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Abstract
Symbolic regression is applied to find a data-driven model for the anomalous cross-field electron
transport in a Hall effect thruster. This model is formulated in terms of an anomalous electron
collision frequency that is related to the cross-field electron transport through a generalized Ohm’s
law. Empirically determined estimates of this anomalous collision frequency as a function of local
plasma parameters from three 1–6 kW class Hall effect thrusters form the training dataset for this
investigation. A commercially-available, evolutionary genetic algorithm is applied to regress this
dataset and identify models for the anomalous collision frequency that are expressed as symbolic
functions of the local plasma properties. It is found that these data-driven models not only fit the
training dataset but that they can predict anomalous collision frequency values for a test dataset taken
from a fourth thruster not used in the initial regression. Five existing models for the anomalous
collision frequency derived from first-principles are applied to the same training and test datasets used
for the data-driven model. The estimates of the anomalous collision frequency as a function of local
plasma parameters from the data-driven models are shown to exhibit improved quantitative agreement
with both datasets compared to the analytical models. These findings are discussed in terms of the
physical insight they yield for identifying dominant physical processes that govern electron transport
as well as the practical application of using this technique for creating predictive Hall thruster models.

Keywords: Hall thruster, modeling, cross-field transport, data-driven

1. Introduction

While the Hall effect thruster is one of the most successful
and mature forms of electric propulsion flown to date, there
are fundamental aspects of the operation of these devices that
remain poorly understood (see [1]). Most notably, the elec-
trons in these crossed-field devices behave non-classically,
moving across their confining magnetic field lines at an
anomalously high rate. The reason why this occurs is
unknown, and this lack of understanding has been the major
impediment to the development of self-consistent, predictive
models for these devices.

Given the importance of numerical tools for Hall effect
thruster analysis, qualification, and design, there has been a
concerted effort over the past three decades to model self-con-
sistently this anomalous effect. Direct numerical simulations

based on a kinetic formulation offer the highest fidelity method
for achieving this end [2–7]. However, kinetic approaches like
particle-in-cell simulations are prohibitively expensive to com-
putationally model faithfully the full-scale geometries of actual
thrusters. Fluid-based and hybrid codes (kinetic ions and fluid
electrons) offer reduced noise and faster computational times
[8–17]. Yet, their use invites the question as to how to model
correctly the anomalous electron transport in what is inherently a
reduced fidelity framework. This poses a particular challenge in
light of the fact that there is a growing body of evidence sug-
gesting that the onset of the mechanism that drives the transport
is kinetic [2, 18–22]. In order to use a fluid formulation self-
consistently, it thus is critical to be able to find an approximate
form for this anomalous effect that can be related to fluid-like
parameters. This would allow the governing fluid equations to
remain closed and therefore tractable.
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There have been several attempts to arrive at this type of
closed-form, fluid-based approximation for the anomalous
electron transport. Proposed processes include enhanced colli-
sionality through interactions with the walls [23, 24], Bohm
diffusion [8], the influence of large-scale coherent structures
[25, 26], and the onset of high-frequency turbulence [18–22]. To
date, there has not been consensus about which process is
dominant. Moreover, while there are ongoing efforts to incor-
porate closed-form approximations for the transport based on
these proposed mechanisms in a fluid framework [23, 24,
27–31], success has been limited. The models will only match a
subset of experimental data, only qualitatively capture trends in
the electron transport, or in the extreme cases completely deviate
from actual measurements. In light of these shortcomings and
the growing demand for numerical thruster models, there thus
remains a pressing need to find a functional, fluid-based
expression for the electron transport.

Our approach in this investigation to this problem is a
departure from previous works. While these earlier attempts
focused on deriving a functional form from first-principles,
we apply instead a data-driven, supervised machine learning
(ML) approach. We use empirically determined estimates of
the electron transport taken from a series of real Hall thrusters
and apply symbolic regression to these datasets to identify a
functional form for the dependence of the electron transport
on background plasma parameters. This method is inspired
by recent successful investigations performed in the compu-
tational fluid dynamics community to identify closures
for approximating the effects of classical fluid turbulence
[32, 33]. The potential advantage of this technique is that not
only will it yield results that fit the data used to train it, but
because the result is a symbolic expression, it may ultimately
be extensible to new datasets (and therefore predictive).

With this approach in mind, this paper is organized in the
following way. We describe in the first section our numerical
methods. We outline a formulation for how to approximate
the electron transport in a fluid hierarchy, detail the process
for generating training datasets from experimental data by
applying numerical inversion, and provide an overview of the
numerical tool we employ for machine learning (ML)
regression. In the second section, we present the results of the
symbolic regression and examine the predictive capabilities of
the data-driven models. We similarly compare the accuracy of
these models to five leading models for anomalous electron
transport that were derived from first principles. In the third
and final section, we discuss the implications of our result in
terms of the physical insight it offers, its limitations, and its
potential use for developing predictive Hall thruster models.

2. Model description

2.1. Representing electron transport in a fluid framework

We describe in this section a fluid approach for describing the
electron dynamics in a Hall effect thruster. Figure 1 shows the
canonical geometry for this system in which an electric field,
E, is applied axially across a radially-confining magnetic

field,

B. This crossed-field configuration gives rise to a Hall

effect electron current density in the azimuthal direction,

j .de

The cross-field electron current density,


( )j ,e E is parallel to the
applied electric field.

