance was not compromised by operation at these
increased high temperatures. Overall PPU efficiency was estimated at 88% [86].

UM RMF-FRC PPU

PPUs have been developed to supply power for operation of the 30 kW UM RMF-FRC at 1 kHz
repetition rates [43]. The mechanical design of this PPU is shown in Figure 22. This PPU consists of
two parallel boost circuits (one for each of the RMF antenna) and a low-pass filter circuit to protect
the input power source from switching transients in the boost circuits. A high speed voltage doubler
configuration was selected for the boost circuit topology and provides the required voltage gain across
the PPU. Switching of the PPU boost circuits is performed by a single dual configuration IGBT module,
with snubber circuits included to prevent damage from switching-induced transients. The PPU was
designed to be water cooled to avoid component overheating when operating at high power.

(a) Single PPU module (b) J6 PPU configuration

(c) Assembled J6 PPU

Figure 21. The ELF J6 PPU (from [86]).
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Figure 22. Mechanical design of a single PPU to supply power to one antenna in the UM 30 kW
RMF-FRC (from [43]; reproduced with permission of Electric Rocket Propulsion Society). The low-pass
filter for protecting the input source from switching transients is not pictured.

4.1.2. Discharge Circuit

The conditions for efficient IPPT operation place several challenging requirements on components
comprising the discharge circuit. The need to create a strong azimuthal electric field to break down the
propellant and induce current in the resulting plasma requires a large current rise rate in the drive coil.
In an RLC circuit, dI/dt is proportional to the voltage on the capacitor and inversely proportional to
the parasitic circuit inductance. High voltages are usually required since is it often difficult to achieve
the necessary rise rates solely by reducing the stray inductance. These high voltages in turn result
in high peak current levels. The result is that IPPT discharge circuits often require components not
only capable of handling high voltages and currents, but that can also handle extreme transients in
both parameters.

Representative circuit parameters for selected IPPTs are presented in Table 2. Peak currents in the
external circuit can be on the order of 1 kA to 100 kA, with current rise rates in the drive coil &1 kA/µs.
In addition, the nominal operating voltage, V0, can range from a few kV is smaller IPPTs to the tens
of kVs found in the PIT MK Va. In the balance of this section, we review the components that have
been implemented in the discharge circuits of experimentally tested IPPTs, focusing primarily on the
capacitor bank and discharge switch. Design considerations for the drive coil are discussed separately
in Section 4.2.

Table 2. Representative circuit parameters for selected IPPTs. (* estimated values, ** value not reported).

Thruster Cmb Lc Lstray V0 Imax dV /dt dI/dt
[µF] [nH] [nH] [kV] [kA] [kV/µs] [kA/µs]

PIT MK Va [3,65] 9 680 60 30 135 11 270
FARAD [17,87] 20 810 70 3.1 10* 1.2 45
MSFC IPPT [18] 10 705 336 3 7 0.7 2
ELF-160 [88] * 1.32 325 ** 3.4 7 5 10

Discharge Circuit Topologies

The simple series RLC discharge circuit shown schematically in Figure 14a is the most common
IPPT topology. In this configuration, the initial voltage on the capacitor drives a current through the
circuit once the switch is closed. The voltage and current in the system can be described using equations
for a damped harmonic oscillator. Depending on the value of the damping ratio, ζ, the waveforms
may be underdamped (ζ < 1), critically damped (ζ = 1), or overdamped (ζ > 1), as depicted in
Figure 23. For a series RLC discharge circuit, the damping ratio is given by

ζ =
R
2

√
C
L
=

(
Re + Rp

)
2

√
C

LC −M + L0
, (17)
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where the variables are as described in Section 3.1.1. For optimal performance, the discharge should be
underdamped so that the current rise rate is maximized and the current peaks while the propellant is
still close to the coil face [18,61]. While simple and demonstrably effective, the basic RLC discharge
circuit has a few key drawbacks. First, since there is only a single current path, all components must
be rated for the full current, voltage, dV/dt, and dI/dt requirements of the circuit. For IPPTs with
very high per-pulse discharge energies this can make component selection very challenging, especially
when attempting to incorporate solid-state electronics into the design. Second, unless the discharge is
clamped after the first half cycle, the voltage on the energy storage capacitors will reverse, leading
to reduced capacitor lifetimes [7,73,89]. Third, as the voltage repeatedly reverses, the current in the
circuit will continue to oscillate, resistively dissipating all the remaining energy in the system.

Bernardes and Merryman [90] (B-M) proposed a variant of the basic RLC circuit as part of a single
stage induction mass driver system. A schematic of this circuit is shown in Figure 24a, with sample
waveforms presented in Figure 24c. By using two capacitors of equal value in series, the B-M circuit
both avoids voltage reversal on either capacitor and recaptures some of the initial energy for use in
subsequent pulses. The B-M circuit was adopted by Polzin et al. [73] and tested with a redesigned
version of the FARAD thruster [17,87]. This circuit featured two 20 µF capacitors, with one capacitor
charged to 3160 V to yield a total stored energy of 100 J. In testing, each capacitor at the end of a pulse
was charged to a little less than half of the initial charge voltage.

A diode-latched version of the B-M circuit was also benchtop tested by Polzin et al. [87].
The topology of this circuit, shown in Figure 24b, adds a second switch in series with the bottom
capacitor and also includes anti-parallel freewheeling diodes across both switches. These additions
were intended to only allow current to flow during the first half cycle of the discharge, with current
during the second half cycle being blocked by the diodes. From the capacitor voltage and current
waveforms in Figure 24d, it was found that, while reduced, the second half cycle current was not
completely eliminated. It was also found that this configuration resulted in capacitor C2 retaining
more of the initial stored energy while less was directed back onto C1. This differed from the unlatched
case where the recovered energy was shared equally between the capacitors.
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Figure 23. Simulated underdamped, critically damped, and overdamped RLC discharge circuit
waveforms for the capacitor voltage and current.
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(a) Baseline (b) Latched

(c) Baseline current and voltage waveforms (d) Latched current and voltage waveforms

Figure 24. Bernardes and Merryman discharge circuit schematics for (a) baseline and (b) diode-latched
configurations. Current and voltage waveforms for capacitors C1 and C2 in the (c) baseline and
(d) diode-latched configurations (from [7,73]).

A novel pulse compression ring circuit topology was developed for IPPTs by Owens et al. [73,89]
The pulse compression circuit, shown schematically in Figure 25a, used saturable inductors acting as
magnetic switches to transform slower, low current pulses into faster, high current pulses with large
dI/dt, as illustrated in Figure 25b. Because the switching occurs in the lower current, slower portion of
the circuit prior to pulse compression, existing solid-state IGBT switches could be used to initiate the
discharge. Connecting one end of the load to the input energy storage capacitor and using a steering
diode permits for the recovery of excess charge, which could be used for successive pulses. Benchtop
testing of a 100 J version of the circuit demonstrated the viability of the pulse compression ring
concept. Initial charge voltages of 3.3 kV resulted in compressed pulses with 20 kA peak current and
dI/dt = 15 kA/µs [89]. High energy recapture efficiency was also reported, along with successful
prevention of voltage reversal on the energy storage capacitors.

Inductive Energy Recapture

In an IPPT, energy stored in a capacitor is transferred into the inductor during the pulse, producing
a magnetic field. Inductive energy recapture refers to the process whereby energy stored in the magnetic
field that did not perform work on the plasma is redirected into the recharging the energy storage
capacitors at the end of a discharge. For illustrative purposes, let us consider the case of a RLC type
discharge circuit. After the initial acceleration of the plasma, if no further action is taken charge will
continue to oscillate between the capacitor and inductor until all remaining energy has been resistively
dissipated in the circuit. This mode of discharge circuit operation is referred to as the “full ringdown”
mode. Since most of the acceleration of the plasma occurs during the first half-cycle of the discharge,
any additional flow of current beyond that time typically results in energy lost to resistive heating.
This makes it desirable to interrupt the current as soon as possible after the first half cycle is complete.
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(a) Circuit schematic (b) Current and voltage waveforms

Figure 25. Pulse compression ring (a) circuit schematic and (b) current and voltage waveforms at each
of the three capacitors (Reproduced/modified from [89]; with the permission of AIP Publishing).

To maximize the voltage recovered onto the capacitor bank and minimize the back-EMF kickback
generated by interrupting the current through the inductive load, the discharge should be interrupted
at either the first or second zero crossing of the current waveform. Interruption at the first crossing is
referred to as “half-cycle” recapture while interruption at the second is termed “full-cycle” recapture.
The former is typically more efficient than the latter because it eliminates dissipation that would
occur in the second half-cycle of the discharge. Half-cycle recapture has the disadvantage, however,
of causing the main bank voltage to switch polarity at the end of each discharge. If the recaptured
charge is to be used on subsequent pulses, the PPU would require a dual polarity output to recharge the
capacitor bank to full voltage after each half-cycle discharge. Figure 26 illustrates the general process
of full-cycle inductive energy recapture using an IGBT in an RLC discharge circuit. Here, current flows
through the IGBT during the first half-cycle and returns through the anti-parallel freewheeling diode
during the second half-cycle. The current through the IGBT during the second half-cycle is zero,
allowing for safe turn-off of the switch.
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Figure 26. Example current waveform and IPPT discharge circuit schematic incorporating an IGBT for
full-cycle inductive energy recapture.

Martin et al. [18] demonstrated half-cycle recapture by placing a fast recovery diode (FRD) in
series with a thyristor switch. The FRD used in this work, however, was noted to have a slow reverse
recovery time relative to the discharge cycle half period which resulted in significant energy losses
during the reverse recovery period of the diode. Related testing by Toftul et al. [91] revealed that
SiC PiN type FRD provided improved reverse recovery performance in benchtop testing at reduced
voltages. Maximum recapture efficiency, defined as the fraction of the initial stored energy recovered
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onto the capacitor bank, was ≈20% when using Si FRDs but in the best case increased to ≈30% with
SiC FRD. Data indicated that the recapture efficiency improved as the nominal charge voltage was
increased, but results were only reported for voltages up to 550 V due to concerns of damaging the
SCR switch used to trigger the discharge circuit.

