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Abstract
The performance of closure models for the anomalous electron transport when self-consistently
implemented in a fluid model for a Hall effect thruster is investigated. This cross-field transport,
which is orders of magnitude higher than classical collisional transport, is represented as an
effective collision frequency. The proposed closure models relate this transport coefficient to
local fluid properties of the plasma. Before implementation, the models are calibrated against
values of the collision frequency inferred empirically from a 9 kW Hall thruster at 300 V and
15 A. It is found that even though closure models match the empirical collision frequency
values, they diverge from these values when implemented self-consistently in a Hall thruster
code. Possible drivers of this behavior are examined, including the role of non-linearity in the
governing equations of the Hall thruster fluid model, artifacts from using time-averaged
calibration data, and the non-uniqueness of the empirically-inferred collision frequencies. These
results are discussed in the context of their implications for discovering and validating new
closures necessary for enabling fully-predictive Hall thruster models.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The ability to model Hall thrusters predictively is a key
enabling capability for future developments in this technology
[1, 2]. These devices are a common type of electric propulsion

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

employed for station-keeping and orbit-raising of space-
craft, and they are increasingly being baselined for deep
space missions [3, 4]. While this technology is already
widely used, new mission applications are calling for Hall
thrusters that operate in expanded power regimes and for
unprecedentedly long lifetimes. Modeling and simulation
tools are correspondingly becoming increasingly import-
ant to guide technology development in these new operat-
ing regimes. Despite their widespread operational use, how-
ever, there remain unresolved questions about key aspects
of the governing physics. These questions have largely
precluded the development of fully predictive engineering
models.
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The existence of so-called ‘anomalous’ cross-field elec-
tron transport has historically been the most critical of these
poorly-understood processes [5]. Hall thrusters employ a
radial magnetic field to confine electrons which is applied
perpendicular to an axial electric field. While the ions are
unmagnetized and therefore accelerated by the electric field,
the electrons are magnetized and subsequently trapped in an
azimuthal E×B drift. This confinement is critical to the effi-
cient operation of the thruster. Classically, collisions with
heavier species can interrupt the azimuthal drift, inducing elec-
trons tomove in the cross-field direction. However, the amount
of observed electron transport is at least an order of magnitude
more than that predicted by classical collisional theory [5].
This suggests there is an additional anomalous effect driving
electrons across the magnetic field lines and increasing their
mobility. Given the importance of the electron dynamics to the
operation of Hall thrusters, including this effect is necessary to
model these devices predictively.

Many researchers have therefore attempted to account for
anomalous electron transport in simulations. The most dir-
ect approach has been to model the electron dynamics kin-
etically using particle-in-cell [6, 7] or Eulerian direct kinetic
[8–10] methods. These efforts have led to new insights about
the nature and scaling of this enhanced transport. Most not-
ably, results from these high-fidelity simulations have contrib-
uted to a growing consensus that microscale turbulence is a
dominant driving mechanism for transport [5, 11–13]. With
that said, kinetic methods are computationally expensive to
a degree that makes them impractical for many engineering
applications.

Modeling the electrons as a fluid provides an alternat-
ive method for simulating the Hall thruster at a reduced
computational cost. The drawback of this approach that
the classical form of the plasma fluid equations does not
give rise to anomalous electron transport. Instead, it must
be approximated using a closure model, i.e. a model that
expresses the transport as a function of the bulk properties—
density, temperature, etc—that are already known from the
fluid equations. The challenge with this approach is that
presently, there is not sufficient knowledge of the physics
to inform a predictive, reduced-fidelity approximation of the
transport.

To address this shortcoming, many proposed closure mod-
els have been proposed to date based on varying hypotheses
about the mechanisms driving the electron dynamics [14–17].
These models have considered effects ranging from near wall
conductivity to the onset of microturbulence. More recently,
we have also been exploring the use of data-driven (DD) meth-
ods to try to regress measurements of the anomalous trans-
port and identify new closure models. In light of the wide
range of proposed models to date, this invites the question
as to how best to compare these models and evaluate their
fidelity.

To this end, it is common to use ‘empirical’ profiles of the
anomalous transport that have been calibrated against experi-
mental data. These profiles are usually found by assuming the

transport is static in time but varies spatially in the thruster.
The profiles are then adjusted until key predictions of the code
agree with experimental measurement [18–23]. This process
yields useful insight into the state of the Hall thruster plasma
in regions of the discharge that are not accessible by non-
perturbative diagnostics, i.e. within the discharge channel. The
resulting empirical profiles in turn are commonly used as ref-
erences for evaluating the quality of proposed closure models
[14–17].

Despite this practice, these empirically-determined profiles
may not be sufficiently representative of the electron dynam-
ics to be used as reference for benchmarking closures. Experi-
mental measurements, for example, have shown that the trans-
port is time-dependent, which is a departure from the static
assumption of these profiles [24]. Additionally, it has been
shown that these profiles are non-unique in that the empirical
transport may vary by an order of magnitude or more in cer-
tain regions of the discharge without significantly impacting
the predicted operations of the thruster [22]. This makes the
validation of closure models challenging, as two models may
agree well in regions of the discharge most impacted by anom-
alous transport, but diverge in regions less sensitive to the elec-
tron dynamics. These previous observations may suggest that
closure models that accurately predict empirical profiles may
not do so when self-consistently implemented in a simulation.
In light of this possibility—which would significantly impact
efforts to develop predictive Hall thruster models—there is an
apparent need to evaluate the fidelity of closure models trained
on empirical data.