We adopt a generalized Ohm’s law to model the different
components of the electron current density. Classically, this
can be expressed as

n = +  - ´
   

( )m

q
qn E P Bj j , 1e

e
e e e e

where = +
  

( )j j je de e E denotes the electron current density
with components in both the cross-field and Hall directions, ne

is the electron collision frequency including contributions
from electron–ion and electron-neutral collisions, Pe is the
electron pressure, q is fundamental charge, ne is the electron
density, and me is the electron mass. Physically, this expres-
sion represents a balance between driving forces (pressure
gradients, electric field, and body force) with the drag on the
electrons induced by collisions. In the classical fluid for-
mulation, this Ohm’s law is combined with energy and con-
tinuity equations for the electrons, ions, and neutrals (see
[17]) to yield a closed set of equations for the fluid properties
of each species (species temperature, Ts, drift velocity,


u ,s

density, n ,s etc) that can be evaluated self-consistently in the
Hall thruster geometry (figure 1). What has been found to
date, however, is that numerical solutions with the classical
formulation of equation (1) invariably yield predictions for
the cross-field electron current,


( )j ,e E that are orders of

magnitude too low compared to experimentally measured
values (see [1] and references therein). This is the so-called
problem of anomalous electron transport in these devices. The
discrepancy between experiment and simulation suggests that
this classical description may be missing physical processes

Figure 1. Canonical geometry for the Hall effect thruster with
characteristic fields and electron current densities.

2

Plasma Sources Sci. Technol. 27 (2018) 104007 B Jorns



that govern the electron dynamics. The challenge in modeling
Hall effect thrusters with a fluid formulation is to find a way
to represent these non-classical effects.

Fluid-based models of Hall effect thrusters currently
resolve this issue by introducing new terms into the gen-
eralized Ohm’s law (equation (1)) to drive higher cross-field
current (see [29, 30, 34]):

n = +  - ´ +
    

( )m

q
qn E P B Fj j , 2e

e
e e e e AN

where

FAN is an ‘anomalous’ force density due to non-classical

effects. Any components of this forcing term in the Hall
direction in turn can promote cross-field electron current den-
sity through a body force. This forcing term alternatively can
be formulated as an effective drag term, n= -

 
F n m v ,e e eAN AN

where we have introduced an anomalous collision frequency
nAN to represent the non-classical process. Couched in this
form, equation (1) then becomes

n n+ = +  - ´
   

( ) ( )m

q
qn E P Bj j . 3e

e
e e e eAN

This expression lends itself to an intuitive interpretation for
how the anomalous effects promote cross-field transport. By
making the typically valid assumption w n n+ce e AN for
Hall thrusters where wce is the electron cyclotron frequency, we
can solve equation (3) for the direction of velocity parallel to
the electric field to find

n n
w

=
+

+
 ⎛

⎝⎜
⎞
⎠⎟ ( )( )

q n

m
E

P

qn
j . 4e E

e

e

e

ce

e

e

2
AN

2

This result shows that as the anomalous collision frequency
increases, the magnitude of the cross-field transport is
enhanced. The anomalous collisions thus have the same effect
as classical collisions, helping to de-magnetize the electrons
and thus cross the confining magnetic field.

We mention here that in the fluid modeling treatments of
Hall effect thrusters, the problem also can be formulated in terms
of anomalous mobility, m ,AN in lieu of a collision frequency (see
[28]). In the case of magnetized electrons w n n+( ),ce e AN it
can be shown that this parameter scales linearly with the
anomalous collision frequency, m n w= ( )/ B .ceAN AN The
anomalous mobility and collision frequency thus are effectively
interchangeable when discussing the need to introduce new
parameters to drive the cross-field current.

2.2. The problem of closure in a fluid framework

The major consequence of introducing an anomalous collision
frequency (or mobility) into the electron Ohm’s law
(equation (3)) is that it opens the governing set of equations.
Classically, in a Branginskii-like formulation for a low-
temperature plasma, the fluid equations and transport coeffi-
cients (e.g. Coulomb collisions) are known and can be
expressed as functions of typical fluid properties (Ts,

nu , ,s s K). The number of equations for the system matches
the number of unknowns and is therefore numerically tract-
able. Introducing the additional unknown, n ,AN in the Ohm’s
law invites the problem of closure. In order to be able to

evaluate the modified set of fluid equations self-consistently,
it is necessary to add another equation or find a way to relate
this anomalous term back to the original set of properties
solved for in the fluid equations, e.g. a functional form of the
type n ( )T n, , . . . .s sAN

To this end, previous attempts to close the electron
transport equations for Hall effect thrusters have employed a
first-principles approach. These rely on proposing a mech-
anism not included in a classical formulation, such as
enhanced transport due to collisions with the walls of the
thruster [35–37] or interactions with kinetically-driven
microturbulence [28, 29, 38, 39], and making the ansatz that
this process drives the anomalous transport. The impact of
this mechanism on the electron dynamics is then translated
via a first-principles derivation into an effective collision
frequency that depends on fluid and thruster parameters. As a
result, just as there is a closed-form expression for Coulomb
collisions as a function of temperature and density found
through first principles analysis, so too can the anomalous
collision frequency be expressed as a function of fluid-prop-
erties, n ¼( )T n, , .s sAN The key advantage of this technique is
that the new, closed set of equations are in principle pre-
dictive, allowing for simulating new geometries and operating
conditions.

We show in table 1 a list of five of the leading expres-
sions for the electron collision frequency that have been
identified to date for Hall effect thrusters from first-principles
analysis.

In brief, these mechanisms assume that the anomalous
electron dynamics are governed by enhanced collisionality
due to electron interactions with the discharge chamber walls
[24, 35–37, 40], Bohm diffusion [8], viscosity from a turbu-
lent spectrum with its growth balanced by dissipation at small
lengthscales (Turbulence I) [28], the electron cyclotron drift
instability saturated by ion trapping and quasilinear defor-
mation of the electron distribution function (Turbulence II)
[29, 41], and shear-suppressed turbulence in the thruster
(Turbulence III) [38]. These expressions in table 1 represent
some of the most advanced attempts to approximate self-
consistently the anomalous electron transport in fluid simu-
lations of Hall effect thrusters. They have been employed in

Table 1. Functional forms proposed for anomalous collision
frequency in Hall effect thrusters. In these expressions,

aK C, , and are scalar constants,

ui is ion drift in the axial

direction, vde is the electron drift in the Hall direction, and cs denotes
the ion sound speed.