Poylio et al. [92] reported efforts to achieve full cycle recapture in an RLC discharge circuit using
a stack of five gate turn-off (GTO) thyristor switches. Turn-off pulses were applied to the switches at
both the first and second zero crossings of the current to halt flow through the thyristors during the
second half cycle of the discharge. The control pulses were timed such that the peak control pulse
current corresponded with the zero crossing of interest. Peak current in the turn-off control pulses
was about 900 A in both cases. It was found that current continued to flow through the GTO thyristors
well after the turn-off control signal was received, regardless of whether it was applied at the first or
second zero crossing.

Martin [72] compared simulated IPPT efficiencies for an RLC discharge topology operating in
full ringdown, half-cycle, and full-cycle recapture modes. It was found that peak efficiencies for the
recapture modes were often >30% higher than the full ringdown case. Interestingly, the difference
in peak efficiency between the half-cycle and full-cycle recapture cases was only found to be a few
percent. The potential reduction in PPU complexity in the full-cycle case may compensate for this
slight decrease in efficiency.

Most of the discussion of energy recapture has centered around the basic series RLC discharge
circuit. Here, interruption of the current is required to recover voltage onto the capacitor bank.
In contrast, the B-M circuit tested by Polzin et al. [17,73,87] naturally achieved energy recapture
without the need to stop the flow of current. The efficiency of the recapture in this circuit is not optimal
since the current is allowed to oscillate and resistively dissipate energy for many cycles. The latched
B-M circuit tested by Polzin et al. [73] sought to improve the recapture efficiency of the B-M circuit by
implementing half-cycle recapture using diodes. Current and voltage waveforms from a benchtop
circuit indicated that, although reduced, current was not fully shut off at the end of the first half cycle.
While no explanation was given in [73], it is suspected that slower than required diode reverse recovery
may have been the cause.

Switches

The switch connecting the energy storage capacitor to the drive coil must be capable of holding
off the nominal charging voltage, conducting currents up to several kA, and surviving extremely large
transient dV/dt and dI/dt values. The PIT MK V and MK Va employed a series-parallel array of
18 spark gaps designed to switch peak currents of Ipeak & 100 kA (& 11 kA per switch) at rise rates on
the order of 270 kA/µs (≈30 kA/µs per switch) [3,9]. Nominal stand-off voltages for these switches
was Vbd > 15 kV. Simultaneous switch firing was found to be a major challenge when paralleling
spark gaps in this configuration. The switches had to all fire within a window of 5 ns [3]. It was also
noted that, while sufficient for single shot testing, spark gap switches were ill-suited for extended
duration, long life operation and solid-state switching would ultimately be required.

Future work to develop the PIT MK VI identified several additional disadvantages associated
with the use of spark gap switches. Hrbud et al. [9] noted that the nominal erosion rate of the spark
gap electrodes was too high to support the large number of pulses required for an interplanetary
mission. In addition, electrode erosion would change the spark gap electrode separation over time,
which would likely alter the operational characteristics of the gaps even before switch failure occurred.
Other potential issues included challenges with high repetition rate (&10 Hz) operation, susceptibility
of the gap insulation to radiation damage, and difficulties in maintaining the appropriate gas pressure
inside the switch while operating in a space environment for an extended period of time. These issues,
combined with the strict timing requirements noted previously, led to an investigation into the use of
solid-state switches. Development of the PIT MK VI and MK VII by Poylio et al. [92] led to testing
of stacks of pulsed power thyristors as spark gap replacements. To provide switching capabilities
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similar to spark gaps, it was estimated that the thyristor stacks should have breakdown voltages Vbd ≥
V0 = 15 kV, support peak currents Ipeak ≥ 13 kA and current rise rates dI/dt ≥ 20 kA/µs, and close
in times no slower than ≈300 ns. A stack of five ABB Model 5SHX 14H450X thyristors was found
to meet or exceed these requirements, providing Vbd = 22.5 kV, Ipeak = 21 kA, dI/dt = 27 kA/µs,
and tsw ≈ 200 ns. Attempts to achieve inductive energy recapture by shutting off these switches
during the second half cycle of the discharge were unsuccessful, however. In addition, it was noted
that testing of the thyristor stacks would be necessary to confirm switch lifetime sufficient to meet
mission requirements.

Solid-state switches have also been implemented on a smaller IPPT by Martin et al. [18]. In this
work, a single thyristor (Dynex PT85QWx45) and fast recovery diode (FRD) (Dynex DSF21545SV) were
used to control discharge currents up to Ipeak = 7.4 kA. The maximum charge voltage was V0 = 3 kV
and the current rise rate was estimated to be dI/dt ≈ 2 kA/µs. It is worth noting that these values
were well within the capabilities of the thyristor, which was rated to Vbd = 30 kV, Ipeak = 30 kA,
and dI/dt = 22 kA. Triggering of the thyristor at repetition rates of up to 20 Hz was successfully
demonstrated. The series FRD in this work was implemented to perform inductive energy recapture.
By stopping the reversal of the discharge current, the capacitor bank is clamped at some negative
voltage and a portion of the initial stored energy is retained. The Dynex Si FRD had a reverse recovery
time of ≈7 µs, which was found to be somewhat slow given the ≈20 µs half-cycle period. Nonetheless,
some degree of current blocking was observed. A related effort compared the performance of an ABB
Si FRD and SiC Schottky diodes in the same circuit [91]. In that test, the data show that the Si diode
took 5–6 times longer to halt current flow relative to the SiC diode.

For high repetition rate thrusters, solid-state switching is the only practical option to reduce
the time between pulses. Fortunately, the lower discharge energies-per-pulse characteristic of high
repetition rate operation reduce the voltage, current, dV/dt, and dI/dt requirements on the switches.
The EMPT discharge circuit used two high-speed IGBT switches from manufacturer Semikron® rated
up to 9 kA of peak current. Later testing used a distributed array of smaller, higher efficiency IGBTs
made by IXYS®. The faster switching times of both IGBT models enabled the EMPT to achieve
the first reported multi-pulse operation of an IPPT at multi-kHz repetition rates [47]. Paralleling of
multiple high power IGBTs was found to enable peak discharge currents up to 20 kA in the 30 kW ELF
thruster [85].

Capacitors

The energy storage capacitor must be able to rapidly source the large currents required by the
discharge while also withstanding the full charging voltage for many cycles. To avoid excessive Ohmic
heating, the bank equivalent series resistance (ESR) must be as small as possible. In addition, it is
also desirable that the equivalent series inductance (ESL) be low to help minimize the circuit stray
inductance. Moreover, the capacitor must be able to handle the the polarity reversal of the applied
voltage during the discharge. Finally, the capacitor must survive exposure to the vacuum environment.

While many different types of capacitors exist, film and ceramic/mica capacitors appear to be best
suited to the demanding requirements of IPPT operation. Film capacitors are a type of non-polarized
capacitor in which the dielectric material is a thin plastic film. Modern film capacitors typically have
low ESR and ESL, which results in a low dissipation factor and makes them well suited for high
frequency applications involving high surge currents. In addition, film capacitors that can withstand
several kV or more are readily available. In the case of very high voltages (&10 kV) the capacitors may
be pressurized and oil filled to prevent breakdown of the capacitor dielectric.

Most IPPTs tested have used film type capacitors [3,16,18,58]. The PIT MK Va used 18 separate
2 µF oil-filled, pressurized film capacitors charged to as much as 16 kV in a Marx bank configuration.
The total capacitor bank had a nominal charge voltage of up to 32 kV and possessed an effective
capacitance of 9 µF. Both the FARAD thruster [73] and the NASA-Marshall 27 cm diameter IPPT [18]
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used oil-filled pressurized film capacitors, with 20 µF capacitance in the former and 10 µF capacitance
in the latter.

Film capacitors designed for snubber applications are particularly well suited for use as IPPT
bank capacitors, since they are typically designed for operation at very high dV/dt and dI/dt rates.
Paralleled arrays of WIMA™ FKP and/or MKP series snubber film capacitors were used for the energy
storage banks in the EMPT [47] and ELF thruster [58]. Typical bank capacitance in these thrusters was
roughly 24 µF for the EMPT and 1.2 µF for the ELF thruster. For reference, the FKP snubber capacitors
are reported to have a dissipation factor of tan δ ≤ 6× 10−4 at 10 kHz and a maximum pulse rise time
of 5000 V/µs at 3 kV.

To date, the EMPT and ELF thruster are the only known IPPTs to have used a distributed array of
ceramic capacitors for the main discharge bank [47,85,88]. This design choice was motivated largely
by the need for improved thermal management of the capacitor bank during continuous operation
at high power for extended duration. A distributed capacitor array has more surface area for heat
extraction, making heat sinking more effective. The parallel connection of many capacitors also
tends to reduce the net ESR and ESL of the bank, assuming the connections themselves do not add
excessive stray resistance or inductance. Reducing the ESR has the added benefit of decreasing
resistive heat generation, which in turn reduces the load on the cooling system. Ceramic capacitors
can possess quality factors, defined as the ratio of energy stored to energy dissipated, which are
very large and result in greater circuit efficiency and lower heat generation. Initial thermal testing
of the EMPT at 1 kW revealed that the heat loading to the ceramic capacitors was small, with the
bank temperature rising only a few ◦C over 1.5 hrs. Similar testing of the ELF thruster [88] found the
bank only reached ≈45 ◦C after nine minutes of operation at 14.5 kW. This value was well below the
175 ◦C rated temperature of the capacitors and is indicative of the effectiveness of the distributed bank
approach for thermal management.

4.2. Drive Coil

In an open magnetic flux IPPT, the drive coil couples energy into the propellant, leading to
acceleration of the gas. While the coil or coils also couple energy into the plasma in a closed magnetic
flux IPPT, most work on coil optimization has been performed for open flux devices because the
acceleration process in these devices is extremely sensitive to the drive coil parameters. The drive coil
is characterized by an electrical parameter, the inductance, which is subject to competing constraints.
The inductance should be high relative to the stray inductance in the circuit such that a substantial
fraction of the charge voltage on the capacitor is actually applied across the coil, but it must not be
so high as to limit the current rise rate, dI/dt, of the circuit to levels below which ionization and
acceleration suffer. However the current rise rate cannot be too fast or there is a risk of damage to
solid-state devices such as switches and diodes. The size of the coil, and hence its inductance, is also
influenced by other considerations. There are practical limits on how big or how small a coil can
be fabricated. It is also important to design the device so that the propellant gas injected before the
discharge covers the coil face but does not migrate beyond the coupling length of the coil in the interval
between successive discharges.

