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Numerical data fusion algorithms are applied to the reconstruction and denoising of laser
plasma diagnostic data in a Hall thruster plume. The performance of two algorithms—
average linear transfer function estimation, and nonlinear shadow manifold interpolation
based on Takens’s theorem—are compared based on their ability to synchronize and denoise
time-resolved laser-induced fluorescence measurements of ion velocity fluctuations. Hyper-
parameters are optimized for both models in order to minimize error based on testing on
synthetic, ground truth datasets. Convergence studies are then performed to assess the op-
timal performance of both algorithms with respect to dataset sample depth and periodicity.
These techniques are then applied to real laser-induced fluorescence data taken in a mag-
netically shielded Hall thruster for two operating voltages, corresponding to low-frequency
discharge oscillations in both a highly oscillatory, near-periodic regime as well as an aperi-
odic regime. It is found that the nonlinear time-delay embedding model is able to converge
to a high-fidelity reconstruction with roughly 10 times fewer samples than required for
the Fourier-domain method, and may be less prone to artifacts such as overshoots. How-
ever, the transfer function method is generally able to achieve a lower total error when
large training datsets are used. The nonlinear model is also more computationally expen-
sive than the linear algorithm. Following these comparisons, four advanced applications
of these algorithms for laser plasma diagnostics are demonstrated: inference of nonlinear
dynamics, reference data fusion, high-frequency time-resolution via background subtrac-
tion, and application to pulsed diagnostics. The feasibility and utility of both algorithms
for these applications are discussed in the context of sampling requirements, experiment
time, and model assumptions.
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Nomenclature

AEPS = Advanced Electric Propulsion System

AOM = Acousto-optic modulator

EVDF = Electron velocity distribution function

FFT = Fast Fourier Transform

ITS = Incoherent Thomson scattering

IVDF = Ion velocity distribution function

LIF = Laser-induced fluorescence

PSD = Phase-sensitive detection

SMI = Shadow manifold interpolation reconstruction algorithm

SNR = Signal-to-noise ratio

TALIF = Two-photon absorption laser-induced fluorescence

TF = Transfer function estimation reconstruction algorithm

A(t) = Training reference time series

B(t) = Reconstruction reference time series

β = Normalization constant for SMI weighted sum

C(t) = Training LIF time series for a particular wavelength

D(t) = Reconstruction LIF time series

d(t1, t2) = Euclidean distance between time delay vectors at times t1 and t2

E = time-delay manifold dimension

F (t, λ) = Laser-induced fluorescence signal

F̃ (ω, λ) = Fourier transform of laser-induced fluorescence signal

H̃(ω) = Transfer function

k = Number of nearest neighbors

mi = sample index for the ith nearest neighbor

N(t) = Noise added to signal

Nchunks = Number of chunks to subdivide transfer function time series

ω = Angular frequency

R(t) = Reference signal

R̃(ω) = Fourier transform of reference signal

t = time

tAmi
= Training time corresponding to the mith sample

τ = Time-delay parameter

M⃗X = Shadow manifold/time-lag vector for signal X(t)

wj = weights for weighted average

VD = Discharge Voltage

λ = laser wavelength
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I. Introduction

The implementation of electric propulsion (EP) technologies on space missions relies on accurate prediction
of on-orbit performance. For EP missions, which typically trade wet mass for extended burn times due to

higher achievable specific impulse, device lifetime and failure prediction are of particular concern.1,2 Lifetime
qualification efforts are historically based on ground testing in vacuum chambers, but the improvement of
physics-based models for these devices enables an increased reliance on simulations.3 These simulations can
significantly decrease cost and qualification time if sufficiently reliable. However, achieving fully predictive
plasma simulations is complicated by the strong impacts on performance and lifetime from poorly understood,
time-dependent plasma behavior across a range of spatiotemporal scales.

For example, Hall thrusters, the most commonly flown type of in-space electric propulsion, exhibit time-
dynamic behavior at frequencies spanning orders of magnitude. These phenomena include the relatively
low-frequency breathing mode (< 20 kHz),4,5 intermediate coherent cathode oscillations (∼ 50−100 kHz),6,7

and high-frequency, microscopic plasma instabilities (> 1 MHz).8,9 These spatiotemporal fluctuations can
strongly influence the local discharge physics, and in turn impact predictions of thrust, efficiency, and erosion
rates.10–13 Therefore, models used for design and qualification must rely on experimental characterization
of these time-dependent effects.

Non-invasive laser scattering diagnostics are a key experimental tool for characterizing the local plasma
physics in Hall thrusters. Laser-induced fluorescence (LIF) velocimetry, a method for directly measuring the
ion velocity distribution, has been used extensively to investigate the discharge physics in Hall thrusters,
and to calibrate unknown parameters in models.14,15 More recently, incoherent Thomson scattering (ITS)
has also provided key insights into Hall thruster physics by resolving the electron velocity distribution,16,17

and two-photon absorption laser-induced fluorescence (TALIF) has likewise supplied measurements of the
ground-state neutral gas density.18 Despite the utility of these diagnostics, measuring time-resolved behavior
is difficult due to their low signal-to-noise ratio (SNR). Because background light and random noise typically
dwarf the signal of interest, ensemble averaging techniques over long periods must be used to discern the
signal— however, this process generally destroys high-frequency information.19

Despite these difficulties, several methods exist for achieving time resolution for these low-signal diag-
nostics. These techniques generally work by mapping the signal of interest to some time-resolved global
reference measurement, such as the discharge current. Several methods exist in the literature for generating
such a mapping when thruster oscillations are either naturally periodic or forced to be thus.20–22 However,
passive Hall thruster oscillations are not generally periodic,19 and there is thus a need for a more general
method to generate mappings between a reference signal and optical diagnostic data.

Two methods have emerged in the literature to perform this type of denoising operation on low-signal,
time-resolved diagnostic data based on learning a mapping from an aperiodic reference measurement. First,
the technique of empirical transfer function (TF) estimation accomplishes this by mapping between frequency-
domain representations of the signals. This technique has been successfully applied to time-resolved probe
measurements4 as well as LIF velocimetry.19,23 However, transfer function estimation requires significant
experimental time to build large training datasets, and relies on the potentially questionable assumption
that the Hall thruster dynamics are linear and time-invariant.

The second method is known as shadow manifold interpolation (SMI) or time-delay embedding recon-
struction, which has more recently been demonstrated on Hall thruster measurements from a variety of
electrical probes.24–26 This technique reconstructs the diagnostic signal from a more general, fully nonlinear
mapping, based on an approximation of the higher-dimensional state space of the thruster, and may be more
robust to noise than the TF method.25,27 However, to the authors’ knowledge, this SMI analysis technique
has not yet been applied and validated for the types of optical diagnostic data from LIF measurements which
are the state of the art for calibration of Hall thruster simulation codes. There is then a need for the rigorous
comparison of performance between these two aperiodic signal reconstruction techniques for LIF data, as
well as an exploration of the utility of SMI for achieving time resolution for diagnostics to which transfer
function method is more difficult to apply, such as the pulsed diagnostics of ITS and TALIF.

In this work, we implement and demonstrate both the TF and SMI algorithms on time-resolved LIF
datasets from the Advanced Electric Propulsion System (AEPS) thruster.28 In Section II, we describe the
details of time-resolved LIF acquisition, followed by the working principles of both analysis techniques.
Following this, Section III presents the results of performance comparison on both synthetic datasets in
order to determine optimal hyperparameters, as well as with real LIF data. Section IV then explores four
advanced applications of time-resolved reconstruction with both synthetic and real datasets: inferring nonlin-
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ear dynamics, performing data fusion of multiple reference time series, allowing for background subtraction
to improve the time-resolution, and reconstructing sparse samples from pulsed laser diagnostics. Finally,
Section V summarizes our key conclusions from this body of work.