The goal of this paper is to determine if empirical pro-
files are appropriate for validating closure models of elec-
tron transport in Hall thrusters. This paper is thus organized
in the following way. In section 2 we review the problem of
anomalous transport in Hall thrusters and define the closure
problem in a fluid framework. We present examples of two
closure models—one physics-based and one DD—which have
shown to agree with empirical profiles in previous studies [16,
17]. In section 3, we describe our methodology for incorpor-
ating these closures self-consistently into a fluid-based Hall
thruster model. We also describe the experimental data we use
for model validation. In section 4, we presents the results of
our simulations compared to experimental measurements. In
section 5, we discuss our findings and their implications for
the evaluation of closure models.

2. Closure modeling in Hall effect thrusters

We present in this section an overview of modeling anomalous
transport in Hall thrusters in terms of an enhanced effective
collision frequency. We then describe a commonly-employed
method to approximate this collision frequency empirically.
Finally, we give an overview of previous attempts at closure
models for this collision frequency, highlighting two of the
most successful expressions that we investigate in subsequent
sections.
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Figure 1. Operation of a Hall thruster.

2.1. Anomalous transport as a diffusive process

Figure 1 depicts the basic principles of operation of a Hall
thruster. In these axisymmetric devices, a DC discharge
voltage Vd is applied between the upstream anode and a down-
stream cathode, setting up an axial electric field E⃗. There is
also a magnetic field B⃗ applied in the radial direction across
the channel, the strength of which is tailored such that only
the electrons are magnetized. This crossed-field configuration
gives rise to an electron current density j⃗de in the Hall (i.e. azi-
muthal, θ̂) direction. The electrons in the Hall current collide
with neutral atoms injected through the anode and ionize them.
The resulting ions follow the electric field and are accelerated
out of the channel, producing thrust.

In an ideal collisionless plasma, the crossed fields trap all
electrons in the Hall drift. In practice, however, collisions can
induce diffusion in the direction perpendicular to the mag-
netic field. If we neglect the inertia of the electrons (a com-
mon assumption for Hall thruster plasmas), we can represent
this axial current density with a generalized Ohm’s law (see
[17]):

je⊥ =
q2ne
me

νe
ν2e +ω2

ce

[
E⊥ +

∇⊥(neTe)
ne

]
. (1)

Here je⊥ is the component of the electron current density vec-
tor in the field-perpendicular direction, q is the electron charge,
ne is the electron number density, me is the electron mass,
ωce = q|B⃗|/me is the electron cyclotron frequency in radians
per second, νe is the total electron collision frequency, E⊥ is
the perpendicular component of the electric field vector E⃗, and
Te is the electron temperature in eV.

In Hall thruster operation, the electrons are strongly mag-
netized, i.e. νe ≪ ωce. We therefore can simplify equation
(1) to

je⊥ =
q2ne
me

νe
ω2
ce

[
E⊥ +

∇⊥(neTe)
ne

]
. (2)

This result shows that the cross-field electron current scales
with the electron collision frequency. Physically, this relation-
ship reflects the fact that collisions act as an effective drag
force in the azimuthal direction. This force, crossed with the
applied magnetic field, drives the electrons to drift in the axial
direction. Higher collision frequency translates to increased
drag force and therefore enhanced crossed field current.

For equilibrium plasmas, there are classical expressions
for the electron-ion and electron-neutral collision frequen-
cies, νc. However, incorporating these classical collisions
into equation (2) yields electron currents that are orders of
magnitude lower than what is observed in experiment. In
order to resolve this discrepancy and bring simulations in
line with experiment, it is common to introduce an addi-
tional ‘anomalous’ collision frequency νan (or equivalently an
anomalous mobility [15]) such that νe → νc + νAN. By vary-
ing this term, it is possible to achieve a cross-field current
commensurate with measurement. It is common practice to
employ empirical methods to determine appropriate values for
νAN [22].

2.2. Empirically determining the anomalous collision
frequency

The most widely-used method of empirically determining the
anomalous collision frequency is to assume that it is constant
in time but may vary spatially. The spatial variation can in
turn be adjusted until key aspects of the simulation predic-
tions, e.g. the acceleration of ions and discharge current, match
experiment. This has resulted in a canonical ‘shape’ for νAN.
Figure 2(a) depicts an example of this typical shape in a Hall
thruster plotted as a function of distance from the anode along
channel centerline. We generated this result from numerical
simulations of a magnetically shielded Hall thruster operating
with xenon at 300 V and 15 A (described in more detail in
section 3.1). We also show in this result the classical collision
frequency νc and electron cyclotron frequencyωce. Figure 2(b)
shows key plasma properties like the electric field strength,
electron temperature, and plasma density.

The properties of the anomalous profile can be understood
in the context of the trends in the plasma properties and back-
ground magnetic field. In the near-anode region, the neutral
density and thus the electron-neutral collision frequency are
high such that νc ∼ νAN. Inside the discharge channel, the
anomalous collision frequency is typically an order of mag-
nitude greater than the classical frequency. However, near
the channel exit plane, in the region of peak magnetic field
strength, the collision frequency decreases by an order of mag-
nitude. The corresponding increase in electron resistivity in
this location results in strong electric fields and enhanced
Ohmic heating. This is reflected by the profiles exhibited in
figure 2(b). Without this transport barrier, the predicted gradi-
ents in plasma properties from simulation would be much
more shallow than observed experimentally. Downstream of
the exit plane, the anomalous collision frequency increases
by up to two orders of magnitude to reach a maximum value
in the near-plume region. It then declines with the magnetic
field strength with increasing distance from the thruster exit
plane.