Mechanism nAN

Wall collisions Kcs

Bohm w
1

16
ce

Turbulence I
w

⎛
⎝⎜

⎞
⎠⎟K c

1 v
ce

de

s

2

Turbulence II 
∣ · ( )∣

K
u n T

m c n v
i e e

e s e de

Turbulence III w
+  a

⎛
⎝⎜

⎞
⎠⎟( )K C v

1 1

1
ce

de
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different measure to examine various aspects of thruster
operation, and under certain circumstances, they have been
able to yield numerical results that match thruster behavior.
Increasingly sophisticated efforts in turn have employed
combinations of these closures [11, 17, 42, 43] or have
leveraged the insight from them to introduce additional
governing equations for the collision frequency [30, 34]. With
that said, despite the physical insight that has emerged from
using these closures, they have had limited success in yielding
fully predictive numerical simulations [23, 24, 27–31]. The
thruster simulations employing these closures will only match
a subset of experimental data, only qualitatively represent
trends in the collision frequency, or in some cases, deviate
entirely from actual measurements. In light of these limita-
tions, we outline in the following section an alternative
approach to this problem.

2.3. Regression to find a functional form for closure

Although from the perspective of fundamental understanding
there is no substitute for a first-principles analysis, a data-
driven model may offer a more expedient and practical
alternative for closing the fluid equations for a Hall thruster.
The central idea is that if we are able to generate a large,
representative dataset of measurements of the anomalous
collision frequency as a function of local plasma parameters
in actual Hall thrusters, it may be possible to infer from
regression, i.e. fitting the data, a functional form for the col-
lision frequency. The resulting expression may or may not
have direct physical meaning, but by design it will be able to
capture trends in the dependence of the anomalous collision
frequency on plasma parameters, n ( )T n, , . . . .s sAN

The ability to apply this data-driven approach is predicated
on two requirements: the existence of large datasets of the
anomalous collision frequency and the ability to regress this
data rigorously. With respect to the first requirement, there are
two paths for empirically determining the anomalous collision
frequency in Hall thrusters: direct experimental measurement
and numerical inversion. In the direct experimental approach,
the Ohm’s law approximation (equation (4)) is inverted to
express the anomalous collision frequency as a function of
local plasma parameters, e.g. electric field and electron current
density. By measuring these plasma properties directly, it is in
principle possible to calculate the anomalous collision fre-
quency. While simple in concept, this direct measurement
method to date has been nearly impossible to perform accu-
rately and non-invasively. Indeed, despite ongoing efforts to
improve upon experimental techniques [44–46], non-invasive
measurements of the electron density and the cross-field elec-
tron current density have proved to be particularly challenging
in these devices. The difficulty in characterizing these plasma
properties, the uncertainty inherent to making this measure-
ment, and the expense ultimately have limited the size of the
available datasets.

Numerical inversion provides an alternative technique to
overcome the challenges with direct experimental measure-
ments of the anomalous collision frequency (see [17]). In this
approach, the user considers an existing thruster configuration

with experimental measurements of key plasma properties
that are more easily, non-invasively, and accurately char-
acterized than the electron current density and plasma density.
The axial component of the ion velocity along the thruster
channel centerline is a common example. The user then builds
a simulation of this thruster based on the standard fluid
equations and an electron Ohm’s law modified according to
equation (3). We show in figure 2 an illustrative example of
this: a 3×3 simulation mesh in the r-z domain applied to an
existing thruster. Each mesh location is characterized by the
standard fluid parameters (electric field, E ,11 electron temp-
erature, T ,e

11 density, n ,e
11 etc., where the upper index refers to

the grid location) while the anomalous collision frequency at
each mesh point, u u ¼, , ,AN

11
AN
12 is left as a free input para-

meter specified by the user. The user closes the governing
fluid equations by inputting fixed numerical values for the
anomalous collision frequency at each mesh point, i.e.
u u u= = ¼ =c c c, , , ,AN

11
11 AN

12
12 AN

33
33 where ¼c c c, , ,11 12 33

are constants. With these values, the fluid equations can be
solved to yield estimates of global parameters like thrust and
discharge current as well as local plasma parameters like
electron temperature and ion drift. The process of numerical
inversion in this context is to find the values for the anom-
alous collision frequency at each grid point that when used in
the governing equations allow the code to output plasma and
thruster properties that match the experimental dataset.

In Hall thruster simulations, a common method for
performing this numerical inversion relies on an iterative
procedure (figure 3). The code user provides a numerical,
fixed ‘guess’ for the anomalous collision frequency at each
mesh point, and the numerical code is solved until it con-
verges to a solution. The results of the code are then checked
against experimental measurements from the actual thruster.
If the measurements do not agree, the user iterates on the
guess for the collision frequency and follows this process
until agreement with experimental measurements is found.

Figure 2. Side view of the upper half of a Hall effect accelerator with
a sample mesh of data points where the anomalous collision
frequency is specified by the user and plasma parameters such as
electric field, density, and temperature are calculated.
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Returning to the illustrative example in figure 2, the ultimate
result of this iterative process would be a nine-component
dataset with numerical values S={( u ¼( )T n, , , ,e eAN

11 11 11

( u ¼( )T n, , , ,e eAN
12 12 12 K u ¼( )}T n, , , .e eAN

33 33 33 Here the value

of the anomalous collision frequency at each mesh point
determined from numerical inversion is identified with the
local plasma properties output by the code at the same mesh
point. In practice, the grids for numerical simulations are
substantially larger than the illustrative example shown in
figure 2, consisting of several thousand points. By con-
sidering multiple thrusters and multiple operating condi-
tions, it thus is possible to build large-scale datasets of the
measured anomalous collision frequency as a function of
local plasma properties [11, 47, 48].