II. Methodology

In this section, we introduce the laser-induced fluorescence (LIF) diagnostic which we use as the testbed
for exploring the performance of algorithms for reconstruction and denoising of LIF data based on a reference
signal measurement. We then summarize the underlying principles and implementation of two reconstruction
methods: a linear frequency domain technique, and a nonlinear time-domain based technique.

A. Overview of Laser-Induced Fluorescence and Phase-Sensitive Detection

Laser-induced fluorescence (LIF) velocimetry is a key diagnostic widely used to measure the ion velocity
distribution in electric propulsion plasmas. To accomplish this, a tunable laser is used to excite an electronic
transition from a metastable state of the target ion or atom. This excited electron subsequently decays,
emitting fluorescence which can be detected by a photomultiplier tube (PMT). As the laser wavelength is
varied, the beam selectively excites ions moving at particular velocities along the laser axis, which correspond
to the Doppler-shifted transition wavelength for those velocities.29 As a result, the fluorescence intensity as
a function of laser wavelength provides a proxy for the ion velocity distribution function (IVDF) projected
along the laser injection axis. Non-Doppler effects which broaden the lineshape include Zeeman or Stark
splitting and hyperfine splitting, but these effects are typically so small as to have a negligible impact on
the mean velocity of the distribution, such that they are typically ignored for the singly-charged xenon LIF
scheme used in the present work.30

Due to the intense background light from the plasma, the signal-to-noise ratio (SNR) of this PMT
measurement is too low to resolve a meaningful signal in most cases.19 To mitigate this, a technique known
as phase-sensitive detection (PSD) is typically applied. PSD relies on modulating the laser at a known
frequency, for example with a mechanical chopper or acousto-optic modulator (AOM). A lock-in amplifier
then uses frequency mixing and low-pass filtering to extract the portion of the PMT signal which varies
at the modulation frequency. Since the majority of the noise due to background light should occur at
frequency components other than this modulation frequency, this procedure significantly improves the SNR.
However, the time-constant τPSD of the low-pass filter used for PSD is essentially an averaging window, and
time-resolved information which varies faster than this timescale is destroyed.

To attain time-resolved LIF signal and infer the fluctuations in the IVDF, it is thus necessary to reduce
τPSD to be shorter than the phenomenon of interest. For example, to resolve the 10-100 kHz oscillations
which dominate global Hall thruster current, Durot et al. sample the LIF signal at 20-30 MHz, modulate
the laser at 1 MHz, and perform PSD digitally in post-processing with 1/τPSD = 500 kHz.19 However, the
adverse effect of shortening the time constant is that the SNR worsens. We must therefore perform further
ensemble averaging in a way that preserves time-resolved information.

One way to accomplish this is by recording a “reference” signal, which encodes the time-resolved global
state of the Hall thruster, and generating a mapping between the reference and LIF signals in order to
further reduce the noise.4 The discharge current to the anode, as measured by inductive probes on the
transmission lines, is a natural choice for this purpose. Figure 1 shows a diagram of the Hall thruster
operating in a ground test with these data streams, demonstrating the noisy LIF signal as a function of time
for a particular wavelength (velocity). If the discharge current oscillates in a periodic manner, the reference
and noisy LIF signals can straightforwardly be broken up into segments corresponding to several phase
bins of the oscillation - averaging these segments can result in “phase resolution” of the LIF signal. This
idea is behind several periodic reconstruction techniques, known for example as sample-and-hold averaging,
boxcar averaging, and photon counting, which are detailed in Ref. 31. However, for the quasiperiodic and
aperiodic oscillations which are more commonly present in Hall thrusters, it is necessary to learn a more
sophisticated mapping between the reference and LIF signal. This information can provide a metric for
identifying times with “similar behavior” in a way that preserves time-resolved information when ensemble
averaging is applied.

For this work, we seek to explore the performance of these denoising algorithms by reanalyzing the
datasets presented in Refs. 23 and 12. This LIF data consists of time-resolved IVDFs acquired in the plume
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Figure 1. Schematic of the fundamental data streams for time-resolved laser induced fluorescence and similar
optical diagnostics for a Hall thruster, consisting of the discharge current as an example global reference, and
the noisy time-resolved laser diagnostic output. Our goal is to train a model to predict/denoise the LIF signal,
f(t), based on the information about the thruster encoded within the reference signal, R(t).

of the Advanced Electric Propulsion System (AEPS) Hall thruster at the Jet Propulsion Laboratory (JPL),
California Institute of Technology. These measurements were performed with the thruster operating on xenon
propellant, with a discharge current of 20.83 A and discharge voltages of 300 V and 600 V. A transition in
singly-charged xenon ions from the metastable 5p4

(
3P2

)
5d2 [4]7/2 state to the 5p4

(
3P2

)
6p2 [3]

o
5/2 state at

834.953 nm (vacuum) was targeted by a tunable diode laser.32 The corresponding fluorescence wavelength
was 542.06 nm, and an optical bandpass filter reduced background light from other wavelengths before the
scattered signal reached the PMT. For these datasets, the light was injected axially to measure the axial ion
velocity distribution within the thruster acceleration region.

At the 300-V operating condition, this thruster exhibits weaker, aperiodic fluctuations, compared to
the 600-V case’s strong, nearly periodic 50-60 kHz breathing mode oscillations.23,33 These two datasets
therefore provide interesting test cases for validating these algorithms in qualitatively different dynamical
situations. For these measurements, the sample rate of the digitized PMT output was 25 MS/s, with each
laser wavelength worth of training data extending 30 s in length. This corresponds to the significant storage
requirement of at least 3 GB per wavelength, per position. In the remaining subsections, we describe in
detail the transfer function analysis algorithm which was previously used to analyze this dataset and map
the breathing mode oscillation to thruster performance in Refs. 23 and 12, in addition to the newer shadow
manifold technique based on Takens’s embedding theorem.

B. Fourier-domain method (Average Transfer Function Estimation)

The first denoising algorithm we focus on in this work is known as average transfer function (TF) estima-
tion. This technique makes the assumption that the thruster is a linear-time-invariant (LTI) system. The
consequence of this assumption is that the Fourier transform of the output measurement time series, in this
case the LIF signal at a particular laser wavelength F (t, λ), is related to the reference signal R̃(ω) by a linear
transfer function, H̃(ω, λ), assumed to be constant in time:

F̃ (ω, λ) = H̃(ω, λ)R̃(ω). (1)

Note that each quantity in this expression is complex, so that the transfer function relates both amplitude
and phase information between the reference and LIF signal at each frequency. In our context, this reference
signal is typically the thruster discharge current, measured with a Pearson coil. If the assumption in Eq. 1
holds, it is possible to estimate the transfer function H(ω) from a sufficiently long time series for F and R.
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Detailed explanations of the method for inferring the transfer function and its performance against other
methods for denoising of periodic signals are found in the work of Lobbia4 and Durot19, who leveraged
TF estimation to synchronize spatiotemporal Langmuir probe maps and achieve time-resolved laser-induced
fluorescence during aperiodic oscillations, respectively. However, we provide a brief overview of this technique
below.