Adjusting the spatial variation of νAN to reflect these typ-
ical features has allowed fluid-based Hall thruster simulations
to match experiment to a high degree of fidelity. These types of
calibrated simulations have been extensively leveraged for the
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Figure 2. (a) Example of an empirical anomalous collision
frequency profile for a Hall thruster operating at 4.5 kW, compared
to the classical and electron cyclotron frequencies. (b) Normalized
plasma properties from a simulation run with the empirical profile
in (a).

design and qualification of Hall thrusters [25]. However, des-
pite the success of these empirical profiles and the common-
alities in their shapes, they are not extensible. An empirical
profile calibrated to work on one thruster will not work with
a different thruster or even a different operating condition on

the same thruster. For each new thruster or operational state,
we instead must infer a new empirical profile from exper-
imental measurements of the thruster [20, 23]. This limits
our ability to leverage empirical profiles for fully predictive
simulations.

2.3. Closure models for anomalous collision frequency

As an alternative to empirically-inferred profiles for the anom-
alous collision frequency, we ideally would find a closure
model for this parameter. Closure in this context refers to a
functional form for that depends on the local plasma proper-
ties. The nomenclature stems from the fact that by introducing
this new collision frequency, we have opened the governing
fluid equations, i.e. there are an equal number of equations and
unknowns. Identifying an equation for νAN that relates to the
classical fluid properties e.g. νAN(Te,ne,etc), closes the gov-
erning equations again.

Empirical profiles can be viewed as a type of closure
model in this framework. Instead of the collision frequency
depending on plasma properties, the assumption is that the
collision frequency depends only on position. As previ-
ously established, this approach to closure is not predict-
ive. Instead, it is common to propose physics-inspired clos-
ure models by making assumptions about the mechanisms
driving the enhanced transport. These approaches often lead
to analytical expressions for νAN as a function of plasma
properties [14–16].

In order to evaluate these closure models, it is common
to compare them to empirically-inferred profiles [14, 16, 20].
More specifically, one can evaluate the closure model by using
the time-averaged outputs from a simulation run with the
empirical profile as inputs. The quality of the model is then
evaluated based on how well the two curves match. As dis-
cussed in [17], following this metric, two of the most effective
closuremodels are the first-principles (FP)model fromLafleur
et al [16] and the DD model by Jorns [17].

In the FP model, the anomalous collision frequency is
assumed to result from wave-induced drag due to an elec-
tron drift instability. By making assumptions about the growth
and saturation of this instability, the authors proposed the
model

νan = c1
q
me

|∇ · (⃗ui neTe) |
necsvde

. (3)

Here, u⃗i is the ion velocity vector, cs is the ion sound speed,
vde = |E⃗|/|B⃗| is the electron E⃗× B⃗ drift speed, and c1 is a unit-
less constant that can be adjusted. In contrast, The DD model
stems from an investigation by Jorns [17]. This expression
was found by first compiling a dataset of empirically-inferred
collision frequency profiles (per section 2.2) as a function
of simulated plasma properties. They then applied symbolic
regression to this dataset to propose functional forms for the
anomalous collision frequency. This yielded several DD clos-
ure models that not only matched the data used to discover the
models, but were also able to predict new empirical profiles
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Figure 3. Comparison of the first-principles [16] (equation (3)) and
data-driven [17] models (equation (4)) to the reference empirical
profile depicted in figure 2(a).

with a higher degree of accuracy than existing physics-based
closures. One of the most promising and simple models from
this work is given by

νan = ωce
c1 |⃗ui|

c2cs + vde
, (4)

where c1 and c2 are adjustable unitless constants.
In figure 3, we compare these two closures to the calib-

rated empirical anomalous collision frequency profile from
figure 2(a). For both models, we have used the time-averaged
output from the resulting simulation to determine the plasma
property values in equations (3) and (4). As can be seen,
the FP model (with c1 = 0.1245) and the DD model (with
c1 = 2.39 and c2 = 3.32) both capture the major features of
the empirically-inferred anomalous collision frequency profile
and are able to correctly predict the location of the minimum
in this parameter. There are discrepancies between the mod-
els both upstream and downstream of the minimum. However,
as shown in [22], the anomalous collision frequency may vary
by up to an order of magnitude in these regions without sub-
stantially impacting predictions for performance and plasma
profiles.

Despite how well these models are able to predict the
empirical anomalous collision frequency profile, it remains to
be seen how they might perform when coupled with the rest of
the plasma. This is the most rigorous measure of the predictive
power of these models. To this end, we now turn to integrating
these models into a full Hall thruster simulation.

3. Methodology

In this section, we overview the fluid model we employ as well
as the details of the thruster we simulated. We then define
several key metrics for evaluating the performance of our
simulations.