Armed with these datasets for the anomalous collision
frequency, the second requirement for our proposed work is
the ability to regress these data. The goal is to try to find a
functional form, n ¼( )T n, , ,e eAN that depends on the plasma
parameters and fits the experimental dataset. There are many
types of regression that can be applied to this end. Tradi-
tionally, physical intuition or first-principles analysis guides
the choice of a candidate function with unspecified coeffi-
cients as free parameters. For example, we may propose
n = + +( )c T c n c ue e iAN 1 2

2
3 as a potential function. We then

would apply a least-squares analysis to the existing dataset, S,
to determine the coefficients. The challenge with this tradi-
tional approach is that we do not know a priori the functional
form that nAN should take for the Hall effect thruster. More-
over, it is prohibitively difficult to discern functional trends
for this parameter, e.g. a linear dependence on temperature,
just from inspection of the data—there are too many inde-
pendent parameters. Indeed, in the extreme case, fluid codes
for Hall effect thrusters that simulate electrons, neutrals, and
multiple fluid ion species and charge states can have over 30
independent plasma parameters at each grid point [49]. The
ability to mix, match, and explore systematically different
combinations of functional forms that fit the local plasma
parameters is with limited exceptions (see [50] for a detailed
discussion) beyond the capability of a human operator. This
leaves the tool of ML.

ML in this context consists of employing supervised
algorithm techniques to search for functional forms of the
collision frequency that best fit the datasets generated by
numerical inversion. The identification of this functional form
can be accomplished through methods such as nearest
neighbor, neural networks, and Gaussian processes. The ML
we employ here is based on symbolic regression [51, 52].
This approach is distinguished from other ML techniques in
that in lieu of assuming a set of base functions or imposing a
model structure for the fit, symbolic regression is open-ended,
systematically proposing and evaluating combinations of
analytical functions for their goodness of fit to the exper-
imental data. In this way, the algorithm ultimately yields
symbolic functional forms for n ¼( )T n, , .e eAN These types of
expressions easily can be evaluated for new datasets to
determine their predictive capability. Moreover, their
expression in symbolic terms affords an opportunity for some
fundamental insight—allowing us to evaluate which plasma
parameters are dominant in influencing the anomalous col-
lision frequency.

Figure 3. Flow chart for determining electron collision frequency
profile through the process of numerical inversion.
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3. Implementation

The implementation of the architecture we outlined above
requires two elements: the generation of training datasets and
a ML algorithm to search for the functional form of the
frequency.

3.1. Generation of datasets

We employed in this work the results of Hall2De, a numerical
Hall thruster code developed at the NASA Jet Propulsion
Laboratory (JPL) [17], to provide datasets of the empirically-
determined anomalous collision frequency in a set of Hall
thrusters. Hall2De is a 2D, r-z, multi-fluid solver that con-
currently evaluates fluid equations for electrons and multiple
ion fluids (demarcated by the charge state and location). The
neutrals are propagated in the geometry with a line-of-sight
algorithm. Hall2De solves the fluid equations by decompos-
ing them into components parallel and perpendicular to a
magnetic field aligned mesh. The input and boundary con-
ditions to the code include the geometry, magnetic field
topography, discharge voltage, and flow rate. The discharge
current, thruster, and plasma parameters as a function of
position are the primary outputs.

Hall2De can be used to infer the anomalous collision
frequency in an experimentally-characterized Hall thruster per
the numerical inversion method discussed in section 2.3. In
this code, however, instead of specifying the value for the
anomalous collision frequency at each point in the simulation
grid independently, the user only inputs the guess for the
anomalous collision frequency values along the channel
centerline of the thruster, n ∣AN CL. These values are then
mapped to the rest of the thruster by projecting them along
their respective magnetic fields and scaling by the magnitude
of the field n n=( ) ( ) ∣/B B B .AN CL AN CL The code is run to
convergence with these specified values of collision fre-
quency. The goodness of the guess for the collision frequency
profile is then benchmarked by comparing the outputs for
Hall2De to experimental measurements of the discharge
current and thrust as well as local plasma measurements
including the electron temperature profile along centerline,
the plasma potential along centerline, and the axial ion
velocity. These latter measurements are informed by probe-
and laser-based techniques for measuring the plasma (see
[53, 54]). Using the numerical inversion technique, Hall2De
has been shown to yield numerical results that are quantita-
tively consistent with many aspects of experimentally-mea-
sured thrusters (see [49, 55, 56]). Moreover, the empirically
determined collision frequency profiles found with this tech-
nique exhibit qualitatively and quantitatively similar features
to the profiles that actually have been measured with direct
probing techniques (compare, e.g. figure 5 from [44] and
figure 8 in this work).

We employed Hall2De’s experimentally derived anom-
alous collision frequency from nine operating conditions for
four different Hall thrusters. These datasets were provided by
JPL and included data on the H6US [57–59], a 6 kW
laboratory thruster that was the result of a joint development

between the Air Force Research Laboratory, JPL, and the
University of Michigan; the H6MS [56, 60], a version of the
H6US that was designed by JPL which modified the magnetic
topography to be magnetically shielded; and two commercial
systems, denoted here as Commercial Hall Thruster I and
Commercial Hall Thruster II. All four of these thrusters
broadly speaking follow the optimized, empirical scaling laws
that have informed state of the art, moderate-power (1–5 kW)
Hall thruster design in the past three decades (see [61]). They
all are intended to operate between 1 and 6 kW with similar
in-channel current densities and channel width to thruster
radius ratios. Xenon was the working gas for all four systems,
and for the nine operating conditions, flow rates varied from 5
to 25 mg s−1 with the standard cathode flow fraction of 7%
and discharge voltages of 300 and 400 V. Key differences
between the thrusters include the magnetic field topography
(shielded versus unshielded), cathode geometry and location
(externally mounted vs internally mounted), and thruster
materials. The general purpose behind employing four mod-
ern but disparate systems was to provide a diverse dataset (i.e.
to not bias it toward one thruster over another) while still
representing technologies that are relevant and in use.