We assume that the reference signal (discharge current) is measured without noise; however, the LIF
signal has a noise component consisting of background light and electrical fluctuations in the detector. This
leads to the measured time series FMEAS(t, λ) = FLIF (t, λ) + N(t). The noise time series N(t) can be
approximated as the realization of a random variable, but we note that this may not be entirely accurate
because the variation of the background light is also a result of the dynamical system governing the plasma
state. We discuss this point further in Sec. IIIC. Regardless, after performing phase-sensitive detection,
only the frequency component of the deterministic part of the background laser light which is near the
modulation frequency should survive. We then divide the time series, which may be hundreds of millions
of values long in practice, into several thousand shorter ”chunks”, in order to facilitate averaging. For each
chunk (indexed here by j), the discrete Fourier transforms of both the reference signal and LIF signal are
computed, yielding (with noise) FMEAS,j(ω) = FLIF,j(ω)+Nj(ω), and Rj(ω). An empirical transfer function
can then be computed by the simple division Hj(ω) = FMEAS,j(ω)/Rj(ω). The average transfer function
is then computed by simply averaging the Hj(ω) curves for each chunk. In practice, this is achieved with a

weighting scheme wj , i.e. Hest(ω) =
Nchunks∑

j=1

wjHj(ω), where
∑

wj = 1. Provided that N(ω) has zero mean,

this formulation converges to the true transfer function as the number of chunks becomes large, for constant
sample rate and chunk length. For this work, we follow Durot19 in using the Welch weighting scheme,

wj(ω) =
|Rj(ω)|2∑
j |Rj(ω)|2

, (2)

which enforces finite variance for the transfer function estimator by weighting the sum by frequency compo-
nents which are present with large amplitudes in the data.34 Our numerical estimate for Hest can now be
substituted into Eq. 1 for a given reference signal, leading to a denoised reconstruction of the FLIF (ω); finally,
simply taking the inverse discrete Fourier transform results in the denoised time series. This reconstruction
algorithm is illustrated in flowchart form in Fig. 2.

Figure 2. Illustration of the transfer function estimation (TF) algorithm. The reference signal R(t) is trans-
formed to the frequency domain, from which an average linear mapping is learned to the frequency-domain
representation of LIF signal at each wavelength. The inverse transforms of these reconstructions to the time
domain make up the time-resolved IVDF.

This technique can be applied to measure the transfer functions for several distinct output signals from
the same input at different times, for example for different LIF wavelengths spanning the Doppler-broadened
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lineshape of the targeted transition. Provided that the same reference signal trace is used for the recon-
struction and the system is truly linear and time-invariant, this enables the reconstruction of synchronized
instances of all output variables, in turn enabling simultaneous reconstruction of the entire IVDF. This trans-
fer function technique is computationally powerful as it relies on the many decades of development of fast
Fourier transform computations. However, the assumption that the system is linear may fail, especially given
that Hall thrusters have been known to show nonlinear and/or chaotic dynamics. It is therefore possible
that this reconstruction method could miss relevant features of the true LIF signal when these assumptions
are violated. Also, the number of chunks to average over is an unspecified hyperparameter for which there
is no obvious choice.

C. Shadow Manifold Interpolation

Figure 3. Example of 3D shadow manifold construction for a 1D signal. (a) 1D example signal demonstrating
the values of a time lag vector at two times, t1 (shades of blue) and t2 (shades of red). (b) Three-dimensional
shadow manifold representation of the signal in (a). The Euclidean distance d (red) between the points on the
manifold at times t1 and t2 is a measure of the similarity of the system’s state at these two times.

The second technique we explore in this work is known as time-delay embedding reconstruction, or
alternatively as shadow manifold interpolation (SMI). Unlike the transfer function estimation procedure,
this technique is a method for finding a fully nonlinear mapping between the reference and output signals.
Rather than assuming a linear system, SMI instead relies on the assumption that the measurements are
governed by an unknown, potentially high-dimensional dynamical system. However, the cost of relaxing the
linearity assumption is significant computational expense and complexity, especially in regards to the large
space of hyperparameters which must be tuned to achieve a proper reconstruction.

The SMI reconstruction algorithm can be understood intuitively by recalling our goal of performing en-
semble averaging over subsets of times which preserve time-resolved information, rather than averaging over
the entire signal. To achieve this, any reconstruction method must contain some definition of “similarity”
between the system behavior at different times. For example, the TF method described in the preced-
ing implicitly identifies similar states of the system as those in which the phases of the reference signal’s
constituent frequency components lead to repeatable patterns of interference. The SMI method instead pro-
vides an explicit topological measure for this notion of similarity by looking to Takens’s embedding theorem,
which describes the relationships between so-called “shadow manifolds” or time-lagged representations of a
measurement.

To illustrate this idea by example, we show an artificial, aperiodic time-series reference signal R(t) in
Fig. 3(a). Suppose we would like to find times at which the dynamical system is in a similar state as at
time t1. Our first step might be to look for points at which the signal has the same value, i.e. to identify
times t for which R(t) ≈ R(t1). While such points exist within the time series shown, for several of them
the signal obviously has a very different slope and concavity – more generally, the system is not in a similar
location in phase space in this case. We can improve this by constructing a two-dimensional “time-delay
vector”, which not only considers the current state of the system, R(t1), but also includes the future state
after some time lag τ , i.e. R(t1 + τ). More generally, we can construct an E-dimensional time-delay vector,
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M⃗R(t), by considering the value of the time series at the next E time-lags of duration τ :

M⃗R(t) = [R(t), R(t+ τ), · · · , R(t+ (E − 1)τ)]. (3)

For example, in Fig. 3(a), the components of a time-delay vector with dimension E = 3 at the time t1 would
be the y-value of the three blue points, while at time t2 the three red points would make up the time-delay
vector components, for a particular choice of τ . The so-called “shadow manifold” is then the path in E-
dimensional space which M⃗R(t) traces out as the time t evolves. We show in Fig. 3(b) the three-dimensional
shadow manifold corresponding to the time series in Fig. 3(a), with the blue and red points highlighting the
value of the time-lag vector at times t1 and t2, respectively.

The utility of constructing such a shadow manifold is due to Takens’s embedding theorem, which is
described in full rigor in Refs. 35 and 27. In lay terms, this theorem states that if at two times, t1 and
t2, the corresponding points on the shadow manifold are “nearby” each other, according to the Euclidean
distance metric,

d(t1, t2)
2 =

(
M⃗R(t1)− M⃗R(t2)

)2

, (4)

then the system’s location in its higher-dimensional phase-space is also nearby at the two corresponding
times. This is generally true if a sufficiently large manifold dimension, E, is chosen.27 In other words, the
distance metric d in the shadow manifold space provides the measure of “similarity” which we are looking
for. For example, in Fig. 3(a), the qualitative similarity between the signal behavior after times t1 and
t2 (a sharp increase followed by a decrease) is reflected by the closeness of these two points in the shadow
manifold space in Fig. 3(b). We can thus denoise the spectrum while preserving time resolution by taking
an ensemble average over points in the time series which are nearby each other according to this metric. We
note that many texts adopt a convention in terms of past time lags, (t − mτ), etc. instead of the future
times, (t+mτ) which we use here—however, the theorem is symmetric with respect to time, and we do not
lose generality with this choice.

Figure 4. (a) Illustration of the SMI reconstruction algorithm, with the reconstruction time base chosen to
fall at the end of the training time series. (b) Example of the discrete representation of the shadow manifold
reconstruction of the signal at time t∗.
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In practice, we must leverage these properties of shadow manifolds to denoise an LIF signal F (λ, t) at
several wavelengths, λ, from the reference signal R(t). Just as for the TF analysis, we accomplish this by
acquiring simultaneous LIF and reference data over a long “training” time series for each wavelength. We
also choose one shorter portion of the reference signal over which to reconstruct the denoised signal at all
wavelengths, as shown in Fig. 4(a). For each LIF wavelength, the time lag vectors are evaluated for the

reference training data, M⃗A(t), and for the noisy LIF training data, M⃗C(t, λ), at each time tAm in the training
time series, where m is an index ranging from 0 to N − 1, the total sample depth. We also compute the
time-lag vectors for the reconstruction reference data, M⃗B(t), for each time tB in the reconstruction time
base.