3.1. Thruster

For the simulations in this work, we used the geometry and
operating conditions of the H9 Hall thruster (figure 4(a)). This
is a 9 kW-class system developed in a collaboration between
the University ofMichigan, the Jet Propulsion Laboratory, and
the Air Force Research Laboratory [26, 27]. It is magnetically
shielded and has a center-mounted cathode that is typically
electrically tied to the thruster body. The thruster’s nominal
operating conditions range from 300 to 600 V and 10 to 20 A
with a cathode flow fraction of 7% of the anode flow rate. We
compare in this work results from simulations applied to the
domain shown in figure 4(a) to experimental measurements
of performance, thrust, efficiency, and specific impulse. Addi-
tionally, we considered the spatially-resolved mean ion velo-
city along channel centerline. These data were obtained via the
method of laser-induced fluorescence (LIF) [28]. This type of
local experimental plasma data is preferred for model valida-
tion as it is collected non-invasively. In contrast, probe-based
methods to perform local measurements have shown in some
cases to perturb the plasma properties [29]. All experimental
measurements were collected while the H9 was operating at
300 V and 15 A on xenon [23, 30].

3.2. Fluid-based model

We performed all simulations in this work with Hall2De, a
state-of-the-art axisymmetric multi-fluid/particle-in-cell Hall
thruster code developed at the Jet Propulsion Laboratory [21],
which has been leveraged extensively for simulating Hall
thrusters [2, 21, 22, 31–33]. In the version of the code we use,
each ion species and the electrons are treated as fluids, while
the collisionless neutral flow is treated using a line-of-sight
view factor algorithm. The governing equations include con-
tinuity for both ions and electrons, a momentum equation for
ions, and a generalized Ohm’s law (section 2) for electrons.
In addition to anomalous collisionality in this Ohm’s law,
the code simulates classical electron-neutral, electron-ion, and
ion-neutral charge-exchange collisions. Ions are assumed to be
isothermal with a user-provided temperature, but a governing
equation is solved for the electron energy. In this equation, we
do not explicitly add any additional energy loss or additions
mechanisms due to wave-driven effects. However, the anom-
alous electron collision frequency does modify the energy
equation by altering the collision frequency used to evaluate
the cross-field thermal and electrical conductivities. The lat-
ter effect enhances Ohmic heating. The outputs of the code
include two-dimensional (z–r, axial-radial) spatial distribu-
tions of ion and electron densities, electron current density,
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Figure 4. (a) The H9 Hall thruster operating at 300 V and 15 A on
xenon in the University of Michigan’s Large Vacuum Test Facility
with an overlay of the simulated region of interest. (b) Schematic of
2D axisymmetric simulation domain with labelled boundaries.

electron temperature, plasma potential, electric field, and ion
velocity [21, 22, 31, 32, 32–35].

We show a detailed picture of the simulation domain with
labelled boundaries in figure 4(b). As can be seen, the region
of interest extends eight thruster channel-lengths downstream
from the anode in the axial direction and two thruster radii
from the symmetry axis in the radial direction. We applied
electrically-insulating boundary conditions on the channel
walls and pole covers and zero-gradient boundary conditions
at the outflow boundaries. At the cathode, we fixed the neutral
flux, ionization fraction, and electron temperature.

We summarize in table 1 the simulation parameters that we
employed for this work. The discharge voltage, mass flow rate,
background pressure, and cathode flow fraction were chosen

Table 1. Hall2De parameters for reported simulations, chosen to
match experimental operating conditions from [30].

Discharge voltage 300 V
Number of ion fluids 2 (beam and cathode)
Mass flow rate 14.8 mg s−1

Background pressure 4.8× 10−6 Torr
Maximum charge state Xe3+

Cathode flow fraction 7%
Cathode electron temperature 3.0 eV
Cathode ionization fraction 5%
Number of cells 3925
Time step 9 ns
Simulation duration 2 ms

to match the experimental operating conditions at 300 V and
15 A for the H9. While Hall2De can accommodate up to four
ion fluids, we restricted our simulation to two fluids—one pop-
ulation of ions emanating from the cathode and the other from
the main beam.We allowed for four xenon charge states (neut-
ral through triply-charged) for each ion fluid. We did not use
the particle-in-cell feature of the code. We fixed the cathode
electron temperature and ionization fraction to 3 eV and 5%,
respectively, which are consistent with experimental measure-
ments of the H9 cathode [36]. Hall2De employs a computa-
tional mesh which is aligned with the applied magnetic field
in order to reduce numerical diffusion. Following the grid con-
vergence study detailed in appendix, we selected a mesh con-
taining 3925 cells. Small cell sizes near the magnetic poles of
the field aligned mesh restricted the timestep to 9 ns in order
to maintain numerical stability. We ran the simulations for two
milliseconds of simulated time each, enough time to allow the
plasma to settle into a stable oscillation and to minimize the
effects of transients on time-averaged quantities. This amount
of simulation time required 28 h of wall time when using 8
CPU cores.

3.3. Metrics for comparing models

In order to quantitatively compare the performance of the
investigatedmodels, we consider fivemetrics. The first metrics
is the thrust, which is the amount of propulsive force generated
by the device. To compute the thrust from the simulation res-
ults, we integrate the flux of axial momentum over the outflow
boundaries of the simulation:

T=

¨
outflow

2∑
f=1

3∑
j=0

M nf,juz,f,j(⃗uf,j · n̂) dS. (5)

In the above expression, u⃗f,j is the velocity vector of particles
belonging to fluid f with charge j, uz,j,f is the component of
that vector parallel to the ẑ axis, nf,j is the number density of
fluid f with charge j, dS is the differential surface area, n̂ is the
surface normal vector, and M is the mass of a xenon atom.