For each thruster configuration, we note that while
Hall2De was capable of generating two-dimensional datasets
over the entire simulated domain, the assumed dependency of
the anomalous collision frequency off centerline makes these
off-axis points non-unique (see [50] for additional discus-
sion). Therefore, for this investigation we only extracted
numerical data along the channel centerline of each simulated
thruster. Moreover, to provide uniformity across the different
datasets (despite employing different geometries and meshes),
we interpolated the numerical data results from each
dataset along the channel centerline and sampled these
interpolations into 100 equally spaced points in the axial
direction. For each case, the Hall2De simulations considered
the electrons, neutrals, and three species of ions and ion
charge states. Each data point extracted from the numerical
code included ∼30 local plasma parameters and 20 calculated
collision frequencies.

While this wide parameter space could, in principle, be
regressed with a powerful ML algorithm, the large number of
independent variables ultimately would lead to results that are
too convolved to interpret. Moreover, the symbolic regression
we apply to this system has no way of differentiating units or
dimensions. Thus, if applied directly to the dataset, it would
yield analytical expressions with dimensions that may not
match collision frequency. In order to simplify our search, we
narrowed our parameter space in two ways. First, we only
considered characteristic velocities, lengths, and frequencies
in the dataset. This choice largely was driven by physical
intuition and is consistent with most first-principles models
proposed to date. Second, we normalized each of these
plasma properties by a characteristic value. The advantages of
this normalization are that it serves to scale all the input
parameters to a common range and it allows us to reduce the
parameter space of independent variables (thereby easing the
requirements on the regression algorithm). The independent
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variables we included in the simulation along with the nor-
malization parameters are shown in table 2.

3.2. Symbolic regression

We employed the commercially available DataModeler from
Evolved Analytics on the Mathematica platform for this study.
This symbolic regression code leverages an evolutionary,
genetic algorithm to propose, iterate, and refine candidate ana-
lytical functions to fit training datasets. The user inputs a
dependent variable—in this case the normalized anomalous
collision frequency, n w/ ceAN —and the other plasma parameters
as independent variables (table 2). The user similarly selects
possible operator building blocks for functions. Examples
include addition, subtraction, multiplication, and square roots.
The algorithm begins by randomly sampling different function
combinations of the dependent variables and evaluating the
goodness of fit of these functions to the data. For DataModeler,
the metric for goodness of fit is given by 1−R2, where R2 is
the coefficient of determination. Formally, this value is the ratio
of the residual sum of squares to the square of the variance of
the data: å n- = -( )( ) ( )R f1

i i i
2

AN
2/å n n-( )( ) ,

i iAN AN
2

where n ( )iAN denotes the ith element of the anomalous collision
frequency from the dataset, ( )f i denotes the regression model
prediction for that anomalous collision frequency, and nAN

denotes the average of the anomalous collision frequency over
the dataset. In the context of interpreting this parameter in terms
of a model’s goodness of fit, the numerator is the total error
associated with a given model proposed by the algorithm. The
denominator is the error from a model that assumes the func-
tional form for the anomalous collision frequency is a constant
given by the average value of the dataset, n=( )f .i AN From this
definition, it can be seen that - R1 02 and that this para-
meter also can exceed 1 ( - >R1 12 ). Physically, this latter
case corresponds to a proposed model that is less adept at
predicting the anomalous collision frequency than simply
assuming a constant value given by the average of the data. As
a rule, lower values of - R1 2 correspond to better fits with
the data.

Employing this metric for the goodness of fit, the symbolic
algorithm then evolves by selecting certain base functions and
dismissing others, ultimately advancing through mutation and
cross-over through multiple generations in an effort to minimize
the error function. The output of the algorithm consists of a
number of candidate functional models that are ranked by the
goodness of fit and complexity. Complexity in this case is gov-
erned by the number of terms that appear in the resulting ana-
lytical expression and the operators employed. Basic algebraic
operations have the lowest complexity while transcendental
functions have the highest. The results are expressed as Pareto
charts of the different models wherein the goodness of fit is
plotted against complexity. DataModeler also has several other
diagnostic features. These include the ability to assess the fre-
quency at which each dependent parameter appears in the gen-
erated models as well as the ability to identify the most common
functional combinations of these parameters. We leveraged both
of these features in our analysis.

4. Results

We first present here the driven models for the anomalous
collision (section 4.1) found by applying symbolic regression
to a ‘training’ dataset. This dataset includes the H6US,
H6MS, and Commercial Hall Thruster I operating at dis-
charge voltages of 300 and 400 V and power levels varying
from 3 to 6 kW. We then apply these data-driven models to
predict the collision frequency (section 4.2) for a ‘test’ dataset
that consists of values from the Commercial Hall Thruster II.
We conclude by comparing the performance of the data-dri-
ven models to those that have been proposed from first-
principles analysis (section 4.3).

4.1. Functional form from training data

Figure 4 shows the Pareto front for the 1000 ‘best-fit’ models
generated by applying the symbolic regression algorithm to
the training dataset. Each point in this graph represents a
model along with its complexity and goodness of fit. This
figure also exhibits a characteristic Pareto front ‘knee’ that
illustrates an effective inflection point between model com-
plexity and accuracy. Models with lower complexity than this
knee do not predict behavior well (high 1−R2). Models with
higher complexity yield expressions that overfit the data. The
optimal models from the regression generally are drawn from
this knee.