For each time tBj in the reconstruction time series, we use Eq. 4 to find d(tBj , t
A
m), the distance between

the reconstruction reference and the training reference shadow manifolds, for all training times tAm. We then
select the set of training time indices mi = {m0,m1, · · · ,mk−1} corresponding to the k nearest neighbors
(lowest values of d). Figure 4(a) and (b) show a graphical depiction of this process and the structure of the

resulting matrices, respectively. The shadow manifold M⃗D(tBj ) can now be reconstructed by performing a
weighted ensemble average of the LIF shadow manifold values at these k times. We follow Eckhardt et al.
in performing this average with weights specified by a decaying exponential kernel,

M⃗D(tBj ) ≈
k∑

i=1

wiM⃗C(t
A
mi

), (5)

where wi = β exp
(
−d(tBj , t

A
m)

)
. The normalization constant β is chosen such that

∑
wj = 1.24–27 Equation

5 defines the reconstructed time-lag vector as the simple average of the time-lag vectors at the k times
corresponding to the most similar behavior found within the training dataset, with the exponential weighting
guaranteeing that the times with less similar behavior have a smaller effect on the sum. When this averaging
is performed for all reconstruction times tB , each of the E rows of the reconstructed shadow manifold matrix
represents a distinct, time-lagged copy of the LIF time seriesa – one column of this matrix is shown in
the final step of Fig. 4(b). We thus can obtain further noise reduction by averaging each of these copies,
resulting in a single denoised reconstruction of the LIF signal F (t, λ). This is accomplished by “unwrapping”
the reconstructed shadow manifold matrix by shifting each row to undo the time lags. For example, in the
final step of Fig. 4(b), unwrapping the neighboring columns would result in E realizations of the value D(t∗).
Then, we compute the mean value of D(t∗) as our final reconstruction at that time.

This procedure is in general less restrictive than the transfer function method discussed in the preceding,
as there is no assumption of linearity required — only that the measurements arise from a deterministic
dynamical system. However, due to the large amount of training data to search through, the k−nearest
neighbor search step can be computationally expensive. Also, this function requires three hyperparameters:
the time delay τ , the shadow manifold dimension E, and the number of nearest neighbors to use, k. While
some methods exist for guessing at the optimal hyperparameters, the best values to use can vary between
datasets and have a significant impact on the reconstruction quality.

III. Performance Comparison

In this section, we describe our framework for directly comparing the SMI and TF analysis algorithm
performance and the results of these comparisons. We first address the need to choose hyperparameters
for each analysis method and our strategy for determing optimal values. We then describe our method for
generating artificial datasets to obtain direct performance comparison between the algorithms based on a
least-squares error metric. Finally, we demonstrate the performance of the algorithms on real LIF data in
the AEPS thruster at two operating conditions with different dynamics, followed by exploring two unique
capabilities of the SMI algorithm: reconstruction of nonlinear mappings and fusing multiple reference data
streams.

aTechnically, there is a buffer consisting of the first τ · (E − 1) points at the beginning and end of this time series matrix
which have less than E copies due to boundary effects. In this work, we redefine our reconstruction time axis to remove these
points. Thus, the length of the reconstruction is slightly shorter than the original time series.
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A. Parameter Optimization for both techniques

In order to implement the analysis algorithms described in the previous section, several hyperparameters
related to each algorithm and the data size must be chosen. For both methods, the dataset must be pre-
conditioned based on the available computational time for analysis - this includes making a choice of the
down-sampling ratio nds, which represents the factor by which we down-sample the data before processing,
as well as the sample depth, Nsamp. In this work, we generally hold the downsample ratio fixed at nds = 50
to facilitate faster computations, leading to an effective sample rate of 500 kHz. This is still well above
the bandwidth limitation of ∼ 100 kHz from the PSD time constant of 700 ns which we used. Past studies
which analyzed the dataset we focus on in this work used the full, 30-second record at each LIF wavelength
(Nsamp = 7.5 · 108), however in the following we demonstrate convergence of the analysis for shorter record
times. After selecting these hyperparameters related to dataset length and sample rate, the parameters
must be specified for each analysis method: For the transfer function analysis, the primary parameter is
the chunk length by which to subdivide the dataset for training and averaging, while for shadow manifold
reconstruction, the three parameters τ , E, and k (c.f. Section II.C) must be specified.

Previous studies have compared the performance of the SMI and TF techniques on other types of data,
such as from electrical plasma probes, with a relatively high signal to noise ratio. This literature has largely
chosen hyperparameters such as the time delay, τ , and manifold dimension, E, based on widely accepted
existing theoretical metrics for dynamical systems embedding representations.36,37 In this work, however, we
work with optical diagnostic data which has a far lower signal to noise ratio (SNR), ranging from roughly
0.01 to 0.1. As a result, we found that these best-practice metrics were not effective in all cases for producing
optimal reconstructions, especially for aperiodic, noisy data. In this section, we therefore begin by empirically
finding optimal parameters for both the TF and SMI methods based on an error study for synthetic, “ground-
truth” datasets. In the following subsection, we discuss our method for generating these simulated datasets
in detail, followed by the resulting optimizations for both the SMI and TF method hyperparameters.

B. Error study using artificial ground truth data

To assess the performance and convergence of the two algorithms quantitatively, we required a ground truth
dataset similar in character to the LIF data we sought to analyze. To accomplish this, we began with the
real discharge current traces which were recorded as reference signals for the LIF analysis. We used these
references to first generate artificial linear transfer functions to create a known ground truth, then added
random, Gaussian noise. The artificial transfer function that we specified consists of the sum of two large
Gaussian functions in the frequency domain, with peaks near 5 kHz and 50 kHz, which is approximately
representative of the thruster data:

H̃(2πω) =
[
exp

(
−(ω/(2π)− 5000)2/100002

)
+ 5 exp

(
−(ω/(2π)− 50000)2/100002

)]
· expiϕ, (6)

with the phase being chosen as ϕ = −2π2ω/106. This function was reflected over negative frequencies to
produce a real-valued output. This form was chosen to recreate several features of the real data12,23 which
must be captured by the analysis algorithms: a nonzero DC offset (H̃(0) ̸= 0), and wide-band frequency
content near 0-10 kHz and 50-60 kHz.

Noise was then added to the resulting LIF waveform with a pseudorandom number generator to match
a specified SNR, defined as the ratio of the RMS amplitude of the signal relative to that of the noise. For
this study, we generated artificial data in this manner with SNR values of both 0.1 and 0.01, whereas we
determined the SNR of the real LIF data to be approximately 0.07 based on previous LIF analysis12. We
then simulated the modulation process by mixing the laser signal with the AOM waveform, which was also
recorded in the original dataset. We repeated this process for the full-length datasets at both the operating
condition with aperiodic fluctuations (300 V) and the strong oscillations (600 V). For the following analysis,
we use the root-mean-square error (RMSE) or L2 norm relative to the known ground truth dataset as our
primary loss function. That is, we performed parameter optimization by finding the set of hyperparameters
which minimized this function.

We assessed the performance of the transfer function and shadow manifold reconstruction algorithms by
applying both to the artificial ground truth data, for several sample depths ranging from 106 samples (40 ms
of real time) to the full acquisition of 7.5·108 samples (30 s of real time). This allowed us to assess not only the
best-case reconstruction quality using the full time series (30 s of acquisition per wavelength, corresponding
to 1 hour of experimental time to acquire a full IVDF), but also to quantify how each algorithm performs
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with a smaller dataset which would not be as expensive to acquire. First, we performed phase-sensitive
detection on the artificial LIF data to deconvolve the modulation, as described in Refs. 23 and 19. We ran
this analysis on a 24-core processor with full parallelization. For a downsampling ratio of 50, processing with
the TF analysis took only a few seconds to minutes per wavelength (scaling with the sample depth), while the
SMI analysis generally took up to 5-10 minutes per wavelength. However, in practice, the rate-determining
factor comes from loading the large datasets from disk into the 256-GB RAM of the processing computer.
Improvements to this process are possible, for example by sequentially loading and processing single chunks
of data at once, as discussed in Ref. 19.