The PIT MK V and MK Va coil (which was really the same coil, see Figure 2) consisted of nine
primitive coil circuits clocked around a circle at 20◦ increments. Each circuit is electrically independent
of the others, but all are discharged at the same time. Each primitive circuit was comprised of two
capacitor banks (capacitor and switch) arranged in a Marx-bank configuration, with the spiral coil
segments broken into a series of four quarter-turn spiral coil segments. The quarter-turns are situated
in grooves in an insulating coil form such that they alternate spiralling inward on the front side of the
form and outward on the back side. This arrangement had very low parasitic inductance leading to
a very high current rise rate. Summing all the currents for the entire coil, the radial current components
cancel yielding an almost purely azimuthal surface current. At the edge of the MK V coil, the segments
had a greater pitch to compensate for a weaker field due to field fringing.
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Other IPPTs have used coils with multiple turns wound in the shape of an Archimedes
spiral [13,16,17,19] with the path of a coil lead, rcoil, expressed in polar coordinates as:

rcoil(θ) = rin +
(rout − rin)

2π
θ (18)

where rin and rout are the inner and outer coil radii and θ is the angle in radians. Multiple leads
in parallel are used to reduce the total inductance and produce a more uniform current density.
An illustration of this coil geometry is shown in Figure 27 for a notional coil with six two-turn leads
and inner and outer coil radii of 5 cm and 15 cm, respectively. Each lead completes one outward
counter-clockwise spiral on the front of the coil form, then threads under the form and completes one
inward counter-clockwise spiral. As with the PIT MK V coil, radial components of the current in the
front and back leads cancel while the azimuthal components add to produce a uniform azimuthal
surface current. Coils are typically wound so that the terminations are physically close to one another
to reduce the stray inductance in the circuit, although it is not always practical to do so.

A recent proposal by Raines [93] for improving the overall coupling between the coil and the
plasma in an IPPT, particularly on the inner and outer edges of the drive coil, is to use a coil based
on the Halbach array geometry, shaping the magnetic field in a more optimal way. Such a field
configuration might also reduce parasitic losses in the device by reducing the field strength on the
back side of the coil. Computational modeling of an electromagnet designed to mimic a Halbach
array indicated that it is possible to fabricate a drive coil to create such a field configuration. This coil,
shown in Figure 28a, has a standoff between the front and back faces with additional windings in the
axial direction on both the inner and outer edges of the coil as well as a permeable core in the center of
the coil. The resulting flux contours (calculated using finite element magnetic modeling) are shown in
Figure 28b. How the inclusion of a permeable core in a pulsed coil would work in practice, or how it
could be dispensed with altogether, is a subject for further research.

Figure 27. Illustration of a two-turn Archimedes spiral coil with six parallel leads clocked at 60◦ intervals,
indicated by the colors red, orange, green, blue, purple, black. Each lead completes one outward
counter-clockwise spiral on the front surface (solid line) and then one inward counter-clockwise spiral
on the back surface (dashed line) to return to the initial starting point.
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Figure 28. (a) A proposed Halbach array-based design for a drive coil and (b) computed flux contours
for the proposed configuration (from [93]; reproduced with permission of the author).

4.3. Propellant Management and Injection

The propellant management system of an IPPT consists of tankage, propellant feed lines,
and a valve for propellant injection. Most propellants do not require special tank designs, cryogenic
storage, or novel materials for the tanks or feed lines. Likewise, space-rated components that could be
incorporated to monitor the gas pressure in the tanks is fairly well developed. The propellant valve,
on the other hand, may or may not be a limiting component in the system, depending on how the
thruster is operated.

A fast, low leakage pulse valve is required for an IPPT operating in either single pulse mode or
at a slow repetition rate, the latter being where the gas injection timescale is much shorter than the
period between pulses of the thruster. Most high discharge energy-per-pulse tests to date have been
in single pulse mode, but the results, scaling, and requirements can be applied equally to the slow
repetition rate mode. For single-pulse operation, a plenum is typically charged to a certain pressure,
controlling the mass bit for a pulse. The valve must open rapidly, remain open a short period of time,
and close equally rapidly so as to maximize the amount of gas injected from the plenum into the
thruster by minimizing the amount that either has a chance to escape to vacuum or that has not yet
entered the thruster before the electrical pulse through the coil is initiated. For this discussion, being ‘in
the thruster’ means that the propellant is within the electromagnetic coupling distance of the coil.
The entire valve actuation process occurs on the order of 1 ms, with the opening and closing occurring
much faster. In addition, the valve must maintain a relatively low leak rate to ensure propellant does
not excessively drain from the system between pulses. In the PIT MK Va, a solenoid valve based
on a speaker design was used, with rapid opening accomplished by pulsing high current driven by
a separate 10–15 J capacitor through the valve coil windings and rapid closure achieved using a stiff
metallic diaphragm as a closing spring connected to the moving seal [10]. It has been estimated that
a valve of this type might have to survive 109–1010 pulses for a realistic mission [3,94], but a life test of
this design only demonstrated up to ∼3× 106 cycles [3]. In addition, no quantification of the leak rate
for this valve as a function of the number of pulses is available in the literature.

As an alternative to the solenoid valve design, a piezoelectric valve with a low leakage rate and
a rapid opening and closing time (∼100 µs for each) was fabricated and tested [95,96]. The current
and power required for this valve are several orders of magnitude lower than that for a solenoid valve
since piezoelectric crystals are high impedance loads that operate at high-voltage and low-current.
The opening of the valve is scalable with the applied voltage, providing a new means by which the
gas injection rate can be controlled. The overall travel range of the valve plunger is roughly 10 µm.
This valve design demonstrated operation up to 3×109 cycles, but excessive leakage above 10−3 sccs
of helium was observed after ∼2×109 cycles. The Inconel 625 material of the valve poppet exhibited
wear and material transfer at the sealing surface on the seat, providing leak paths for propellant to
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escape. Fabricating the poppet with harder materials could mitigate this effect in future designs and
deliver low leakage for a greater number of cycles.

Gas injection in planar IPPTs has typically been accomplished in pulsed mode. The PIT and
other planar variants have typically employed a central injector or pylon design with the gas injected
back towards the face of the thruster, axially stagnating where the pylon meets the thruster coil and
expanding radially outward to cover the coil face [3,13,18]. The electrical pulse through the coil is
initiated just as the gas completely covers the coil face. An issue with this method is the presence
of the gas injection pylon in the downstream flow as the propellant accelerates away from the coil
and the bombardment and sputtering that can occur when the high speed plasma inpacts the pylon
head. CTP-IPPTs performed best with gas injected against the conical coil face with azimuthal swirl
imparted to the propellant [4]. Pulsed gas injection was not attempted in CTP-IPPT testing, but it is
expected that there would be significant latent propellant remaining in the feed lines when the thruster
was pulsed, resulting in a low propellant use efficiency.

If the thruster repetition rate is high enough such that the period between pulses is roughly
equal to the gas injection timescale, then the valve may be left open, providing continuous propellant
injection. In this case, gas enters the thruster at a sonic, gasdynamic speed (typically on the order of
100 m/s), filling the thruster just as the electrical circuit is recharged and ready to pulse. No excess
injected propellant has the opportunity to escape before the pulse is initiated, quickly accelerating
the ionized gas out of the thruster and making room for the injection of propellant for the next pulse.
This significantly reduces the requirements on the valve by lowering the overall number of required
valve cycles and negating the fast valve opening and closing requirements. While the valves must still
possess a low leakage rate, the sealing surfaces do not experience the same level of wear and abuse as
those valves needed for single-pulse operation. Flow rates in these systems can be controlled with
a mass flow controller, permitting accurate control of the injected mass per pulse.

Thrusters operating at a lower discharge-energy-per-pulse have already demonstrated repetition
rates that permit the use of a continuous flow gas injection scheme. The ELF thruster demonstrated
this at discharge energies of 10 s of J/pulse with propellant continuously fed from the back of the
thruster into the discharge cavity [51].

The IPPT family of thrusters possess no electrodes in contact with the plasma, so a wide range
of propellants are available for use. As noted in the present review, various IPPTs have been tested
using ammonia (NH3), simulated hydrazine (N2 + 4NH3), hydrogen (H2), helium (He), nitrogen (N2),
carbon dioxide (CO2), argon (Ar), xenon (Xe), and water (H2O). For some of these propellants, the same
propellant management system could be employed, resulting in a propulsion system that could be
refilled using various propellants that could be derived from in situ resources at different destinations.
In addition, some propellants may also be used in chemical thrusters, with the same propellant tankage
feeding those thrusters and an IPPT. Propellants such as hydrazine could present thermal problems
through the release of potentially significant amounts of additional heat through dissociation. This
additional heat would need to be handled within an IPPT thermal management system [3]. While the
same injection system may be used for multiple gaseous propellants, operation on liquid propellants
requires a different, more specialized propellant injection system. Water is a particular challenge
because it must be pre-heated before injection so it will not flash-freeze as it is injected into the vacuum
environment [88].

4.4. Preionization

Initiating an IPPT discharge is difficult because all coupling between the external circuit and
the propellant occurs through electromagnetic fields. Since the external circuit is separate from the
plasma current loop, current will still flow in the former even if the gas does not ionize and form
a plasma. Any delay in the formation of the plasma will result in energy being dissipated in the
external circuit without performing useful work on the propellent.
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Preionization in the context of an IPPT refers to a strategy to partially or fully ionize the propellant
prior to the initiation of the main discharge pulse. This can be done to minimize the time between
external circuit discharge initiation and electromagnetic coupling with the plasma current. It can also
be done to reduce the voltage and current in the external circuit needed to fully ionize and accelerate
the propellant, reducing the corresponding requirements on capacitor and switch voltage holdoff,
current conduction, and switching speed.