The second metric we consider is the discharge current Id,
which is the current carried by ions and electrons from anode
to cathode. We compute Id by integrating the sum of the ion
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and electron currents over the anode boundary surface:

Id =
¨

anode

 2∑
f=1

3∑
j=1

j q ni,f,ju⃗i,f,j

− j⃗e

 · n̂ dS. (6)

Here, q is the fundamental charge and j⃗e is the electron current
density vector. The third metric for comparison is the anode
efficiency ηa, which measures the fraction of the discharge
power converted into useful thruster power. It is defined as

ηa =
1
2

T2

ṁaVdId
, (7)

where ṁa is the mass flow rate injected through the anode and
Vd is the discharge voltage. The fourth metric we employ is the
integrated velocity error (IVE). This measures how well the
simulation predicts the ion velocity along the discharge chan-
nel centerline. We define this as

IVE=

√√√√´ zNz0 (ui,1(z)− ui,2(z))2dz´ zN
z0
u2i,1(z)dz

. (8)

In the above, z0 and zN are the axial locations of the first and
last ion velocity data-points, respectively, and ui,1 and ui,2 are
the axial components of the ion velocity obtained from two
different measurements or simulations. Higher values of the
IVE correspond to worse agreement between simulation and
experiment. For example, if the ion velocity curves differ by
10% on average, then the IVE should be approximately 0.1.

The final metric we use in this work is the integrated anom-
alous collision frequency error (IAE). This is a measure of
how well the anomalous collision frequency profiles from two
simulations agree with each other. This has the same func-
tional form as the IVE:

IAE=

√√√√´ zNz0 (νAN,1(z)− νAN,2(z))2dz´ zN
z0

ν2AN,1(z)dz
. (9)

In summary, these metrics allow us to evaluate the efficacy
of our simulations. Armed with these formulations, we turn in
the next section to comparing our simulation results to exper-
iment and to an empirically-calibrated reference simulation.

4. Results

In this section, we first describe the results of our calibrated
reference simulation. We then compare the performance of the
closure models against that of the reference simulation.

4.1. Reference simulation

To assess the performance of our chosen closure models, we
compare them to a calibrated reference simulation of the H9
at 300 V and 15 A. We choose to make comparisons to a ref-
erence simulation instead of directly to experiment in order to

Table 2. Comparison of reference simulation output to
experimental data from Su and Jorns, 2021 [23].

Case T Id ηa IVE

Experiment 292.9± 3.5 mN 15.0 A 64.4 ± 1.5 % 0.0
Ref. sim. 258.3 mN 15.2 A 49.4% 0.0722

Figure 5. Empirical velocity curve (solid line) compared to LIF
measurements of the mean ion velocity (markers).

directly assess the impact of the anomalous transport on the
simulation. Since all factors except for the anomalous trans-
port model have been held equal between the reference simu-
lation and the two self-consistent simulations, any deviations
are due to the transport model and not due to physics that
may differ from experiment. The result presented here is the
same as we used to motivate our discussion in section 2.2. We
briefly discuss here how this simulation was generated with
Hall2De. In particular, we obtained the empirical anomalous
collision frequency profile by varying its spatial dependence
iteratively until the discharge current was within 0.5 A of the
experimental value (table 2) and the ion velocity along the
channel centerline matched LIF measurements to within IVE
< 0.1. This approach to determining the empirical profile is
common practice for Hall2De simulations [22, 32]. Achiev-
ing this match in our case required 29 iterations. We show the
results of the reference simulation as a solid line in figure 6(b).
Experimental data is depicted as discrete markers.

We compare in table 2 performance metrics from our sim-
ulations to experimental data. As can be seen, the current and
IVE of the reference simulation agree to within 8% of experi-
ment, while the thrust is 12% lower and anode efficiency 20%
lower than the measured values. This is a result of the fact
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that the calibration was based on matching experimental dis-
charge current and ion velocity profile while we did not con-
sider thrust. Comparable levels of reduced thrust and anode
efficiency compared to experiment have been reported in pre-
vious Hall2De simulations with empirically-based anomalous
collision frequency profiles [32].

With that said, as we discussed in section 2.2, despite
under-predicting aspects of global performance, empirical
profiles calibrated in this way to match ion velocity and cur-
rent are often treated as surrogate measurements of the true
anomalous collision frequency in these devices. Our goal is
thus to determine how well closure models calibrated against
such profiles perform when implemented directly into a Hall
thruster code. We address this comparison in the following
section.

4.2. Closure models

We consider in this section the results of the closure mod-
els introduced in section 2.3 when self-consistently imple-
mented in Hall2De. As we discussed in this previous section,
we calibrated these closures by evaluating them on the time-
averaged plasma parameter outputs of the reference simulation
(figures 2(b) and 6(b)) and adjusting the model coefficients
until we obtained quantitative agreement with the empirical
anomalous collision frequency profile (figure 2(a)). The under-
lying assumption in this case is that a model that matches the
empirical profile will yield similar predictions.