(a) (b)

Figure 5. Examples of discrete hyperparameter optimization for both reconstruction methods based on ar-
tificially generated ground truth data with a sample depth of 3.2 · 108. (a) TF method chunk length. The
root-mean-square error is used to determine optimality. (b) SMI method parameters (number of nearest
neighbors, knn, and manifold dimension, E).

In order to fairly compare the performance of each algorithm, it was necessary to pick hyperparameters
which would lead to the lowest error for each sample depth trial within the convergence study. For the SMI
analysis, the time-delay index τ was chosen to be one timestep (2 µs after downsampling by 50), due to the
fact that using τ = 1 in initial studies with E and k held fixed led to the lowest error across the board.
We then performed an approximate discrete optimization of the remaining hyperparameters for each sample
depth. This was accomplished by performing the analysis for each ordered pair (E, k) within a discrete
grid of possible hyperparameter sets. Figure 5 shows examples of the error as a function of hyperparameter
choice for a single sample depth at 300 V, for a sample depth of 3.2 ·108 points. Certain features of this trial
were consistent among most of the cases - in particular, the presence of a steep minimum in the error as a
function of nearest-neighbor search depth k, as well as chunk length, with a weaker dependence on manifold
dimension E.

The existence of an optimal k follows intuitively from the nature of the SMI algorithm: If averaging over
too few shadow manifold vectors, the typical ∼ 1/

√
k noise reduction will not be sufficient to improve the

SNR. However, if the search is over too many points, the algorithm may be forced to include “false” nearest
neighbors for which the dynamical system state is relatively far from the state at the reconstructed time -
this will lead to an increase in error. These contributions should be small due to the exponential weighting,
however in many cases the false nearest neighbors eventually overwhelm the true neighbors and error begins
to increase. A similar statement can be made regarding the optimal chunk length used for transfer function
estimation. Too small of a chunk length degrades the quality of the individual FFTs due to poor frequency
resolution; however, too large of a chunk length leads to only a small number of chunks, again leading to
poor ∼ 1/

√
Nchunks noise reduction. The behavior of the error with E at optimum k can be described as a

threshold - provided that a sufficiently large manifold dimension is chosen, increasing this parameter further
does not significantly impact the result. Increasing E further does cause additional computational expense,
which scales roughly linearly with E due to the increased number of matrix rows required. Further, for very
large E and τ , the loss of E(τ −1) points on either side due to boundary issues with unwrapping the shadow
manifold could effectively reduce the sample depth and degrade the reconstruction. This is shown by the
slight increase in error with E for E > 50.

Figure 6 shows examples of the reconstructed waveforms for the 300-V case shown in Fig. 5 as well
as the corresponding sample depth for the 600-V, periodic reference data. The shown data had a pre-
PSD SNR of 0.1, and a sample depth of 3.2 · 108 was processed (13 s of acquisition). While the full LIF
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(a) (b)

(c) (d)

TF

SMI

GT

TF
SMI

GT

Figure 6. Optimal single-wavelength reconstruction of artificially generated ground truth (GT) data with
optimal parameters using the transfer function (TF) and shadow manifold interpolation (SMI) algorithms,
for a sample depth of 3.2 · 108. (a) 300 V reconstruction (aperiodic fluctuations). (b) 600 V reconstruction
(quasiperiodic fluctuations). (c) Reference for 300-V data (discharge current). (d) Reference for 600-V data
(discharge current).

datasets include a sample depth corresponding to 30 seconds, in the interest of computational time we only
performed convergence studies up to this point. For both operating conditions, both algorithms are generally
successful at reconstructing the waveform, but the transfer function method performs slightly better. For
both the aperiodic and quasiperiodic fluctuations, the SMI reconstruction generally captures the shape of
the waveform, but in some cases the amplitude is reduced and the reconstruction undershoots the peaks.
This may be due to the nature of the averaging process, since extreme values are less common in the range
of accessed y-values of the time-series, while the TF method is free from this difficulty since it relies on the
frequency domain. This feature generally was not an issue with the noisier data (SNR = 0.01), which is
consistent with this interpretation, as the noise increases the codomain of the time series.

Figure 7 displays the results of the full convergence studies with parameter optimization for synthetic
data generated from the real discharge oscillations at both of the 300-V 600-V operating conditions, as a
function of sample depth. The optimal chunk length increased monotonically as a function of sample depth
in all cases, and both datasets with a larger amplitude of added noise required shorter chunks to minimize
the error. This can be explained by the trade between resolution in the frequency domain (improved by
increasing the chunk length) vs. the need to reduce the noise by averaging over a sufficient number of points
(improved by decreasing the chunk length). When more data is supplied, the algorithm can continue to
keep the noise level low but further lower error by improving resolution, driving up the chunk length. This
hypothesis also explains the need for a shorter chunk length when increasing the noise level for both datasets,
since in this case the larger noise might necessitate averaging over more chunks at the expense of frequency
resolution.

The optimal nearest-neighbor search depth, k, exhibits an increasing trend which can be explained in a
similar way. For longer datasets, we would expect a larger number of times at which the system truly passes
through similar phase-space states, so that a larger number of nearest neighbors leads to higher accuracy.
We also observe that deeper nearest-neighbor searches are optimal for noisier data, which again follows from
the need to average over a larger number of points to reduce the noise. We note that these search depths
are many orders of magnitude larger than the depths implemented in other recent work, which is likely a
result of the fact that we are here analyzing data with a far lower SNR.24–26 No salient trends are evident
for the scaling of the optimal manifold dimension. This fact is consistent with the relative independence of
the error on E in the example shown in Fig. 5. However, for all tested cases, choosing an E-value between
30 and 50 proved effective and computationally efficient for these datasets.
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Figure 7. Results of error convergence study with optimal parameters for the artificially generated data. (a)
Root mean square error (RMSE) for both reconstruction frameworks on the aperiodic, 300-V data with high
noise (SNR = 0.01), and low noise (SNR = 0.1). (b) Optimal chunk length for the TF method applied to the
300-V data. (c) Optimal manifold dimension E (black) and nearest-neighbor search depth k (red) applied to
high-noise (dashed lines) and low-noise (solid lines) 300-V data. (d) RMSE for 600-V (quasiperiodic) data. (e)
Optimal chunk length for 600 V data. (f) Optimal SMI parameters for 600 V data.

Fig. 7(a) and (d) show the RMSE estimates from the convergence study. Including more points in the
sample set generally decreased the error of the reconstruction, with a small number of exceptions. The data
with sample depths below 107 was likely not sufficient for accurate determination of the signal phase during
the PSD process, which could explain the increase in error with sample depth at some of those points. With
a smaller amount of noise added, both the TF and SMI methods performed similarly well on the oscillatory,
600-V dataset. When larger noise was added, both methods performed more poorly, but the shadow manifold
technique was more resilient to noise for the oscillatory dataset, and converged to the minimum error with
less data. For the aperiodic dataset with low noise, the TF method outperformed the other technique by
far. When an increased noise level was added, this gap closed, but the transfer function method remained
more reliable in this case. One caveat to these results is that the background signal in the real data may not
be well-represented by simple white Gaussian noise, since background light from the plasma could occur at
specific frequencies and could be coupled to the dynamical system itself.

C. Application to real LIF data

Armed with the optimal hyperparameters determined by the convergence study on artificial data, we then
proceeded to perform analysis on all wavelengths of example IVDFs from the LIF experiments. Because the
ground truth is not known for the real dataset, we used the optimized hyperparameters from the convergence
study with synthetic data at the maximum recorded sample depth, as shown in Table 1. The results of these
optimal reconstructions of the real data are shown in Fig. 8. To illustrate the performance on both a limited
and full dataset, we present examples with sample depths of 1e7 and of the full acquisitions, 7.5e8 samples.
The same slicing settings were used as in the ground truth analysis: the time series were downsampled by a
factor of 50 and the optimal values for the noisier datasets in Fig. 7 were used. We see that for the periodic
dataset (600 V), both methods are effective at reconstructing the IVDF qualitatively, even for a low amount
of data. For the low-sample-depth case, there is additional noise present in the TF reconstruction, and
the SMI algorithm appears to perform better. However, when trained on the full-length acquisitions, the
model reconstructions do not show significant differences. For the 300-V operating condition with aperiodic
fluctuations, the SMI reconstruction is significantly better than the TF reconstruction for low sample depth.
Again, both reconstructions agree well, with some minor differences, when trained on the full-length time
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series. The SMI reconstruction appears to only improve slightly, while the TF method changes significantly
with sample depth. This appears to show that the SMI reconstruction performance is better on the real
data than suggested by our artificial convergence study.