Preionization has been tested in different thrusters with varying degrees of success. Those tested
in planar IPPTs are summarized in Ref. [7]. A 30-cm planar IPPT attempted four separate preionization
methods [12]: (1) a 440 nF capacitor discharged through the drive coil, (2) a 40 nF capacitor discharged
through the drive coil, (3) a 440 nF capacitor discharged through a 30 cm circular wire loop 5 cm
downstream from the drive coil, and (4) a 440 nF capacitor discharged through a mirrored copy of
the drive coil located 4 cm downstream of the actual drive coil. For the case of pulsed propellant
injection, it was found that preionization methods 1 and 2 did not increase performance over the case
where preionization was not implemented. It was concluded that since the preionization discharge
was driven through the same coil responsible for accelerating the gas, the preionized propellant was
subjected to the same acceleration forces and began to move away from the coil face, reducing the
electromagnetic coupling efficiency during the main pulse. There was a slight improvement to ηt and
Isp when preionization method 3 was employed. Preionization method 4, however, was found to
produce the best results. The efficacy of this method was thought to be the result of the mirror coil
axially compressing the preionization plasma back against the drive coil, which led to an improvement
in electromagnetic coupling since the propellant was pushed closer to the acceleration coil. However,
this is somewhat impractical in practice since the accelerated plasma would directly impact the forward
coil, sputtering it rapidly.

Work by Polzin [16] demonstrated preionization-assisted breakdown of propellants at discharge
energies and voltages well below the levels that could ionize the gas without preionization. In that
experiment operating with a neutral gas backfill, the plasma from a helicon discharge along the
thruster centerline was directed with an applied magnetic field to the thruster face, providing the
seed preionization plasma. Additional plasma ionization and current sheet formation would not
occur during the discharge through the external circuit if the helicon discharge was not operating
or if the magnetic field was adjusted such that the plasma was not directed to the coil face. A more
recent implementation of the FARAD concept [17,87] employed a vector-inversion generator (VIG)
preionization source. This was effective in producing a preionized plasma, but it also radiated
significant electrical noise as the VIG operated at a ‘slower’ base frequency of 80–100 kHz with a much
higher frequency ‘fast’ modulation superimposed on the main signal. At the design point for that
version of FARAD, the main pulse through the acceleration coil was able to ionize the propellant
without preionization, and no attempt was made in that work to further quantify the usefulness of
VIG preionization. The VIG concept also introduced electrodes in direct contact with the plasma,
partially negating the advantage of an electrodeless thruster.

Several other preionization methods have been implemented in IPPTs at various energy levels.
In high discharge energy FRCs, the first half-cycle of the discharge in the theta pinch configuration
was often used to produce a preionized plasma that would ‘freeze’ an externally applied bias field
into the plasma prior to the the production of the compact toroid plasma configuration during the
current and field reversal of the second half-cycle of the discharge [8]. At lower discharge energies,
Martin et al. [18] in a planar IPPT and Hallock et al. [19,71] in a CTP-IPPT opted for a Paschen-type
high voltage DC breakdown preionization method, with electrodes located at the center and outer
edge of the thruster face. While effective and relatively simple, it should be noted that this method
also introduces electrodes in direct contact with the plasma, which may limit the types of propellants
that can be used. CTP-IPPT experiments also included attempts to use a microwave-driven electron
cyclotron resonance (ECR) discharge as a preionization source, and while successful in ionizing the
gas, this method was not further pursued due to logistical issues with integration in the test setup.



Aerospace 2020, 7, 105 45 of 67

RMF-FRC test articles typically possess preionization, as described in Section 2.2.2. For example,
a number of preionization approaches were tested for the ELF thruster [51], with a DC Paschen
breakdown between two coaxial electrodes being chosen for early experiments and a small RF-driven
inductive coil used in later experiments [88].

4.5. Cooling

Resistive dissipation of energy in the external circuit and inefficiencies in the PPU may result in
high heating loads that could become an issue for thrusters operating at high average power levels and
repetition rates. In addition, direct radiative heating of the coil from the plasma may also deposit up to
10% of the energy per pulse into the acceleration coil [3], compounding the already-challenging thermal
issues. As the average power to the thruster increases, either because of an increase in the discharge
energy per pulse or the number of pulses per second, the thermal issues only become more daunting.

While very little has been done to systematically address the thermal issues that will arise
in flight IPPTs, there have been designs and laboratory experiments that recognized the inherent
thermal issues of higher-power throughput operation and incorporated cooling schemes. While it
was never fabricated or tested, the conceptual design of the PIT MK VII considered long-duration
continuous operation that would require the use of fluid cooling for the coil, switches, pulsed gas
valve, and propellant injection pylon [92]. A high power 15 kW PPU designed to drive the ELF thruster
coils was thermally coupled to a water-cooled plate and tested in the lab environment. Operating at
a frequency of 200 kHz, the setup reached thermal steady state in a couple minutes. The IGBTs in the
circuit were the hottest components, reaching temperatures of 70◦C [88]. Most recently, the 30 kW UM
RMF-FRC was designed to have water cooled bias coils and PPU electronics [43].

4.6. External Fields

Externally applied fields have been used in IPPTs for a number of different purposes. When used
in planar IPPTs, applied fields have primarily been associated with attempts to incorporate
preionization. The applied field in the FARAD device was necessary for the helicon discharge that
produced the preionized plasma [15]. In that setup, the magnetic field was produced by electromagnets,
which were configured such that the preionized plasma created in a region of axially directed field
was turned by the field to propagate radially-outward over the face of the acceleration coil. In the
CTP-IPPT, permanent magnets were configured to produce local pockets of high magnetic field at
the face of the conical coil where preionization through ECR energy deposition into the gas could
occur [19]. In both cases, the applied field was not required for acceleration of the plasma, but it was
noted that an applied field in the proper direction could result in an additional Lorentz body force
component in the axial direction, augmenting thrust [16]. There is the possibility that the applied
field will resist motion of the plasma. However, the magnetic field produced during the current pulse
through the acceleration coil should overwhelm any DC applied field as the strength of the former
is typically greater by an order of magnitude or more. Also, the strong fields produced during the
acceleration pulse may, over time, alter the magnetic properties of permanent magnets, making their
use problematic.

Several FRC thrusters use an applied field, and in these thrusters the applied field may play
a major role in the plasma acceleration process. The RMF FRC thruster variants (e.g., [42,43]) drive an
azimuthal current in the diverging portion of a magnetic nozzle. The interaction of the current and the
magnetic field produces a component of the Lorentz body force in the axial direction, yielding thrust.
In pulsed theta-pinch FRCs with applied bias fields, (e.g., [8,36]) the applied field is frozen into the
plasma during the first half cycle of the theta pinch discharge. As the discharge current reverses during
the second half-cycle, the pinching field at the ends of the device trap the frozen field, which separates
from the rest of the applied field and becomes part of the embedded magnetic field that comprises the
plasmoid structure.
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5. Advancement Paths: Modeling

Improvements in IPPT modeling techniques may be of great benefit to increasing performance,
scaling operation to different power regimes, and understanding how different propellants affect
thruster performance. Important IPPT processes that are deserving of renewed attention are current
sheet formation and stability, plasmoid formation and acceleration, and plasma chemistry associated
with non-traditional, molecular propellants. These processes and possible modeling advancement
paths are described in this section.

5.1. Formation Physics

Formation refers to the process by which propellant ionizes and self-organizes into a coherent
plasma structure prior to acceleration. The initial propellant state can be either a neutral gas or,
in the case of low pulse energies (<100 J), a partially preionized plasma. Formation can be closely
coupled to the acceleration mechanism (e.g., current sheet formation in an IPPT) or independent of the
acceleration mechanism (e.g., inductive FRC acceleration). The formation time must be slow compared
to the characteristic ionization time and fast compared to both the acceleration time and growth time
for large-scale plasma instabilities. Reliance on such a strongly non-equilibrium process represents
a fundamental difference between pulsed and steady-state electric propulsion concepts. It is therefore
critical to understand the physics of formation to ensure that each pulse efficiently uses both the
injected propellant and the applied electricity. Insights into this process could guide the design of
more effective propellant injection and preionization systems. Furthermore, the inclusion of formation
physics in plasma-circuit models could play a critical role in understanding and optimizing thruster
performance across the power spectrum.

5.1.1. IPPT Current Sheet Formation

While there have been significant efforts to model the plasma acceleration process, there has
been very little work on including the gas breakdown and current sheet formation processes in this
modeling. While it may be the case that the timescale for breakdown and ionization is short relative
to the acceleration timescale, and that the energy invested in ionizing the propellant is small relative
to other energy sinks [10], there will certainly be differences in both as a function of propellant type.
For IPPTs that claim the ability to process many different types of propellant, including those derived
from in situ resources, understanding and quantifying these differences and the effects they have on
the overall performance of the thruster could be important when planning a mission and selecting the
propellants that will permit the mission to close.

The following important outstanding issues related to current sheet formation present themselves
and candidates for future modeling efforts.

Key Physics and Requirements for Current Sheet Formation

Gas breakdown and current sheet formation must occur on sub-microsecond timescales.
This creates a highly transient process where neutral propellant gas is rapidly reorganized into
a high-density magnetized plasma. The frequency and magnitude of the azimuthal electric field
induced by the transient coil current and the level of the gas pressure are all known to play critical
roles in the initial breakdown of the neutral gas [97,98]. Less is known about how the preionization
system influences gas breakdown requirements. It is desired that a high-conductivity, uniform current
sheet forms on the coil face to maximize inductive energy transfer. Similarly, a secondary (‘crowbar’)
plasma discharge formed from residual gas after the first half-cycle should be avoided. The ability to
investigate and predict these important aspects of current sheet formation is not presently possible with
existing IPPT models. One possible advancement path towards this goal would be to adapt existing
Z-pinch current sheet formation models to include inductive current drive in planar geometries.
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Current Sheet Formation Scaling to Lower Energy per Pulse

At lower pulse energies, less energy is available to ionize the propellant, resulting in
a lower-density plasma and a generally weaker current sheet. This opens the possibility for other
physical processes, such as resistive diffusion of the induced magnetic field, thermal expansion of
the plasma, and neutral gas migration, dominate the plasma dynamics. Experiments show that
preionization of the propellant prior to the main inductive pulse can be critical to current sheet
formation at low pulse energies [7]. However, it remains to be determined whether or not low
energy-per-pulse IPPTs can achieve the same performance as their high energy-per-pulse predecessors.
The influence of preionization physics on current sheet formation is even more critical in low discharge
energy regimes where ionization may not occur at all without preionization.