In table 3, we compare the results of the closure models
described in section 2.3 to the reference simulation. Note here
that in table 3 we have computed the IVE with respect to the
reference simulation rather than the experimental data. As can
be seen, when we self-consistently implement these models,
neither agree with the reference simulation on all five met-
rics described in section 3.3. The FP model (FP, equation (3))
shows the closest agreement with the reference discharge cur-
rent and thrust—the thrust is 1 mN lower and discharge cur-
rent 4.5 A higher than those of the reference simulation. On the
other hand, the simulated anode efficiency is 11.5% lower than
the reference. In contrast, the DD model (DD, equation (4))
predicts discharge current twice that of reference simula-
tion and thrust 70 mN higher than the reference simulation,
with anode efficiency 9% lower. Both simulations have high
IVEs—0.307 for the FP model and 0.344 for the DD model—
indicating poor agreement with the reference ion velocity
curve. Lastly, in both cases the IAEs have nearly doubled com-
pared to the non-self-consistently (‘initial’) implemented val-
ues. This suggests that the anomalous collision frequency pro-
files have significantly diverged from the original empirical
profile. In summary, the major implication of the collected res-
ults in table 3 is that, despite the fact the closure models agree
with the empirical profile, their self-consistent implementation
does not yield results that match the empirical profile’s out-
puts.

We can explain the global metrics reported in table 3 by
examining the time-averaged anomalous collision frequency

Table 3. Performance metrics from closure models compared to
reference simulation.

Case T Id ηa IVE IAE (initial) IAE

Ref. sim. 258.3 mN 15.2 A 49.4% 0.0 0.0 0.0
FP 257.6 mN 19.7 A 37.9% 0.307 0.653 1.084
DD 333.6 mN 31.1 A 40.3% 0.344 0.309 0.826

profiles of the two models. To this end, we show in figure 6(a)
the resulting anomalous collision frequency profiles varying as
a function of position after we have implemented them self-
consistently in the code. For comparison, we also show the
empirical profile. We emphasize here that these are the self-
consistent results for anomalous collision frequency and dif-
fer from the spatial profiles shown in figure 3. In this earlier
case, we simply trained the models against the outputs of the
reference simulation with the empirically determined collision
frequency profile. As we already had concluded globally from
the IAEs, the two models have diverged from the empirical
profile. The FP model still qualitatively matches the empirical
profile in some respects—namely, the profile exhibits a min-
imum collision frequency with the right order of magnitude—
but the location of this minimum is shifted downstream by
half of a channel-length from the original value. The minimum
collision frequency predicted by the FP model is also about
50% higher than the minimum of the empirical profile. This
leads to enhanced electron transport in this region over the ref-
erence simulation, explaining the increased discharge current
and reduced anode efficiency reported in table 3. In contrast,
the DD profile shows an anomalous collision frequency pro-
file which reaches a maximum, rather than a minimum, down-
stream from the exit plane with a collision frequency almost
ten times higher than the empirical profile in this region. As in
the FP model, this has the effect of increasing the current and
reducing the efficiency.

We can in part explain the differences in IVE between
the two models by comparing the spatially resolved ion velo-
city curves to the anomalous collision frequency profiles in
figure 6(a). In figure 6(b), we show the predicted ion velocity
curves from the two models next to that of the reference sim-
ulation. Commensurate with its lower IVE, the ion velocity
of the FP model matches the empirical result more closely
than that of the DD model. Specifically, the FP model cap-
tures the steep slope of the empirical ion velocity curve while
the DD model exhibits gradual ion acceleration. This results
from the characteristics of the minimum in anomalous colli-
sion frequency exhibited by the FP model (figure 6(a)). The
point of minimum collision frequency corresponds to the point
of maximum electron impedance, which in turn promotes a
steep electric field. This field leads to rapid ion acceleration at
the location coincident with this minimum. However, as can be
seen, this profile is shifted downstream from the empirical pro-
file, thus leading to the delayed ion acceleration profile. The
relatively gradual acceleration of the DD model can similarly
be understood by noting the high collision frequency near the
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Figure 6. (a) Comparison of simulated anomalous collision
frequency profiles to the empirical anomalous collision frequency.
(b) Comparison of simulated ion velocity curves from each of the
results of the reference simulation.

thruster exit plane, which produces low electron impedance, a
relaxed electric field, and thus slow ion acceleration.

In summary, we have shown that models trained on time-
averaged data to match empirical profiles diverge from sim-
ulation results obtained using the original empirical pro-
file, in terms of both global performance metrics and
spatially-resolved plasma properties. The differences in these

quantities can be understood in terms of the shapes of
the anomalous collision frequency profiles produced by the
models.

5. Discussion

In this section, we discuss possible explanations for our res-
ults, outline the implications of our findings for developing
models of anomalous transport, and provide recommendations
for future Hall thruster model calibration efforts.

5.1. Divergence between self-consistent models and
empirical profiles

We consider in the following three possible explanations for
the divergence between modeling results when we calibrate
the closures on an empirical profile versus self-consistent
implementation. These include non-linearity of the governing
equations, use of time-averaged data for calibration, and non-
uniqueness of the empirical profile. As the models were com-
pared to a calibrated reference simulation instead of directly to
experimental data, we do not expect that differences between
the Hall2De physics model and the true physics governing the
thruster operation are able to explain our results.

5.1.1. Non-linearity of the governing equations. As the
dynamics of Hall thruster plasmas are highly non-linear, small
initial variations in initial conditions can compound into lar-
ger differences over time. As a result, the small differences
between our calibrated closure models and the empirical pro-
file (figure 3) may have led to increasingly divergent behavior,
resulting in the self-consistent profiles that do not match the
initial empirically-informed ones. Moreover, in the absence of
any differences between the closure models and the empirical
profile (i.e. a perfect match), we suspect plasma oscillations
inherent to Hall thrusters may still be sufficient to cause the
model to diverge from the empirical profile.