We show in table 3 functional forms for three repre-
sentative models from the Pareto knee. This table also lists the
relative complexity of each expression as well as the good-
ness of fit of the functions. We thus can see explicitly the
trade between the accuracy and number of terms. In all three
cases, we emphasize that we did not pre-select the base
functions in these expressions—they were determined by the
algorithm. The physical meaning of the values of the num-
erical coefficients for these functions is difficult to interpret as
they are the result of minimizing the residual of error when
applied to the data. Of more physical significance, however, is

Table 2. Normalized plasma parameters employed as independent
variables in regression model.

Frequencies normalized by electron cyclotron frequency, wce

Ion plasma frequency wpi

Classical electron collision frequency fe
Singly-charged, classical ion collision frequency fi

Velocities normalized by ion sound speed, cs

Singly-charged ion axial velocity ui

Electron Hall velocity vde

Length scales normalized by electron Larmor radius, rce

Debye length lde

Pressure gradient length-scale = /L P PP e e

Ion drift velocity length-scale = /L u uui i i
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that all of these models depend on common plasma para-
meters including both the ion axial drift velocity and the
electron drift velocity in the Hall direction. This observation
is consistent with nearly all of the models identified with the
regression algorithm. We reserve a discussion of these
dependencies for section 5 and for now focus on the quanti-
tative performance of each of these models in matching the
training data.

To this end, we show in figure 5(a) the normalized
anomalous collision frequency values determined from three
Pareto knee models (table 3) compared to the actual values
from one of the thrusters in the training dataset, the H6US at
300 V and 6 kW. We plot the collision frequency as a
function of axial position along the thruster channel centerline
(expressed in arbitrary units) for illustrative purposes.
Though, we note that in practice each data-driven model did
not take spatial position into account (table 3). They only used
the plasma parameters from the Hall2De dataset outlined in
table 2 from each location along centerline as inputs. With
this in mind, the close correspondence between the data-dri-
ven model and the dataset on centerline in figure 5(a) serves
as an initial validation of the ability of the regression algo-
rithm to generate analytical functions that can match the
training data with a high degree of fidelity. This would seem
to suggest that at least for known datasets, data-driven
methods are a viable method for generating closure.

4.2. Predictive capability

To investigate the predictive capability of the data-driven
models, we applied the results (table 3) that emerged from our
symbolic regression to the ‘test’ dataset from a completely
different thruster than the three used in the ‘training’ dataset,
namely Commercial Hall thruster II. The operating condition
in this case was 300 V and 4.5 kW. We show these results in
figure 5(b). Here we again have chosen to make the depen-
dent axis the axial location in the thruster but emphasize that
this parameter does not factor into the model’s evaluation of

the collision frequency. It is rather informed by the local
plasma conditions (table 2) at each point.

From this plot, we can see that for all three models, there
is marked agreement with data downstream of a minimum
point (at axial location of 10) where they each capture
quantitatively a similar exponential rise in normalized col-
lision frequency. Moreover, all the models appear to show, at
least in some measure, the inflection point in the upstream
region. A similar inflection point did not appear in our
training data profile shown in figure 5(b). Yet, all three of the
data-driven models approximate it. In other words, these
models are able to predict features that change between the
training and the test datasets. This result thus serves to show
that not only can the data-driven models match the mea-
surements that informed them but that they can be extended to
new datasets with a measure of predictive capability. As we
discuss further in section 5, it is important to caveat this
remark with the understanding that although the data-driven
model demonstrates a predictive capability on a different
thruster than used in the training dataset, this thruster
leverages similar design principles and operating conditions
as the thrusters in the training dataset. This new thruster’s
plasma properties and electron transport thus are also
expected to be comparable to that of the devices that com-
prised the training dataset. The agreement between model and
result, while marked, is not unexpected.

4.3. Comparison to first-principles models

We contrast here the results of our data-driven model with the
first-principles closures that have been proposed to date
(table 1). To this end, we consider both the training
(section 4.1) and test datasets (section 4.2). In order to pro-
vide the best representation for each first-principles model, we
first determined the values of the free parameters (e.g. the
constant K ) that yielded the best fits to the training data set.
The results for these fit parameters are listed in table 4.

Armed with these results, we show in figure 6 response
plots to the training dataset of both the first-principles models
and one of the data-driven models (Model III). These figures
plot the observed anomalous collision frequency from the
datasets (normalized) as the independent variable and the
predictions from the functional model as the dependent
variable. A perfect model would fall along the drawn solid
lines. It is evident from all of these results that the first-
principles closures do not exhibit the same fidelity as the data-
driven model (figure 6(f)). Some appear anti-correlated with
the data (figures 6(a) and (b)), while others are scattered or
only qualitatively predict the measured values. The closest
approximations are the Turbulence II and III models which
illustrate the correct general trends. In contrast, the data-dri-
ven model not only captures the qualitative trends but gen-
erally shows quantitative agreement over the nearly four
orders of magnitude spanned by the dataset. We further
comment that although we only show one case here for
illustrative purposes, the other models from table 3 (I and II)
exhibited similar response curves.

Figure 4. Pareto front plot of the results of the machine learning
symbolic regression.
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We can quantify these qualitative observations from the
response plots by converting them into 1−R2 values for
each model. These are shown as the gray bars in figure 7. For
comparison, we also show as a dotted line in this plot the
value of R2=0. A model with this coefficient of determi-
nation (section 3.2) is functionally the equivalent of using the
mean of the training dataset as the model for the anomalous
collision frequency. Models with 1−R2>1 thus offer no
improvement in predictive capability over using a constant,

average value. With this in mind, we now can see that the
trends we noted in figure 6 are supported by the coefficient of
determination analysis in figure 7. Indeed, the Turbulence II,
III, and data-driven models yield the best agreement with the
training dataset. Of all the first-principles closures, however,
only the Turbulence III model has 1−R2<1. The data-
driven model exhibits the least error compared to the other
closures.