Propellant Mass and Energy Loss during Current Sheet Formation

It is imperative that each thruster pulse efficiently uses the propellant mass and electrical energy.
Propellant use requires the creation of a uniform current sheet that is capable of entraining a significant
percentage of injected gas. Energy use requires formation of the current sheet near the coil face,
with most gas entrainment occurring before the current sheet is moving quickly to minimize gas
entrainment loss processes and other inelastic collisional processes such as ionization. These effects
will be strongly influenced by a number of factors including the thruster geometry, gas distribution
prior to the pulse, discharge current magnitude and rise rate, and propellant type. Extension of the
equation of state model by Polzin et al. [64] to include preionization and early breakdown phenomenon
could help understand mass and energy loss mechanisms during this period. Furthermore, use of this
model could allow these effects to be directly coupled to the circuit model for thruster performance.

Current Sheet Stability on Formation and Acceleration Timescales

It is also important that the current sheet maintains its structure throughout the formation,
acceleration, and gas entrainment processes. The development of large scale instabilities could lead to
plasma filamentation, reducing the inductive coupling and making the current sheet more permeable
to both encountered gas and the magnetic field driving acceleration. Understanding how strong
plasma gradients and magnetic field fringing might influence instability growth could help mitigate
deleterious effects. Existing two-fluid models for gradient driven instabilities could be adapted to
a “typical” current sheet structure to examine how the growth rate of dominant modes compares to
the current rise time.

5.1.2. FRC Formation

Laboratory experiments consistently show that FRC plasmoid formation is highly dependent
on the characteristics of the vacuum magnetic field, method of gas injection, and the preionization
system used [20]. From ∼1 J propulsion FRCs [58] to ∼10 MJ fusion FRCs [24], the importance of
effective preionization was observed. Modeling of the FRC formation process has focused mainly
on understanding how an open-flux uniform magnetic field plasma evolves towards a closed-flux
compact toroid in the presence of transient external fields, generated either by a theta-pinch [99]
or using a RMF [100]. Despite exerting significant control over the properties of the resulting FRC,
a detailed model of FRC formation including neutral gas injection and ionization physics has not been
published in the literature.

We highlight two important questions that should be addressed to improve the modeling of
FRC formation.

Key Physics and Requirements for FRC formation at Low Discharge Energy

Spacecraft system constraints generally limit FRC formation in IPPTs to many orders of magnitude
lower energy compared to compact fusion applications. While the available data are limited,
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research on low-energy (∼100 J) FRC thrusters shows that the resulting plasmoid properties vary
significantly with the method of formation. This is perhaps best demonstrated by comparing
downstream Langmuir probe results from a theta-pinch-generated FRC [30] and a RMF-generated
FRC [42]. The width of the time-dependent probe traces and characteristic velocities suggest that
the length of the ejected theta-pinch-generated FRC was approximately equal to the thruster length.
A similar analysis for the RMF-generated FRC indicates that the ejected plasmoid had a length up to
three or four times the thruster length, which may indicate that a closed-flux plasmoid was not actually
formed in this case. This disparity suggests that not all formation schemes may be successful at forming
a plasmoid at low discharge energy, and the processes governing this formation may be significantly
different depending on the method by which the FRC was produced. Insight into the required
conditions for FRC creation at low energies could be greatly improved using a two-dimensional
plasma fluid model or kinetic code that incorporates both neutral gas ionization and time-dependent
boundary conditions to model the fields applied to the gas during FRC formation.

Propellant Mass and Energy Losses During FRC Formation

In an IPPT, a significant percentage of injected propellant mass must have appreciable kinetic
energy imparted to it for high efficiency operation. It is therefore important to understand the ways
in which the propellant mass might not be accelerated and the various energy loss mechanisms that
might dissipate energy during each FRC formation phase. Modeling these dynamics is a significant
undertaking and will likely require the combination of a time-dependent plasma fluid model, similar to
that described above, with a collisional-radiative description and empirical models for turbulent
transport. Advances towards this goal will also require extensive experimentation to support empirical
model development and provide validation data.

5.2. Acceleration Physics

Although the acceleration physics in IPPTs has been the subject of a number of studies, there are
aspects of this process that remain poorly understood. Most notably, there are multiple mechanisms
by which the external energy of the driving circuit can be converted into the directed kinetic energy
of the propellant. These include electromagnetic acceleration via self-field interaction, Lorentz body
force acceleration arising from an interaction between the induced plasma current and an applied
magnetic field, and thermal acceleration driven by pressure gradients in the plasma that are produced
by Ohmic heating and electromagnetic compression of the plasma. While all three mechanisms may
have a role in IPPT propellant acceleration, it is often not clear which is dominant in a particular
test apparatus. This ambiguity is reflected in the relative lack of validated models and scaling laws
for many IPPT concepts. In fact, the only thruster that has well-understood performance scaling
strategies is the planar IPPT variant. As a practical result, there are relatively few established design
strategies for how to improve performance in the other IPPT variants, and the theoretical upper bound
on performance in these thrusters is not well-known. Future acceleration physics studies should
focus on developing models at multiple levels of fidelity to capture and determine the partitioning
between different acceleration mechanisms, with the end goal to determine and optimize the dominant
mechanisms that efficiently convert input electrical energy into thrust.

5.2.1. Identification and Scaling of Dominant Acceleration Mechanisms

Thruster operating regimes exist where certain forces are able to accelerate plasma propellant
more efficiently than others. A notable example of this is the dominance of self-field acceleration above
a certain threshold current in magnetoplasmadynamic thrusters [101]. Likewise, IPPT models need to
contain proper modeling and scaling of the different possible acceleration mechanisms. The dominant
acceleration mechanism will likely depend on several different factors including acceleration coil
geometry, current rise time and amplitude, and the internal plasma pressure and energy density. It is
known that radial compression and heating of a CTP-IPPT (either in open or closed magnetic flux
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operation) increases with decreasing cone angle [4,72]. In principle, a critical cone angle should
exist where the dominant axial acceleration mechanism transitions from direct electromagnetic
acceleration to a pressure-driven acceleration. However, a detailed understanding of the specific
processes by which radial electromagnetic compression is ultimately converted to directed kinetic
energy via plasma heating and axial acceleration does not yet exist. In certain configurations, further
complications arise due to the presence of applied magnetic fields and passive magnetic flux conserving
components. These alter the overall magnetic field structure in an accelerator and can affect the current
density profiles in and around the plasma, which in turn can alter the Lorentz body force density,
plasma compression, and heating profile. Insight into the dominant acceleration mechanisms for
different IPPT geometries and configurations could be obtained by modifying existing two-dimensional
MHD models to include applied magnetic fields and conducting boundary conditions. We note this
effort would greatly benefit from extensive experimental validation. For example, new methods [102]
for measuring the thrust component generated via a particular acceleration mechanism may potentially
be applied in future IPPT experimental investigations, with those data supporting the refinement of
modeling efforts.

5.2.2. Influence of Changing Plasma Geometry on Inductive Acceleration

Electromagnetic acceleration in IPPTs depends largely on the relative geometries and distance
between the plasma and accelerating coil. In an equivalent circuit view of the problem, this is
largely captured in the inductance of the plasma and the coil and the changing mutual inductance
between the two. Circuit modeling of planar IPPTs [61] was successful in developing and employing
semi-empirical expressions for M based on calculations and experimental measurements using
a simulated plasma load. Solid conductive slugs have been used to experimentally model mutual
inductance in CTP-IPPTs [71]; however, radial plasma compression complicates this approach by
adding an additional degree of freedom to the problem. To overcome this challenge, numerical
solvers have been used to obtain expressions for the mutual inductance as the plasma moved in
two-dimensions in a CTP-IPPT [72] and in FRC thrusters [54,76]. Only two of these approaches
have attempted to also include the effects of changing plasma geometry, in addition to separation
distance, on the mutual inductance profile. In both cases, the plasma geometry was assumed to
remain self-similar, neglecting effects associated with the stretching and bending of magnetic flux
surfaces. One possible approach to understanding how changing plasma geometry influences mutual
inductance would be to integrate a two-dimensional MHD model with a self-consistent model for the
coil circuit dynamics. This approach could improve the fidelity of the circuit model approach without
having to make a priori assumptions about the configuration assumed by the plasma as it moves or as
its geometry changes.

5.3. Molecular Propellant Physics

IPPTs, being electrodeless thrusters, offer the possibility of operation on molecular propellants
(e.g., hydrazine, H2O, etc.) [3,67]. However, the use of molecular propellants in electric thrusters
involves new challenges associated with plasma chemistry and additional inelastic loss processes.
For steady-state thrusters, it is desirable to operate in a regime where plasma ions are dominated
by molecular species. This is because the creation of atomic ions generally reduces the average
atomic mass of the plasma exhaust while incurring additional frozen-flow losses. In pulsed thrusters,
additional constraints arise from the need to accommodate the various plasma chemistry timescales.

We identify advancement paths for three important questions concerning molecular propellant
IPPT operation.

5.3.1. Influence of Plasma Chemistry on the Design and Scaling of IPPTs

Plasma chemistry effects, such as ionization, dissociation, and recombination reactions,
place additional constraints on the mass flow rate and length of steady-state electrodeless
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thrusters [103]. However, it is unclear how these constraints translate to pulsed thruster operation
because plasma chemistry and acceleration timescales are generally disparate and may be much faster
than similar processes steady-state devices. The inclusion of a multi-species chemical kinetic model
within an IPPT model could help identify additional requirements and scaling laws for operation on
molecular propellant species.

5.3.2. Importance of Recombination in the Presence of Large Temperature Gradients

The edges of the plasma in both open and closed magnetic flux IPPT variants possess large
temperature gradients. Recombination reactions, dominant at low electron temperatures, could be
significant in these regions. Of particular importance is dissociative recombination in which a molecular
ion recombines into two neutral products [104]. The resulting loss of a heavy ion and creation of lighter
neutrals, which removes charged particles before completion of the electromagnetic acceleration
process, could increase frozen-flow losses and decrease thrust efficiency at fixed specific impulse.
Improved models of the evolving temperature distribution and its influence on non-equilibrium
plasma chemistry will be critical in understanding and potentially mitigating these losses.

5.4. Effects of Asymmetric Charge Exchange Reactions

Charge exchange reactions between like species (symmetric) generally have cross-sections
significantly larger than those between unlike species (asymmetric) at relative velocities typical of
electric propulsion plasmas [105]. The decreased significance of charge exchange reactions could be
detrimental to propellant entrainment and mass use for molecular propellant IPPTs. A fluid model for
the plasma-neutral interaction could help determine the extent of this effect and how it scales with
changing conditions.

6. Advancement Paths: Major Subsystems

Using the review of major subsystems in Section 4 as a point of departure, we discuss potential
paths by which some of the major subsystems may be advanced from the present state-of-the-art.