5.1.2. Use of time-averaged data for calibration. Another
contribution to the diverging profiles may stem from the use of
time-averaged plasma properties to calibrate our closure mod-
els. We can illustrate the problem with a simple example. As
Hall thruster discharges are oscillatory, we can consider two
plasma quantities, A(t) and B(t), which oscillate at a frequency
ω, whereB has a constant phase offset fromA ofϕ radians. The
time average operator is

⟨f(t)⟩= lim
T→∞

1
T

ˆ T

0
f(t)dt. (10)

If A(t) and B(t) are sinusoidal functions with zero mean, we
find after integration that

⟨AB⟩= cos(ϕ)/2 ⟨A⟩⟨B⟩= 0,

where ϕ denotes the phase between A and B. The implication
of this result that the product of the averages can be funda-
mentally different than the average of the products. Therefore,
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when we make calculations using time-averaged oscillatory
quantities, the result may differ from what we would find if we
had performed our computation at all times and then averaged
the result. When evaluating models of anomalous transport of
time-averaged data, there are thus likely to be averaging arti-
facts if the model involves products of oscillating quantities.

We can apply this reasoning to illustrate the effect of
time averaging on one of our closure models, the DD res-
ult (equation (4)). For this analysis, we neglect the ion sound
speed cs for simplicity to arrive at

νan = c1ωce
|⃗ui|
vde

. (11)

We furthermore restrict the problem to one dimension along
the axial coordinate z and restrict our analysis to locations
immediately downstream of the ion stagnation point, so that
u⃗i ≈ ui > 0 and E⃗ ≈ E > 0. We can then collect factors
which do not vary in time (e, |B|, and me) into a constant K.
After these simplifications, we have

νan = K
ui
E
. (12)

We can then assume both the ion velocity and electric field
oscillate sinusoidally with a frequency ω and that the electric
field oscillates out of phase with the ion velocity with a phase
difference of 90◦. This is consistent with previous measure-
ments of the breathing mode [37]. This yields

νan = K
⟨ui⟩+ ũi sin(ωt)

⟨E⟩+ Ẽcos(ωt)
, (13)

where variables in brackets (⟨..⟩) denote mean quantities and
those with tildes (.̃.) denote amplitudes. This expression is
also a periodic quantity with period 2π/ω. The time-averaged
anomalous collision frequency is thus given by

⟨νan⟩= K
ω

2π

ˆ 2π/ω

0

⟨ui⟩+ ũi sin(ωt)

⟨E⟩+ Ẽcos(ωt)
dt. (14)

This yields a final result that scales as

⟨νan⟩= K
⟨ui ⟩
⟨E⟩

+ ϵ(z,⟨E⟩, Ẽ,⟨ui ⟩, ũi), (15)

where ϵ is a positive number which is in general a function of
space, E, and ui. This simple illustration demonstrates that we
cannot replace the arguments of a closure model with time-
averaged values and assume the result will map to the time
averaged collision frequency. This may in part explain why we
can achieve quantitative agreement with the empirical profiles
(that are implicitly time-averaged) while not matching the res-
ults with a self-consistent implementation. In practice, if this
is a contributing factor, calibration of closure models would
require time-dependent measurements.

5.1.3. Non-uniqueness of empirical profiles. As a final note,
we consider the implications of the fact that the empirical
profiles we have used for calibration are non-unique. Mikel-
lides and Lopez-Ortega have demonstrated [22] that stationary
empirically-calibrated anomalous collision frequency mod-
els can vary significantly in certain aspects with only minor
impacts on the simulation output. In particular, changing the
anomalous collision frequency far upstream or far downstream
of the thruster exit-plane has a smaller impact on the shape of
the potential drop in the channel than changing it in the vicin-
ity of the exit plane. Additionally, altering how the anomalous
collision frequency changes away from the thruster centerline
changes little about the observable device behavior beyond
small changes in the plume divergence angle. Practically, this
insensitivity is fortuitous as it allows more latitude in calibrat-
ing simulations to match data. However, it also poses signific-
ant challenges if we wish to use calibrated empirical profiles to
inform our understanding of how anomalous transport actually
varies in Hall thrusters. The non-uniqueness suggests there
may be no effective ‘ground truth’ for calibrating or validating
a closure model in certain regions of the thruster. To this point,
given how insensitive the simulation is to the anomalous col-
lision frequency in the region upstream of the exit plane, there
may be multiple empirical profiles that give the same results as
our reference simulation that we could use for regressing our
closure models. These may ultimately have yielded improved
predictive capabilities. One possible way to resolve this ambi-
guity would be to increase the amount of data used for determ-
ining the empirical profiles, e.g. additional velocity measure-
ments off centerline and measuring other plasma properties.
Alternatively, direct experimental measurements of the anom-
alous collision frequency would resolve this non-uniqueness
[24].