VD (V) SNR Chunk Length TF Error kopt Eopt SMI Error

300 0.1 184200 0.0109 150 40 0.0347

300 0.01 8300 0.0277 4100 50 0.0494

600 0.1 68700 0.0290 500 40 0.0289

600 0.01 29500 0.0429 11300 30 0.0422

Table 1. Optimal hyperparameters and best error values for the optimization based on the synthetic ground
truth LIF data, for the maximum sample depth of 3.2 · 108 at which we performed ground-truth convergence
studies.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Examples of reconstructions of time-resolved IVDFs from the AEPS thruster on channel cen-
terline in the accleration region. (a) TF Method, Nsamp = 107, (b) SMI Method, Nsamp = 107, (c) TF
Method, Nsamp = 107, (d) SMI Method, Nsamp = 107,(e) TF Method, Nsamp = 7.5 · 108, (f) SMI Method,
Nsamp = 7.5 · 108, (g) TF Method, Nsamp = 7.5 · 108, (h) SMI Method, Nsamp = 7.5 · 108.

To explore the performance on the real data quantitatively, we again performed a convergence study
using a wavelength with large LIF signal for each dataset. Since we do not know the actual ground truth
for the real data, we computed the RMSE relative to the highest-sample-depth TF reconstruction. We held
the hyperparameters constant at the values in Table 1. This shows the approximate convergence rate, but
can be misleading if any errors are present from ground truth in that model output. The results of this
convergence study are shown in Fig. 9. The trends are similar for the operating conditions with aperiodic
oscillations (300 V) and quasiperiodic oscillations (600 V). In both cases, the SMI algorithm achieves a much
higher quality reconstruction of the denoised LIF signal for low sample depths, below 107 points. However,
even for orders of magnitudes shorter acquisitions, the SMI algorithm appears to plateau relatively quickly,
while the TF algorithm converges at a faster rate. Clearly there exists a fundamental trade off between these
two techniques based on data availibility/cost and the needed accuracy of the reconstruction. Referencing
Fig. 8, the relatively small improvement offered by the TF method may offer only diminishing returns given
its high data rate and depth requirements - in many cases the SMI reconstruction on the smaller dataset
may be more than sufficient to gain physical insights about the system with a shorter and less expensive
experiment.

Interestingly, this convergence study differs from the ground truth study on artificial noisy datasets, in
that the SMI performs better than the TF method on the real data, whereas on the artificial data the
TF reconstruction is nearly always better. This difference may stem from our assumption that the noise
is Gaussian and random in the artificial dataset - instead, in the real LIF signal, the noise/background
light in the PMT may occupy specific frequency ranges which are more effectively filtered out by the PSD
process. Alternatively, the SMI method’s reliance on the topology of dynamical systems may offer a better
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description of the true dynamics, whereas the artificial dataset was created with a transfer function approach
that may have been biased toward direct inversion via the TF method. We note also that we obtained these
results using the optimal parameters from the simulated dataset parameter study, and further optimization
for different dataset generation methods could improve or change the reconstruction quality as a function of
sample depth. In the remaining subsections, we discuss unique advantages offered by the SMI technique on
a nonlinear dynamical transformation as well as a dataset with multiple fused measurement time series.
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Figure 9. Error convergence for reconstruction of real LIF data from the AEPS thruster, for a single wavelength
with high LIF signal. (a) 300 V operating condition with aperiodic oscillations. (b) 600 V operating condition
with quasiperiodic operating conditions.

IV. Extended Capabilities of Denoising Algorithms

In this section, we address the capabilities of both denoising algorithms beyond the performance com-
parison we showed in the preceding. Namely, we investigate the possibility of four unique applications for
these denoising algorithms within the context of time-resolved laser diagnostics in an oscillating plasma
discharge. First, we characterize the algorithm performance on a synthetic dataset with nonlinear, rather
than linear, coupling between the reference and LIF signal. Second, we demonstrate the capability of the
SMI technique to perform data stream fusion, i.e. combining multiple reference measurements to enhance
the reconstruction quality. Following this, we investigate the ability of these denoising processes to allow
direct background subtraction, potentially removing the need for PSD and allowing an increase in diagnostic
bandwidth. Finally, we propose a modification of the SMI reconstruction algorithm which performs sparse
reconstruction between datasets with different time series, which can be applied to diagnostics with pulsed
lasers, such as ITS or TALIF.

A. Application to Nonlinear Dynamics

One of the primary benefits of the SMI algorithm relative to the TF method is that its formulation is
not limited to linear relationships between the reference and output signals. Such nonlinear couplings are
common in plasma systems due to the coupled nonlinear differential equations that describe the motion of
charged particles, so this is a key advantage. For the real data on which we tested these algorithms in the
previous section, the high similarity of the SMI and TF reconstructions suggests that at least for those cases,
this limitation of TF did not present itself. This is validating for past results based on only linear analysis
of this LIF data. However, in order to demonstrate the effect of nonlinearity on the reconstruction, in this
section, we generate artificial training data using a different, nonlinear construction.

To generate a dataset with a nonlinear coupling to the real reference (discharge current) data, in general
we might define some example dynamical system or nonlinear transfer function to apply in the forward
direction. However, to demonstrate an example case, it is sufficient to simply apply the artificial linear
transfer function defined in the previous section, followed by a nonlinear transformation of the result. In this
case, we simply square the result, i.e. Fnonlin(t) = [Flin(t)]

2, where Flin(t) is the inverse FFT of H̃(ω, λ)Ĩ(ω).
Not only does this provide a simple nonlinear coupling between the input and output, but it also produces
a semipositive-definite output. This is an interesting test case for optical diagnostics, because the measured
signal without noise should indeed retain semipositive-definiteness (i.e., the system cannot measure negative
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photons).
Figure 10 shows examples of the reconstructions learned for the nonlinear dataset for both methods, for

an SNR value of 1, and a sample depth of 107. In the 300-V, aperiodic case, the linear TF method is not
able to reconstruct the dynamics in any obvious sense at this sample depth, while the SMI method does
successfully recreate the general shape of the ground truth waveform. However, the intensity of the spikes
in the reconstruction are only roughly half of the extreme values in the ground truth data. This may be
explained by the relative rarity of these more extreme values, which would have limited examples in the
training dataset - relatedly, the knn-averaging set may include a number of “false” nearest neighbors which
effectively pulls the output closer to more common values. This interpretation is consistent with the fact
that for the noisier data, the SMI reconstruction is closer to the height of the ground truth, since in this
case the noise increases the codomain of the noisy dataset, allowing it to span a wider range. For the more
periodic, 600-V case, both methods are successfully able to match the ground truth with higher fidelity. The
nonlinear SMI reconstruction performs slightly better qualitatively in that it more consistently captures the
local minimums, but both methods undershoot the highest peaks, likely for similar reasons as the 300-V
case. We note that for this example, we used the optimal parameters inferred for the data generated using a
linear transfer function model, and further optimization with these dynamics or with a larger dataset could
lead to better reconstructions.
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Figure 10. Reconstructions of a synthetic nonlinear mapping at a sample depth of 107 and SNR = 1. (a)
300-V (aperiodic) operating condition, (b) 600 V (quasiperiodic) operating condition.