6.1. Power

We consider in this discussion potential advancements in both RLC discharge circuit components
and in the PPUs that provide useful power to the thruster. In addition to enhancements of the physical
circuits, avenues for progress in the modeling of the circuit elements present in both the discharge and
PPU circuitry are briefly addressed.

6.1.1. Discharge Circuit

Previous work has identified implementation of solid-state switching as a necessary step for
long-lifetime IPPT discharge circuit operation [3,9]. Doing so is expected to require either a reduction in
the discharge circuit electrical requirements (charging voltage, peak current, dI/dt and dV/dt levels),
advancements in solid-state switching technology, or the use of arrays of switches to subdivide the
load. It is also desirable for the voltage reversal on the energy storage capacitor banks to be eliminated
to prevent excessive degradation of the bank and for some portion of the initial stored energy to be
recovered for use in the next pulse to improve overall efficiency. Improved thermal management for
heat generated in the switches and capacitor bank will likely be needed for sustained high power IPPT
operation. We discuss ways in which these challenges may be addressed through advancements in the
discharge circuit at both the topological and component levels.

Discharge Circuit Topology

Most IPPTs designed and tested to date have used a basic series RLC topology for the discharge
circuit. While simple and sufficient for laboratory testing, this topology possesses a number of known
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drawbacks. Among these are significant voltage reversals on the energy storage capacitor bank,
lack of inherent energy recovery leading to limited circuit efficiency, and high switching stresses
when producing the required high current rise rates. As discussed in Section 4.1.2, there have been
some efforts that investigated alternative discharge circuit topologies in an attempt to overcome
these drawbacks.

The B-M circuit tested by Polzin et al. [87] was found to largely eliminate the voltage reversal
of the capacitors while naturally recovering some of the initial stored energy. However, the charge
on capacitor C2 in that configuration requires removal of that charge prior to the initiation of the
subsequent pulse. While it was suggested that the energy on this capacitor could be used to power
other systems on the spacecraft, a reliable method for accomplishing this was not discussed. It was
also found in that work that the energy recovery ability of the B-M circuit could be improved to some
extent by using a diode latched design to prevent current flow during the second half cycle of the
discharge. Current waveforms for the latched B-M design, however, indicated that significant current
still flowed during this period. Future development of the B-M topology may focus on methods of
resetting the C2 capacitor between pulses and improving the diode latching to reduce current flow in
the second half cycle. While the unlatched B-M circuit was tested with a redesigned version of the
FARAD thruster [17,87], the latched version was only tested in a benchtop configuration. Moreover,
while testing with the unlatched B-M circuit revealed unsatisfactory thruster performance, it was not
conclusively determined what role the discharge circuit played in that result. Additional thruster
testing of the B-M circuits presents one potential advancement path.

The pulse compression ring circuit reported by Owens et al. [73,89] appeared to produce promising
initial results in benchtop testing. It was not, however, used in testing of an actual thruster. Given its
potential to greatly reduce switching stresses while still achieving high current rise rates, eliminating
voltage reversals on the capacitor banks, and recovering energy reflected by the load with high
efficiency, further work on this particular circuit topology presents itself as a potential advancement
path. Results stemming from actual thruster operation using such a discharge circuit design are of
particular interest.

In high repetition rate (&1 kHz) IPPTs, the per-pulse discharge energies are typically one to
two orders of magnitude lower than in low repetition rate (.100 Hz) thrusters operating at similar
average power levels. As a result, the switching stresses encountered in the discharge circuits of
high repetition rate thrusters are usually significantly lower. In this case, the focus shifts towards
improving circuit efficiency and preventing voltage reversals on the capacitor bank. While both the
B-M and pulse ring compression topologies can provide these benefits, neither has been investigated
for use in high repetition rate thrusters. Although voltage reversal remains a concern when using the
basic series RLC circuit, efficiency can be markedly improved via the implementation of some form
of energy recapture system. Half-cycle [18] and full-cycle [92] energy recapture methods have been
implemented with varying degrees of success in RLC discharge circuits using thyristor switches and
diodes. The relatively slow switching speeds of most types of thyristor switches, however, typically
precludes their use in high repetition rate (&1 kHz) applications. It is therefore of interest to determine
whether the same recapture techniques can be extended to high repetition rate RLC circuits using high
speed, bidirectional IGBT or MOSFET switches.

In summary, future work should continue development and testing of existing topologies
discussed in the literature and investigate the application of new topologies which may yield further
improvements. Development of energy recapture schemes for RLC discharge circuits, particularly
those designed to operate at high repetition rates, is anticipated to markedly increase the efficiency of
these circuits. Testing of any proposed discharge circuit topologies with an actual thruster should be
a goal of any development program, enabling a rigorous comparison between the performance of the
baseline RLC discharge circuit and any proposed alternatives.
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Inductive Energy Recapture

The ability to halt the discharge current at a specified designated time is the primary challenge that
must be overcome for effective inductive energy recapture. For half-cycle recapture schemes that use
diodes in series with the discharge switch, improved current shut-off at the end of the first half-cycle
might be possible through the use of diodes that possess superior reverse recovery characteristics.
Improvements in SiC PiN diodes are expected to have occurred since the work of Toftul et al. [91] and
new diodes may demonstrate even better turn-off performance. In addition, if the frequency of the
discharge is sufficiently fast, it is possible that SiC Schottky diodes may offer some benefits over their
SiC PiN counterparts [106,107].

For full-cycle recapture, issues with timely switch turn-off must be addressed. There was,
for example, incomplete switch turn-off observed for GTO thyristors by Poylio et al. [92] Similar
difficulties with switch turn-off for full-cycle recapture were recently encountered in preliminary
testing of the High Pulse Rate Pulsed Inductive Thruster (HiPeR-PIT) being developed at the University
of Washington. Waveforms from a test aimed at demonstrating second half-cycle turn-off of the IGBT
discharge switch are presented in Figure 29. Here, the gate-emitter voltage (Vge), collector-emitter
voltage (Vce), switch status output signal (Vso), main bank voltage (Vmb), drive coil voltage (Vcoil),
and current through the main bank (Imb, equivalent to current through the switch) are shown.
The dashed line labeled Vge,th indicates the threshold for Vge that must be applied to turn the switch on
and off. It is observed from the Imb measurements that current appears able to flow through the switch
for a short time after the Vge has fallen below Vge,th and the switch has supposedly closed. Accordingly,
a drop in Vmb occurred, signaling a loss of energy from the capacitor bank. It was suspected that
the observed anomalous turn-off was due to either incomplete switch turn-off by the end of the
second half-cycle or, less likely, reverse recovery of the internal anti-parallel freewheeling diode. It is
tentatively anticipated that the turn-off speed of the switch will need to be decreased relative to the
period of the discharge. Future research will focus on accomplishing this by either slowing the LC
time of the discharge or using IGBTs with faster switching times.
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Figure 29. Continued flow of current after end of second half cycle in the UW HiPeR-PIT discharge
circuit, resulting in voltage ringing and loss of charge from the energy storage capacitors.

Capacitors

Future development of the main capacitor bank is expected to focus on in-vacuum thermal
management and the reduction of capacitor ESR and ESL. Thermal management will be essential for
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high power in-vacuum operation of IPPTs, particularly in a continuous mode. Although water cooling
schemes may be sufficient for initial laboratory testing, radiatively cooled banks will eventually
be required. Since minimizing the mass and volume of the cooling infrastructure is desirable,
characterizing the behavior of the main bank during extended operation at elevated temperatures
should also be a focus. Reductions in ESR will improve the overall efficiency of the discharge circuit
while decreases in ESL will minimize the stray inductance and, accordingly, increase the maximum
dI/dt of the discharge pulse. Such improvements may stem from adopting a distributed bank
composed of many capacitors in parallel, from improved capacitor design, or even from refining
the manner in which the bank is connected to the other components in the discharge circuit.

As mentioned in Section 4.1.2, only film and ceramic type capacitors have been used to date in
IPPTs. Potential thermal issues were identified arising from the use of potted, or otherwise insulated,
film capacitors operating in a thruster in continuous mode at high power [47]. For future efforts,
an energy storage bank comprised of many smaller, high Q ceramic capacitors may be a potential
solution. Doing so may make it easier to manage the bank temperature as well as reduce the overall ESR
and ESL. While such a capacitor bank was eventually developed for the EMPT and, later, for the 30 kW
ELF thruster [88], a rigorous direct comparison between the film and ceramic bank versions of these
thrusters does not appear in the literature. Moreover, a detailed description of the design methodology
used to guide the development of the ceramic capacitor banks was not provided. The development and
testing of distributed ceramic capacitor energy storage banks, especially for higher power thrusters,
is an area that could benefit from additional development. In particular, it must be confirmed that such
a configuration could be operated over a range of temperatures without significant changes in bank
capacitance or performance. A well documented method for effectively heat sinking such a capacitor
bank would also be of value.

Mica capacitors are occasionally used as a more economical alternative to ceramic capacitors.
A detailed trade study conducted in an effort to augment the Earth Observing-1 (EO-1) pulsed
plasma thruster (PPT) with improved components found mica paper/foil capacitors to be the optimal
choice for the discharge [108]. While ceramic multi-layer capacitors were also considered, at the time
of the study they were found to be susceptible to structural failure after a relatively short number
of pulses. In contrast, mica capacitors demonstrated exceptional robustness, lasting as many as
140 million pulses in some cases. Other identified advantages of mica capacitors included high
radiation resistance, low ESR, good thermal stability, and inherent high voltage capability without the
need for an insulating oil fill. The primary identified drawback was their relatively low energy density.
Nonetheless, high power (∼100 kW) mica capacitors are commercially offered for high frequency
(up to 100 MHz) applications which claim energy densities ≥400 kW/kg [109]. As such, a mica energy
storage capacitor bank for IPPT applications may be worth investigation. In particular, a comparison
between the mass, volume, and potential power throughput of a mica capacitor bank and a film and/or
ceramic capacitor bank would be of interest.