5.2. DD generation of empirical profiles

While we have shown the limitations of the self-consistent
implementation of closure models calibrated against empir-
ical profiles, there is still a practical application for using these
expressions to increase the efficiency of calibrating empirical
models against new datasets. Given experimental measure-
ments of the time-averaged plasma properties, we could use
a given closure model to estimate what the shape of the empir-
ical anomalous collision frequency profile should be. Indeed,
in our previous work [17], we showed that closure models gen-
erated by regressing a dataset of empirical profiles were able
to predict the empirical profiles of thrusters and operating con-
ditions not in the training dataset. Reinforcing this point, the
fit between the DD model and the H9 empirical profile dis-
played in figure 3 was obtained with no alteration to the model
coefficients in [17], despite the fact that the DD model was
not trained on data from this thruster. Using DD methods to
speed the rate of empirical model calibration is an active area
of research [38].
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5.3. Implications for future closure model calibration and
discovery

Self-consistent closure models for electron transport are crit-
ical for enabling predictive simulations. As the community
continues to propose new models based on FP or DD meth-
ods, it is necessary to develop methods for calibrating and val-
idating them. Our work has shown that using ‘measurements’
of the steady-state electron collision frequency inferred from
calibrating against experimental data may not be sufficient for
evaluating newmodels. With this in mind, as we look to future
efforts, there are a number of possible strategies that may be
employed for generating data sufficient for evaluating and cal-
ibrating new closure models.

Themost useful data for calibrating transport models would
be direct experimental measurements of the anomalous col-
lision frequency. Such measurements have been made in the
past [24, 36, 39, 40], though they are often subject to sim-
plifying assumptions about the plasma state that introduce
uncertainty in the values. Furthermore, these measurements
often do not extend upstream of the exit plane, which leaves
the problem of non-uniqueness stemming from the value of
the transport in the near-anode region unresolved. With that
said, as new experimental methods for characterizing the elec-
tron properties in situ become available, directly measuring
the time and spatially-resolved transport may become more
tractable [41].

In complement to developing methods to measure dir-
ectly the anomalous collision frequency, it may be possible to
infer the time-resolved electron dynamics by combining time-
resolved data with real-time state estimation techniques [42].
A with the standard, empirical calibration approach we out-
lined in section 2.2, this method still relies on inferring the
collision frequency indirectly by running a model iteratively
and comparing the outputs to data. However, this approach
has the advantage of the resulting empirical profile being time-
dependent. In light of the discussion in the previous section,
this would provide a much higher-fidelity dataset for the cal-
ibration of closure models.

As an alternative approach, we could in principle calib-
rate and evaluate closure models by self-consistently imple-
menting them in Hall thruster codes and iterating until the
results match experiment. This has the advantage that it is
not necessary to directly measure the collision frequency
for comparison. The drawback is that this approach may
be more time-intensive than evaluating the model against
empirically calibrated or direct measurements. Reduced-
order and multi-fidelity modeling may accelerate this
process [43, 44].

As a last comment, we remark that while our goal remains
to find self-consistent closures for predictive-fluid model-
ing, empirically-inferred transport profiles remain critical to
thruster development and qualification. They have been lever-
aged, for example, for discovering new designs to that increase
thruster lifetime [21] and for evaluating plasma conditions in
regions of the discharge which are difficult to measure [23].
With this in mind, we have shown that closure models calib-
rated against empirical collision frequency datasets may play

an important role in accelerating the calibration procedure for
new thrusters and operating conditions.

6. Conclusion

In this paper, we investigated the relationship between static,
empirically-inferred profiles of Hall thruster anomalous colli-
sion frequency and self-consistent closure models calibrated
on these profiles. We implemented two closure models—
one FP and one DD—into a state-of-the-art two-dimensional
fluid Hall thruster code and compared the results to a valid-
ated reference simulation. We ultimately found that closure
models tuned to match empirical profiles when using time-
averaged simulation data diverged from the empirical results
when implemented self-consistently into simulations. These
results may be attributed to a number of factors such as the
non-linearity in the Hall thruster fluid model, averaging arti-
facts introduced by time-averaging, and the non-uniqueness of
empirically-inferred collision frequency profiles. This inabil-
ity to use steady-state profiles poses a challenge for the devel-
opment and validation of new closure models for the anomal-
ous transport.
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Appendix. Grid convergence study

In order to ensure that the field-alignedmesh had sufficient res-
olution, we carried out a grid convergence study. We tracked
how the quantities of interest introduced in section 3.3 var-
ied as we increased the number of cells in the computa-
tional domain. The results of this study are presented in
table 4. Additionally, we plot in figure 7 the fractional error
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Table 4. Thrust (T), discharge current (Id), and integrated velocity
error for different grid resolutions.

Number of cells T Id IVE

949 244.2 mN 13.57 A 0.200
1423 254.1 mN 16.49 A 0.118
1949 226.6 mN 15.70 A 0.057
2176 243.1 mN 14.64 A 0.101
2750 232.9 mN 16.44 A 0.060
3438 249.2 mN 15.95 A 0.073
3925 258.3 mN 15.20 A 0.072

Figure 7. Variation of error in quantities of interest with increasing
grid resolution.

in these performance metrics against the grid resolution. We
find that the error decreases with increasing resolution. At the
penultimate resolution of 3438 cells, all quantities differ by
less than 5% from those at the finest studied resolution of
3925 cells. We note that the convergence is not monotonic—
increasing the number of cells does not always decrease the
error. This is likely due to the manual mesh generation pro-
cedure, which makes it difficult to ensure that the resolution
smoothly increases across the whole domain as the number of
cells is increased. Despite these caveats, our chosen resolution
of 3925 cells appears to be sufficiently converged.
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