It ultimately is not surprising that the data-driven model
exhibits better agreement with the training data than the other
closures. It is based on using numerical tools to fit this spe-
cific dataset. The more objective comparison is to apply the
models to the test dataset that was not used in the regression.
To this end, we also show in figure 7 in blue the 1−R2

values for the different models as evaluated on the data from
Commercial Hall thruster II. It immediately emerges from this
result that the trends are both quantitatively and qualitatively
the same as with the training data. The data-driven model
ultimately exhibits a better ability than the other first-princi-
ples closures to match the collision frequency values.

As a final metric, we show in figure the same test dataset
from figure 5(b) along thruster centerline compared with the
predictions from the data-driven model III and the two first-
principles models, Turbulence II and III, that showed the best
agreement with the data. Here we can see that both of the
first-principles models exhibit qualitatively correct trends—
capturing the effective inflection point—but that quantita-
tively they have orders of magnitude discrepancies with the
data. In contrast, the data-driven functional model recreates
both quantitatively and qualitatively the correct behavior. We
note compared to the other two models, the data-driven model
III does underestimate the anomalous collision frequency
upstream of the inflection (0–10 position). However, it has
been found [30, 50] that in this region Hall2De’s estimates for
the anomalous collision frequency can be to some extent
arbitrary. Classical collisions are the dominant effect here, so

Table 3. Three of the functional forms identified from symbolic regression drawn from the Pareto knee in figure 4.

Data-driven model Functional form Complexity - R1 2

I w - ´ +
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-
⎛
⎝⎜

⎞
⎠⎟

u

c v
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Figure 5. Normalized anomalous collision frequency profile (data
points) along channel centerline for the (a) H6US at 300 V and 6 kW
from the training dataset and (b) Commercial Hall thruster II at
300 V and 4.5 kW from the test dataset. The three solid curves are
the results of data-driven Model I (red), Model II (blue) and Model
III (orange) drawn from table 3 when applied to the datasets.

Table 4. Best fit parameters to training dataset for the first-principles
models.

Mechanism Best fit parameter

Wall collisions =K 2000
Turbulence I =K 29
Turbulence II a= = ´ =-K C1.3; 3.6 10 ; 18

Turbulence III =K 23
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the values for the anomalous collision frequency in this region
are ambiguous at best. As a result, both the training dataset
and the subsequent model results in this region are not as
critical to modeling thruster behavior. With this in mind, we
see that the ML approach has a substantially higher degree of
agreement with the data than the first-principles models in the
more physical, downstream regions. In the following section,
we discuss the implications of this finding.

5. Discussion

Our results have demonstrated not only the ability of data-
driven functions for the anomalous collision frequency to
match training sets but also to predict—in some measure—the
functional dependence of the anomalous collision frequency
on plasma properties in a completely different thruster.
We also have showed quantitatively the ability of these

Figure 6. Response plots for anomalous collision frequency models drawn from the training data set for the (a) Wall model, (b) Turbulence I
model, (c) Bohm model, (d) Turbulence II model, (e) Turbulence III model, and (f) Data-driven model III.
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data-driven models to provide better agreement with data than
existing models derived from first-principles. With these
observations in mind, we discuss here some caveats to these
findings as well as potential physical insight yielded by
this work.

From the perspective of physical significance, the fact
that our regression technique is symbolic affords us an
opportunity to examine the generated models for insight into
what physical processes may be driving the anomalous
mechanism for transport. For example, we show in figure 9 a
plot of the frequency of each normalized variable’s appear-
ance (table 2) in all the best-fit models generated by the
regression algorithm. This is a quantitative assessment of how
‘important’ each variable is for a model to fit the data. What
immediately appears from this figure—and is consistent with
the sample models we showed in table 3—is that two

dominant contributors are the ion drift velocity and the
electron Hall drift velocity (normalized by ion sound speed).
We can interpret the predominance of these two variables
through the framework of one of the leading theories pro-
posed to date for the explanation of anomalous transport: the
onset of current-driven turbulence.

In this context, the dependence of the models on the
electron drift is not surprising given that the Hall effect cur-
rent is the driving source for the onset of this turbulence. The
importance of the second variable, the ion drift speed, is less
evident from the interpretation of turbulence as a driving
factor. One possibility, as others have pointed to, is that the
ion drift may play a role in balancing the growth of the tur-
bulent energy [30, 34, 62]. As an additional guidepost for an
analytical, first-principles investigation, we also were able to
establish functionally how these dominant contributors to the
data-driven models combine to yield the best match with
experimental data. From a correlation analysis of the models
from the Pareto front in figure 4, we find that the most
common functional combination of variables is given as

n wµ
⎛
⎝⎜

⎞
⎠⎟ ( )u

v
. 5ce

i

de
AN

2

The physical origin of this result is not immediately
apparent. However, it does appear to suggest the collision
frequency may be Bohm-like though modified by a corrective
term that depends on the ratio of ion to electron drift
velocities.

In addition to pointing to two dominant parameters cor-
related with the anomalous collision frequency, this work
allows us to evaluate the relative unimportance of other fac-
tors. In particular, we can see from figure 9 that classical ion
collisions as well as the gradients for both pressure and ion
drift do not appear in a high fraction of models. This suggests
that physically these inputs may not be dominant drivers in
the fluid-formulation for the anomalous collision frequency.
This stands in contrast to some of the first-principles models
outlined in table 2. As for the other parameters with inter-
mediate presence in the best models such as the electron

Figure 7. 1−R2 values for different closures. Gray denotes the
training data set and blue is from the test data set. The dotted line
corresponds to a model based on using the mean value of collision
frequency from the training dataset.