One possible route for alleviating the thermal concerns associated with film-type capacitors is to
use capacitors with built-in enhanced cooling. At present, several manufacturers offer film capacitors
with convective, conductive, or water cooling options. Conduction-cooled oil-filled polypropylene
capacitors available from manufacturer Celem™, for example, claim to handle up to 500 kW of power
at frequencies up to several tens of kHz . Peak voltage and current ratings are on the order of a kV
and a kA, respectively. While such specifications are quite promising, it should be noted that oil-filled
capacitors are often avoided in space applications due to potential outgassing and contamination
concerns. If, however, these (or similar) capacitors demonstrate the capability of stable in-vacuum
operation, or if non-oil-filled versions demonstrating similar performance exist, they could be an
attractive option for high power IPPTs.
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Switches

The case for using solid-state switches in the IPPT discharge circuit has been discussed in multiple
publications [9,16,92] and was summarized in Section 4.1.2. While both pulsed power thyristors [18]
and IGBTs [43,86] have been implemented as discharge switches, no solid-state switch has been tested
extensively enough to be considered a mature technology in the context of IPPT operation. Below,
we make a number of suggestions for the advancement of solid-state switches in IPPT discharge circuits.

Intensive lifetime testing of solid-state switches is recommended to confidently determine whether
they can reliably survive the large number of discharges (&1010 pulses) expected over the course of
a typical mission. Encouragingly, failure in time (FIT) rates for modern IGBTs in terrestiral applications
are typically on the order of 10−9 failures per device-hour [110,111]. While promising work by Kirtley
et al. [85,86] demonstrated IGBT operation in excess of 109 pulses in benchtop PPU endurance testing
efforts, it must be confirmed that this longevity can be replicated in an actual thruster. In addition,
care should be exercised when attempting to broadly extend these findings, since switches in different
IPPTs may be subjected to vastly different operating conditions. Extended lifetime testing of a wide
range of solid-state switches, either as part of broader IPPT lifetime testing or under conditions meant
to closely replicate IPPT operation, should be conducted before these devices can be considered to
possess sufficient lifetime. Detailed reliability models for solid-state switches operating in a relevant
space environment will likely need to be developed with a focus on identifying critical switch failure
modes. The inclusion of realistic thermal and power cycling will be important when developing these
models, since switch reliability and lifetime are critically impacted by these factors [110]. Moreover,
implementation of condition monitoring systems is recommended so the performance and state of
the devices over the course of lifetime testing can be carefully recorded, allowing for more accurate
quantification of the risk of device failure.

It is of interest to determine the extent to which arrays of parallel and/or series connected
switches can increase the range of discharge circuit parameters (i.e., charging voltage, peak current,
and dI/dt) that can be accommodated by solid-state switches. Series connections are known to
increase the effective voltage rating of the array while parallel connections improve the current
handling capabilities. While switch arrays have seen some implementation in IPPT discharge circuits,
primarily in the work of Poylio et al. [92] and Kirtley et al. [85], it is anticipated that there are practical
limits on the the number of switches that can be incorporated into an array. The added complexity
of simultaneously switching multiple devices may prevent the adoption of arrays with an excessive
number of components.

Along similar lines, another relevant question is the extent to which switch arrays can be used
to improve performance relative to a single monolithic switch. In terrestrial applications, such as
high-power traction drives and high voltage DC transmission systems, large arrays of semiconductor
devices are often connected in series and parallel to handle voltages and currents that could not be
handled by a single device. In principle, the faster switching response and paralleled connections of an
array can be used to reduce switching and conduction losses and improve net efficiency. Importantly,
if the connections between switches in the array have a low inductance, this arrangement can also
reduce the stray inductance of the circuit. Switch arrays are likely to have a thermal advantage over
single devices. Their distributed nature makes heat sinking easier and switch overheating should
become less of a concern. The improved efficiency also results in lower heat generation, further
alleviating thermal concerns. Unique combinations of different types of switches may also provide
advantages. The series connection of MOSFETs and multiple JFETs to form super cascodes, for example,
has resulted in switch arrays capable of holding off large voltages while also exhibiting extremely
fast switching times and low power losses [112]. It should be noted, however, that the improved
performance of the switch array comes at the cost of greatly increased complexity. The trade-off
between performance and complexity of a switching array must therefore be carefully analyzed. Given
the additional complexity, it is anticipated that a rigorous evaluation of the reliability of multiple
switch arrays will be necessary to determine whether they can be confidently used in IPPTs. This said,
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one added potential advantage of this complexity is that arrays, with their multiple parallel conduction
paths, are much more immune to single-point failure that a single, monolithic switch. In addition,
it may be possible to implement so-called “smart” arrays that can intelligently replace a failed switch
in the array with a redundant backup.

Testing of switches implementing new wide bandgap (WBG) materials is a potential path for
improvement. Switches using WBG materials such as silicon carbide (SiC) or gallium nitride (GaN)
exhibit a number of advantages over older silicon (Si) devices. Most notably, they show great promise in
applications where high voltages, high switching speeds, and high temperatures may be present [113].
This combination of characteristics makes them well suited for use in IPPT discharge circuits. At the
time of writing, however, most commercially available WBG switches are not rated to the voltages
and currents required for an IPPT system. While multiple switches could be connected in series
and/or parallel to achieve the necessary ratings, this greatly increases the complexity of the switching.
WBG switches with increased voltage and current ratings are presently a topic of active development,
and devices with multi-kV ratings are likely to be commercially available in the near future. Given
their many attractive advantages over Si devices, the incorporation of WBG switches, either as part of
a larger array or as single devices once suitable ones become available, into IPPT discharge circuits
presents itself as a potential path for advancement.

A detailed trade study of the various solid-state switch types is suggested to evaluate options
and select optimal types for IPPT applications. While only pulsed power thyristors and IGBTs have
been used in IPPT discharge circuits so far, other types of solid-state switches exist. Most notable
are the power MOSFET and JFET. Each of these has their own advantages and disadvantages which
should be carefully evaulated when selecting a solid-state discharge switch. Some of the most pertinent
switching parameters are compared for an SCR, IGBT, and MOSFET in Table 3. It should be noted
that the comparisons are meant to be general qualitative statements and that, given the wide range of
devices in each category, there are likely many exceptions to the ordering listed. Given that no one
switch is best in all areas, future work may seek to evaluate operating ranges that are best for each
switch type.

Finally, certain WBG materials (namely silicon carbide) have demonstrated marked resilience to
certain types of radiation induced failures [114,115]. At present, however, solid-state devices are still
susceptible to heavy ion induced degradation and damage from single event effects (SEE) induced by
neutrons, protons, or heavy ions [115]. Development of radiation resistant solid-state power switches,
and power electronics in general, is a crucial step towards a flight-qualified IPPT.

Table 3. Comparison of characteristics of selected solid-state switch types. Note that the designations
in this table are for individual switches and not for arrays containing multiple switches.

Parameter Thyristor/SCR IGBT MOSFET

Switching Speed Slowest Intermediate Fastest
Current Highest Intermediate Lowest

Breakdown Voltage Highest Intermediate Lowest
Control Type Current Voltage Voltage

IPPT PPUs

The primary role of the PPU in an IPPT is to recharge the capacitor to the nominal operating
voltage between discharges. As such, the PPU essentially functions as a capacitor charging power
supply (CCPS) which uses as its input the spacecraft bus power. A wide variety of CCPS designs
have been reported in the literature for terrestrial applications, which range from pulsed laser and
radar systems to railguns. To date, however, all known IPPT PPUs have used some variant of a boost
converter or basic resonant charging circuit [43,47,85,86], due in part to the simplicity and effectiveness
of these topologies. In an effort to improve on previous PPU designs, detailed circuit modeling
of several widely used CCPS designs was conducted as part of a collaborative effort between the
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University of Washington (UW) and NASA-MSFC to develop a PPU for high repetition rate IPPTs.
Particular attention was paid to so-called “resonant” CCPSs, which use resonant tanks to reduce
switching losses. One of the most popular choices for a high power CCPS is an isolated full bridge
topology with passive full bridge diode rectification. A circuit diagram of the general design is shown
in Figure 30a, with four of the most popular resonant tank structures shown in Figure 30b–e. In this
CCPS topology, as well as many other resonant CCPSs, a transformer is used to achieve voltage
step-up while also providing isolation between the input and output of the supply. With the voltage
gain across the transformer, the switches in the CCPS are only subject to the relatively low primary
side voltage (the DC bus voltage in the case of an IPPT). This can greatly reduce switching stresses
compared to non-isolated converters where the switches often must withstand the full output voltage.
Nonetheless, simulations indicate that boost converter derived circuits employing multiple stages
compared favorably to series, parallel, LLC, and LCC resonant converters when evaluated under
conditions relevant to a high repetition rate IPPT PPU.
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Figure 30. (a) General isolated full bridge resonant CCPS topology and (b–e) popular resonant tank
circuit options as denoted (note: many other resonant CCPS variations are possible).

The balance of this section proceeds with a discussion of a boost converter derived PPU for
the UW HiPeR-PIT test article. However, before proceeding it should be noted that due to the large
number of CCPSs simulated, the work by UW and NASA-MSFC did not attempt to optimize the
topologies beyond what was specified by the basic design principles. For example, no attempt was
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made to implement sophisticated control algorithms for minimizing switching losses in the CCPSs.
Thus, while these initial simulation results are a useful guide, the wide range of CCPS topologies that
exist make any claims that it is the optimal design premature.

A simplified schematic of the UW HiPeR-PIT PPU designed for high repetition rate operation
(1 kHz to 10 kHz) is presented in Figure 31. The design assumes a spacecraft bus voltage of 120 V to
200 V and uses four boost converter cells in parallel to charge the main capacitor bank to the nominal
operating voltage of 2 kV to 3 kV. Paralleling boost cells allows a reduction in the current through each
cell. Since the resistive losses in the circuit scale with the square of the current, this results in a 16-fold
reduction in Ohmic heating for the same average current throughput. Detailed circuit modeling
indicated that this design is capable of providing a factor of 15 voltage gain at powers &10 kW and
efficiencies of ∼90%.

−
+VDC, bus Cbb

L1

D1

L2

D2

L3

D3

L4

D4

Cmb

S1 S2 S3 S4

Figure 31. Simplified circuit diagram of the UW HiPeR-PIT PPU designed to enable thruster operation
at repetition rates from 1 kHz to 10 kHz.