B. Fusing Reference Data Streams

Another advantage offered by the SMI technique, which is demonstrated in Ref. 24, is the flexibility of the
shadow manifold technique to the use of multidimensional data streams. Since the reconstruction relies on
the Euclidean distance metric, it is symmetric with respect to the order of the components in the time-lag
vector (c.f. Eqs. 3 and 4). Therefore, an additional measurements with their own time lag vectors can simply
be “stacked” to build a fused shadow manifold. To illustrate this, suppose there are two measurement time
series, R1(t) and R2(t), measured simultaneously. We can then construct the composite time-lag vector as

M⃗R,Fusion(t) = [R1(t), R1(t+ τ), · · · , R1(t+ Eτ), R2(t), R2(t+ τ), · · · , R2(t+ Eτ)] , (7)

and carry out the SMI inference as usual. Further modifications of this framework are possible: data
streams measured over different sample rates/depths/times could be combined, and the average could include
weighting parameters that bias the nearest neighbor search to favor one or the other reference. However, in
the present work we restrict to equal weighting and sampling for two reference signals.

This idea has a direct application to the existing AEPS LIF data shown in a previous section. For
these datasets, in addition to acquiring thruster discharge current waveforms, the cathode-to-ground voltage
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was simultaneously recorded as an alternative reference signal.23 Figure 11 shows the results of combining
the current and voltage waveforms as simultaneous references for the SMI technique according to Eq. 7,
with both TF and SMI reconstructions using solely the current or voltage as reference, respectively. It is
evident by comparing Figures 11(a) and (b), and (d) and (e), respectively, that slightly different features
arise when using the discharge current alone ((a) and (d)) vs. the cathode voltage alone ((b) and (e)), but
the waveforms are largely similar. Due to the small sample depth of 107 for this study, the SMI analysis ((a)
and (b)) tended to over-smooth the data, while the TF method produced a crisper waveform but with larger
background noise ((d) and (e)). Figure 11(c), which shows the result of the SMI data fusion trial, does not
differ significantly from Fig. 11(a), suggesting that the addition of the second data stream did not change
the selected nearest neighbor sets in an important way. However, as is visible in Fig. 11(f), the cathode to
ground voltage exhibits some content at higher frequencies than the discharge current. It is therefore possible
that if hardware and software limitations on diagnostic bandwidth are removed, as will be discussed in the
following section, that this method of data fusion could provide further insight into the higher-frequency
behavior of the plume ion dynamics. Further, in future implementations of this technique, the waveforms of
both reference signals should be normalized so that the larger signal does not bias the distance calculation.

(a) (b) (c)

(d) (e) (f)

Figure 11. Impact of fusing multiple reference signals to generate the reconstruction, for the 300-V operating
condition and a sample depth of 107. (a) SMI method with discharge current reference. (b) SMI method with
cathode voltage reference. (c) SMI method with fused discharge current and cathode voltage references. (d)
TF method with discharge current reference. (e) TF method with cathode voltage reference. (f) Reference
signals: 1 = discharge current, 2 = cathode voltage.

C. Increasing Time Resolution with Background Subtraction

In this section, we explore the possibility of leveraging both the TF and SMI techniques in order to improve
limitations on the bandwidth of time-resolved LIF data analyzed using the previously described techniques.
We first describe current constraints on time-resolution of past aperiodic, time-resolved optical diagnostics
arising from hardware choices as well as the nature of the phase-sensitive detection which is typically used. We
then present frameworks using both mapping algorithms to eliminate the need for phase-sensitive detection
altogether via a background subtraction scheme.

The heritage acquisition strategy for time-resolved LIF, described in detail earlier in the paper, is designed
around the need to isolate the relatively weak LIF signal from the intense background signal, consisting of
non-stimulated plasma emission and electrical noise. This is typically accomplished by modulating the
incoming laser and processing the measured signal with phase-sensitive detection (PSD), performed either
with an analog lock-in amplifier or via digital post-processing. The PSD process involves a low-pass filtering
step which effectively averages the signal over some time constant - this low-pass filter sets the limit on
time-resolution. Existing time-resolved LIF acquisition strategies significantly improve this upper limit by
chopping the laser at a faster rate, for example by using an acousto-optic modulator (AOM), which can
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Figure 12. Reconstruction via learned background subtraction with TF and SMI methods for the 300 V
operating condition. (a) Reconstruction of total signal. (b) background only. (c) LIF signal only.

Figure 13. Reconstruction via learned background subtraction with TF and SMI methods for the 600 V
operating condition. (a) Reconstruction of total signal. (b) background only. (c) LIF signal only.

achieve MHz-scale modulation, in place of a mechanical chopper, which is limited to several kHz. Even with
these faster choppers, the resulting lock-in time constant required to recover sufficient SNR has historically
limited the upper limit to frequency resolution of around 100 kHz. That said, higher frequency LIF has
been achieved with a photon counting technique,38 but stabilization of the breathing mode by an externally
applied potential oscillation was required to provide a reference phase for averaging. However, numerous
phenomena in Hall thrusters are known to occur at much higher rates than 100 kHz, including transit time
oscillations39, ion acoustic turbulence40, and other plasma instabilities8. There is therefore a significant
motivation to improve the time resolution of time-resolved LIF in a passive Hall thruster with naturally
occuring, aperiodic oscillations.

In this section, we propose a method to accomplish this and demonstrate its efficacy on artificially gener-
ated data. The premise is as follows: Instead of performing implicit background subtraction by modulating
the input signal, we record separate, equal-time acquisitions with the laser on and off, composing an ”LIF”
and ”background” traces respectively. We then apply a denoising mapping based on a reference signal to
each acquisition, for example either the TF or SMI method. The resulting mappings enable the reconstruc-
tion of both the total (background + LIF) and background-only signals synchronized to a single reference
time series. Provided that a sufficiently accurate reconstruction of each signal can be computed and that the
data acquisition section possesses sufficient dynamic range, background subtraction can then be performed
directly to isolate the LIF signal of interest.

We demonstrated this background subtraction method with a numerical example. To do so, we generated
artificial data with the same hypothetical transfer function as used in the preceding section. However, we also
added artificial “background light”, generated with a unique transfer function with larger average amplitude.
This background signal physically represents the variation in the light emitted by the plasma near the
fluorescence wavelength due to processes not stimulated by the laser. For example, collisional excitation and
fluorescence of the targeted metastable transition (or other transitions with similar fluorescence wavelengths)
will occur without the laser present. This background signal would presumably be dynamically tied to global
plasma fluctuations via correlated local changes in the electron temperature or density. Without modulating
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the laser and performing PSD to remove the background fluctuations that do not occur at the modulation
frequency, the additional fluorescence due to laser excitation of the metastable state must be found by
subtracting this background signal.

As shown in Figs. 12 and 13, both the TF and SMI methods are able to successfully reconstruct the LIF
signal for both the aperiodic and periodic Hall thruster discharge current fluctuations, despite the intense
simulated variations in background light, by learning a mapping for the synthetic background light itself. In
reality, the background signal in the LIF acquisition likely consists of an additive blend of effectively random
noise, which is either loosely or not at all correlated with the dynamical/LTI system of the Hall thruster, and
strongly correlated background fluctuations for which a mapping can be efficiently learned and subtracted.
Additionally, for sufficiently long datasets, the averaging inherent to both the TF and SMI nearest neighbor
algorithms will tend to reduce the effect of any random noise. Regardless, this result demonstrates that in
principle, the upper limit on time resolution for LIF can be improved by leveraging asynchronous background
subtraction with a simultaneous reconstruction strategy.