Figure 9. Percentage of models from the Pareto front in figure 4 that
incorporate the shown normalized parameter. Plasma frequency did
not appear in the models.

Figure 8. Predictions (solid lines) for the anomalous collision
frequency according to three models along centerline compared to
the test dataset from Commercial Hall Thruster II at 300 V and
4.5 kW (points).
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collision frequency and Debye length, their appearance at a
rate of 50% suggests that they may have some weaker role.
However, it is not immediately evident if and how. Additional
simulations with protracted run times may help identify the
relative importance of these parameters. With that said, we
ultimately recognize that data-driven results may never lead to
a direct, fundamental conclusion about the underlying phy-
sics. Rather, from the perspective of first principles insight,
the major contribution from regression work is that it provides
us with a new tool for inspiring hypotheses for the physics of
the anomalous term.

Leaving aside the physical interpretation of these results,
there are a few caveats to this analysis that we mention here.
The first is that our functional forms from the ML technique
are not perfect and in fact exhibit marked deviations even
from the training datasets (figures 5 and 6(e)). While this is a
sign that we are not overfitting the data, it does call into
question the extensibility of this model to parameter regimes
that are significantly outside those modeled here. It remains to
be seen how well the model works for off-nominal operating
conditions. Indeed, although we demonstrated the predictive
capability of this model by applying it to a different thruster
geometry than those used for training, it is important to note
that all the thrusters considered in this work rely on similar
design principles (section 3.1) and operate over a narrow
envelope of canonical conditions for these devices (300–400 V
and 1–6 kW). The notable success of the predictive ability of
this model to match a different thruster configuration
(section 4.2) thus may largely stem from the fact that this
device was not substantially different in design than the other
thrusters. As a follow-on consideration to this, one of the major
challenges of this approach is that there is not a unique model
that best fits the data. As Table 3 shows, there are multiple
candidate functional expressions exhibiting different depen-
dencies on the plasma parameters. While all of these ultimately
show similar goodness of fits, their degeneracy complicates
efforts to intuit the underlying physics from these models or to
determine which one best will predict the collision frequency
for a new thruster geometry. As with all data-driven algo-
rithms, these challenges may in part be addressed by increasing
the number of thrusters and operating conditions included in
the datasets.

As a second concern, all of this work to date has been on
existing datasets, both for training and testing. We have
applied ML regression to see if there are functional forms that
fit this data. We have yet to incorporate self-consistently the
closures identified by the ML algorithmic into a thruster code.
These numerical models, when self-consistently evaluated
with the functional forms we identified in table 3, may prove
to yield anomalous collision frequency profiles that differ
than the shapes shown here. Or, in the extreme case, may not
yield unique or convergent solutions at all. This will be the
ultimate test of the predictive capability of this model.

For a third caveat, we raise the larger question as to the
validity of the approximation that the anomalous effects in the
plume can be represtend as an effective scalar collision fre-
quency (equation (3)). Indeed, it is not immediately evident if
this formulation is correct. For example, the anomalous

effects may be anisotropic in the plume, thus requiring a
tensor formulation. Or, we recognize the possibility that
approximating the effects of whatever mechanism drives the
turbulence with fluid equations may not even be valid [63].
The search for a functional form, even aided by data-driven
techniques, thus may be limited as to the insight it can yield.
With that said, our work to date does seem to suggest that
there are at least some functional forms based on fluid
properties that fit the data. Indeed, the positive results we have
presented here indicate that a data-driven approach may be an
effective and novel tool for approaching the problem of
electron transport.

6. Conclusions

We have explored in this work the application of data-driven
techniques with ML for the purpose of investigating the
problem of anomalous electron transport in Hall effect
thrusters. Following a standard approach in the community,
we have couched this problem in terms of a fluid formulation
where we have related the cross-field transport with an
effective anomalous electron collision frequency. In so doing,
the problem was reduced to finding a self-consistent expres-
sion for the scalar anomalous collision frequency that depends
on the background fluid properties. While there have been a
number of attempts at identifying this form from first-prin-
ciples, in this work we have applied a data-driven approach.
We employed seven datasets from three state of the art Hall
thrusters generated from the empirically validated fluid-code
Hall2De to train a ML algorithm based on symbolic regres-
sion. We showed that the analysis of these datasets yielded a
functional form of the anomalous collision frequency that
matched the experimental measurements. Moreover, we
demonstrated that this functional form was extensible beyond
the training dataset. In particular, we were able to use our
result to predict qualitative and quantitative trends in the
anomalous collision frequency for a thruster geometry not
included in our training data. We similarly showed that the
data-driven model for this case exhibited better agreement
with the anomalous collision than the preditions from five
existing closure models derived from first-principles. In
addition to demonstrating this predictive capability, we
leveraged the symbolic regression method in this work to
generate potential physical insight into the processes gov-
erning the anomalous transport. It emerged from this analysis
that both the electron Hall drift and ion drift speed may have
dominant roles in governing the anomalous collision fre-
quency. We similarly have conjectured about the reason why
these dependencies exist—primarily through the interpreta-
tion that the collision frequency results from turbulence in the
plasma. We have discussed the limitations of this approach
both in terms of the validity of attempting to approximate
kinetic effects with a fluid approximation as well as the
challenges with extending a data-driven model to off-nominal
configurations. Despite these issues, we believe that the
results here have demonstrated the promise of data-driven
modeling as a tool for addressing the problem of electron
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transport. Indeed, this approach may even offer a path toward
achieving the ultimate goal of a Hall thruster code with a
predictive capability.
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