Simulated waveforms of the main bank voltage and currents through the main bank, drive coil,
and each of the boost switches, diodes, and inductors (L1 through L4) are shown in Figure 32. Note that
only one set of the boost switch, diode, and inductor currents is plotted, since the boost cells were
modeled as identical and thus each cell will have the same simulated current. When operating at
the nominal 1 kHz to 10 kHz repetition rate, the main bank must be recharged in roughly 10 µs to
100 µs. For a ∼1 µF bank, this corresponds to a PPU power throughput of 2 kW to 50 kW. For initial
prototype testing, a 1 kW to 10 kW range was targeted. The paralleling of boost cells means that each
cell only needs to handle a quarter of the total power, reducing stress on the components. In addition,
this distributed architecture makes the dissipation of waste heat more manageable. Efforts are presently
underway to test a brassboard-fidelity prototype of the UW HiPeR-PIT PPU to validate the accuracy of
the simulated results.
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Figure 32. Simulated waveforms of the main bank voltage (Vmb) and currents through the main bank
(Imb and each of the boost switches (Ib,sw), inductors (Ib,L), and diodes (Ib,D) in the UW HiPeR-PIT PPU.

6.1.2. Circuit Modeling

In addition to improvements in modeling the plasma dynamics of an IPPT, higher fidelity models
of both the discharge circuit and the PPU components are also envisioned as a path for advancement.
In particular, more realistic models of the high power solid-state semiconductor switches are needed.
Such models are expected to be important in obtaining accurate predictions of discharge and PPU
circuit electrical efficiencies. This is especially true in the case of the PPU, where switching frequencies
may be high enough that switching losses may become significant relative to conduction losses in
the circuit. Moreover, accurately capturing the switching action may be important in predicting EMI
characteristics for these circuits. The need for accurate models of other circuit components will depend
on the topologies used in future PPU designs. While most IPPT PPU modeling to date has largely relied
on relatively simple, or even idealized, representations of diodes, transformers, and various other
passive and active elements, it is expected that more detailed, physically realistic models will need
to be incorporated into future work. One of the most difficult challenges on this front is developing
an accurate description of the charge carrier physics at the device level so as to permit circuit-level
simulation. Moreover, there is also a need to couple the electrical properties of the circuit to the thermal
state of both the circuit and the environment. Since many solid-state electronics have temperature
dependent performance, the introduction of thermal effects is thought to be critical to achieving
accurate simulation results. Recognizing the coupled nature of the electrical and thermal problems
and being able to capture both in a single model is expected to be key to advancing IPPT power
system simulations.

One possible route for improvement is the use of functional physics or product models supplied
by the various power electronics and semiconductor manufacturers. For example, a functional physics
model of an IGBT from Ref. [116] is presented as an example in Figure 33. Not all manufacturers
supply models of this type that could be used in developing a model of components for use in a circuit
simulation, so this may not be a viable option for all designs. In addition, the details of manufacturer
models tend to be proprietary, with simulation files for the circuit components increasingly being
encrypted so that they cannot be used to reverse engineer the products being modeled. The result is
a “black box” that circuit designers must use without knowledge of the structure or inner workings
of the device. This may or may not be acceptable, depending on what is being modeled and how
critical it is to the overall design. An alternative would be to use higher fidelity circuit element
models described in the literature [117–120]. While it is possible to replicate these models from scratch,
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implementations may also be readily found in numerous commercial circuit simulation packages.
Notably, many of these models have been written in the Verilog-A/MS hardware description language
and are available in the SaberRD™ power electronics and multi-domain physical system modeling
software from Synopsys®.

Figure 33. Example of a functional physics model for an IGBT with circuit elements superimposed
(from [116]).

6.2. Propellant Injection

It is generally understood that the distribution of injected propellant relative to the inductive coil
affects IPPT operation [12,16,70]. For planar IPPTs, a uniform propellant distribution close to the coil
face is thought to best facilitate current sheet formation [16]. However, achieving such a distribution
can be a challenge in practice.

To date, all planar IPPTs have injected propellant from a central pylon structure. While this
method has proven effective, it is possible that better injection schemes exist. If the coil geometry
allows, one potential alternative is to flow propellant directly through gaps in the coil itself. If the
gap area is sufficient to accommodate the desired mass flow rate and the gaps are evenly distributed,
such an injection scheme promises a highly uniform propellant distribution.

The potential performance impacts of steady or quasi-steady gas injection in high repetition
rate IPPTs require further study. While it is tentatively anticipated that most of the gas within the
electromagnetic interaction distance will be accelerated, confirmation of this hypothesis is required.
It may be the case that a minimum repetition rate exists below which injected gas travels too far from
the coil face to be captured by the current sheet. Gas that is not captured will simply escape into
space, leading to poor propellant use efficiency. It is also possible that steady gas injection, although
slow relative to the discharge timescales, may result in higher gas densities near the coil face during
the second half-cycle of the discharge, thereby increasing the likelihood of secondary current sheet
formation. Che et al. [70] indicated that a secondary current sheet could contribute as much as 20% of
the total impulse in an IPPT with pulsed gas injection, even though the gas density in the second sheet
was much lower than the first. If more mass is available, it is possible that the performance impacts
of the secondary sheet will grow in significance. However, the secondary sheet will never use the
propellant in as efficient a manner as the initial current sheet because the second half-cycle current
and dI/dt levels are lower, resulting in significantly reduced acceleration. Finally, the axial gas profile
encountered by the current sheet as it is accelerated may be different than in the pulsed gas injection
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case, which will likely alter the current sheet gas entrainment dynamics and corresponding thruster
performance. Fast ion gauge measurements of the neutral density at various locations in front of the
coil face or interferometric ion and neutral gas density measurements may be useful in determining
the precise shape of the axial gas profile resulting from steady gas injection.

Propellant injection in FRC devices has not been as critical an issue because the configuration of
the coils and the nature FRC operation and coupling with the plasma is significantly different than the
open magnetic flux variants. One issue that does not appear to have been discussed in the literature is
the relative importance of uniform propellant injection in FRCs, and how performance may be affected
by nonuniform distributions.

6.3. Preionization

As discussed in Section 4.4, the preionization systems implemented to date in open magnetic flux
IPPTs have met with limited success, at least in regards to increasing overall thruster performance.
As a result, the general consensus is that preionization is of little benefit to performance in cases where
the primary discharge is already capable of rapidly breaking down the propellant. Where preionization
has proven useful is in reducing the per-pulse discharge energy and current rise rates required for
current sheet formation. As such, future advancement efforts for preionization may focus on smaller,
lower discharge energy open magnetic flux IPPTs.

Conversely, most closed magnetic flux FRC systems operate at lower discharge energy-per-pulse
and must employ some means of preionization. Field-reversed theta-pinch FRCs start with either
a partially ionized plasma or depend on the first half-cycle of the discharge to preionize the gas, while
RMF-FRCs to date have all successfully employ some means of preionization.

Effective preionization is a key to high repetition rate IPPT operation. IPPTs operating at high
repetition rates (i.e., &1 kHz) typically have per-pulse energies one to two orders of magnitude lower
than IPPTs of similar power which operate at lower repetition rates (10 Hz to 100 Hz). At the ∼10 kW
level, discharge energies in a high repetition rate IPPT may be no more than a few joules, as in most
RMF-FRCs to date. In such cases, preionization is a necessity for timely gas breakdown and effective
organization of the plasma and magnetic field structures.

Not all preionization systems are equally capable however. Work by Polzin [16] indicated the
importance of distributing the preionization plasma uniformly over the coil face. This result was
supported by initial data from testing of the UW HiPeR-PIT, which has suggested that centrally located
RF preionization alone is less effective than using a two stage approach where a small capacitor bank
is also discharged through the drive coil prior to the main discharge to further preionize the propellant.
It should be recalled that prior efforts on a 30 cm diameter planar IPPT [12] indicated that using
a smaller capacitor discharged through the drive coil for preionization could result in the plasma being
pushed away from the coil face prior to the initiation of the main discharge. The UW HiPeR-PIT
preionization system attempts to avoid this issue by triggering the main discharge after only a few
cycles of the pulsed preionization discharge. The efficacy of this technique is still an open question.

Simulations have shown the importance of the axial distribution of the initial plasma on
thruster performance [70]. Work by Dailey and Davis [12] indicated that a mirrored drive coil
preionization system which compressed the initial plasma against the actual drive coil yielded
measurable performance improvement. While this specific implementation was deemed impractical
due to inevitable sputtering of the mirrored coil, a preionization system that could produce similar
axial compression would be highly promising. However, in addition to plasma impingement on a coil
that would compress the propellant on the drive coil face, there is also the possibility for significant
electromagnetic coupling between the preionization and the drive coils.

Preionization in FRC devices is typically more uniform, though that may not be the case for
the UM RMF-FRC with the use of a hollow cathode for the generation of a preionized plasma. It is
unknown at this time if the spatial distribution of preionized propellant has any effect, positive or
negative, on RMF-FRC performance.
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7. Conclusions

We have presented a review of state-of-the-art IPPT research and development for both open
and closed magnetic flux thruster types. The former is characterized by accelerators that rely on
current sheets to entrain and accelerate propellant while the latter typically involves the formation
of a compact toroid (FRC or plasmoid) with embedded magnetic fields. Numerous research groups
have investigated thrusters of each type, with varying amounts of data available for each. In terms
of measured, demonstrated performance, the PIT MK Va represents the present state-of-the-art for
IPPTs. Lower discharge-energy-per-pulse FRC devices represent the state-of-the-art for continuous,
repetition-rate operation. Modeling of both thruster variants have seen some success in predicting the
scaling behavior in these thrusters, but there are still gross modeling assumptions involved at every
level of fidelity that make it difficult to extract additional physical insights from the models. Modeling
the different processes present in an IPPT (e.g., ionization, acceleration, gas entrainment, and other
collisional processes) in a single formulation has never been accomplished and is quite difficult due in
part to the relative times scales and complexities of each part of the problem. While various subsystems
comprising IPPTs have been improved over the years, data on how these improvements affect the
overall system performance are sparse. While the effects can be hypothesized based on models and
physical expectations, these thrusters involve closely coupled processes and improvements must be
quantified through testing at both the subsystem and overall thruster levels. The IPPT represents
a promising and scalable technology for electric propulsion that could be extremely useful in the
mission planning trade space due to a demonstrated ability to process a wide range of propellants,
achieve high efficiency over a range of specific impulse values, and operate over a wide input power
range. However, significant additional development and testing must be completed to quantify the
performance of many proposed accelerator concepts and to generally increase the readiness level of
these types of thrusters to the point where they can be seriously considered as propulsion systems for
various missions.
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