D. Sparse Reconstruction for Pulsed Diagnostics

For extremely low-light diagnostics which require a more powerful, Q-switched laser, such as incoherent
Thomson scattering (ITS) or two-photon absorption laser-induced fluorescence (TALIF), the sample rate is
limited to the repetition rate of the laser pulse. For common laser systems, the pulse rate rarely exceeds tens
of Hertz. This limitation makes achieving time resolution difficult when the signal-to-noise is sufficiently
low that single-shot acquisition is not possible, as is often the case in low-temperature plasmas. In recent
work, Antozzi et al. showed that reconstruction of a pulsed TALIF signal is possible for periodic oscillations
by performing phase-binning.22 However, typical Hall thruster oscillations are not periodic in general, as
the AEPS examples from the previous sections show. Therefore, aperiodic reconstruction techniques offer
a possible path to achieving general time resolution with these informative but low-signal diagnostics. In
the following, we describe a framework for adapting the SMI analysis technique to pulsed diagnostics with
limited sample rate, and demonstrate a numerical example with synthetic data.

To achieve time resolution with an SMI reconstruction for a pulsed diagnostic, we must measure a
reference signal time series corresponding to each laser pulse which captures the plasma dynamics on a much
faster scale than the 0.1-s pulse period. One could accomplish this experimentally by triggering a recording
of the discharge current onto a fast data acquisition card upon each laser pulse. In our example, we sample
the discharge current value at a rate of 1 MS/s, and collect only 1024 samples for each laser shot. Despite the
sparsity of our laser pulse rate relative to the faster plasma dynamics of interest, we are still able to construct
a shadow manifold and exploit Takens’s theorem to build a reconstruction for this situation. The vector of
1024 samples of the discharge current, or some downsampled subset of it, is effectively the shadow manifold
vector for the reference signal measurement. Meanwhile, the count value of each CCD pixel, corresponding
to the Thomson spectrum intensity at a particular wavelength, is a very simple, 1-dimensional, shadow
manifold vector corresponding to the output. While a shadow manifold vector with dimension 1 would be
far too low to practically embed the state space of a realistic dynamical system, this is not a problem for
our purpose: referring to Fig. 3, it is the reference vector which is used to identify similarity in the state
space, and this we are able to record with essentially arbitrary sample rate and depth.

The averaging process then can proceed as usual: for each time within the reference time series chosen
for reconstruction, the shadow manifold vector is computed, and the k nearest neighbors are found within
the training dataset. Each nearest neighbor corresponds to the timing of a single laser pulse, for which the
value of each CCD pixel represents a 1-dimensional, noisy shadow manifold vector for the output signal.
The values of each pixel may then be averaged (with exponential weighting) for the set of nearest neighbors,
effectively resulting in an ensemble average of the Thomson spectrum during subsets of laser pulses during
which the thruster was exhibiting similar behavior.

In Fig. 14, we demonstrate the validation of this technique on a synthetic dataset. We generated simple
artificial ground truth reference and Thomson data (for a single wavelength) by composing the sum of several
sinusoidal functions at similar frequencies with different weights. We include 18000 laser shots, corresponding
to 30 minutes of acquisition time. For the SMI reconstruction of the discharge current, we use a manifold
dimension of E = 10, sampled with a rate of 1 MS/s, and use a nearest-neighbors search depth of k = 1000.
With no noise added, the SMI algorithm is able to reconstruct the dataset fairly well despite the sparseness of
the laser sampling and the need to map between measurements with different shadow manifold parameters.
We note that this method relies on the assumption that the laser pulse rate is uncorrelated with the phase
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Figure 14. Demonstration of the time-resolved Thomson scattering algorithm on artificially generated data.
(a) Reference data for a particular laser shot, with the points used to construct a 50-dimensional shadow
manifold vector shown in orange. The simulated laser pulse occurs at the beginning of the vector (first shot
at t = 0). (b) Ground truth synthetic Thomson signal (black) and sparse SMI reconstruction (orange).

of the discharge current oscillations, in the case that they are sufficiently periodic that such a phase could
be well-defined – this is so that the times of the laser pulses must represent a sufficiently fair representation
of the phase space topology.

While a feasible proof of concept, to implement this technique on low-signal diagnostics will be subject
to difficult-to-overcome constraints due to the high noise level. This can potentially be overcome with
long acquisitions, but with diminishing returns on ensemble-averaged noise reduction. However, the SMI
technique provides a useful framework for mapping diverse measurements of the complex thruster system,
even with orders-of-magnitude variation between the sample rates of the reference signal and scattering
signal, and in chaotic or fully aperiodic oscillation regimes.

V. Conclusions

In summary, we have explored in this work the performance and features of two algorithms for re-
constructing and denoising time-resolved LIF data in a Hall thruster plume. These methods have direct
application to resolving particle dynamics on the time scales of low-frequency plasma fluctuations. These
techniques included TF estimation, which works by learning a linear, frequency-domain-based map from
a reference signal to a denoised version of the signal; and SMI, a nonlinear, time-domain based method
based on approximating the system state space and averaging over times of similar behavior. To test both
algorithms, we generated synthetic data as a known ground truth and added pseudorandom noise, then used
brute-force parameter optimization to determine the optimal hyperparameter choices for each algorithm.
This parameter optimization resulted in the conclusion that two hyperparameters, the TF chunk length
and the nearest-neighbor search depth, must increase with the sample depth of the measurement to yield
the lowest error. The optimal nearest-neighbor search depth was found to be orders of magnitude larger
than that employed in other works, likely due to the reduced SNR characteristic of the LIF data. Based on
these error studies, we found that the SMI technique is more robust to noise than the TF technique, but
experiences diminishing returns with larger datasets.

Following this parameter optimization, we demonstrated the performance of these algorithms on a real
LIF dataset acquired in the plume of the AEPS Hall thruster for two operating conditions: one with aperiodic
fluctuations in the discharge current, and one with intense, quasiperiodic oscillations near 50 kHz. Using
the optimal parameters from the convergence study on the high-noise simulated data, the SMI algorithm
performed even better than expected on the real data for a much smaller amount of sample depth points.
While the TF reconstruction was significantly affected by the noise for smaller sample depths and required
long, expensive acquisitions to accurately resolved the IVDF, the SMI technique was able to effectively
determine the dynamics with a much smaller number of points, albeit with increased computational cost.
These findings both validate previous results based on the TF analysis with an independent comparison,
and demonstrate that high-quality reconstructions can be obtained with lower requirements on sample rate
and depth. This finding lessens the significant experimental time typically needed for time-resolved LIF
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acquisition.
After assessing the algorithmic performance on LIF data, we demonstrated the application of these

algorithms to four advanced optical diagnostic use cases. We first used synthetic data to test the SMI
algorithm’s ability to reconstruct nonlinear couplings between the reference and output data, which the TF
method is not able to capture. After this, we returned to the AEPS study to explore the ability to seamlessly
fuse multiple reference data streams into the reconstruction. We also investigated the ability of both SMI
and TF estimation to learn a deterministic signal for the background light, finding that both methods
can allow background subtraction and mitigating the need for the bandwidth limitations of PSD. Without
the PSD step, LIF time resolution could in this way exceed 1 MHz and reveal higher-frequency thruster
physics. However, the problem remains of finding a reference signal with sufficiently strong coupling to these
higher-frequency dynamics—for example, local, microscopic turbulence may average out of global metrics
such as the discharge current. Finally, we explored the application of the SMI algorithm to time-resolution
for pulsed laser diagnostics, such as Thomson scattering or TALIF, in low-temperature/density plasma
sources. We demonstrated a method for sparse SMI reconstruction across measurements with different sample
rates, which performs well on noiseless data. However, to apply this technique to extremely noisy pulsed
diagnostic data, it may be necessary to collect a significant amount of data and reoptimize parameters for
this technique. Regardless, these techniques and applications represent a key step for gleaning the maximum
information from limited diagnostics and experiments. By accessing novel regimes of temporal behavior
non-perturbatively and linking multiple plasma diagnostics through data fusion and synchronization, we
grow closer to a more complete description of Hall thruster discharge dynamics which is needed to model
and predict behavior and performance with high fidelity.
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