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Five first-principles models of the Hall thruster anomalous electron transport are evaluated.
These models are derived assuming that this transport derives from an ion-acoustic-like
instability and that the energy at which this instability saturates scales with the drift kinetic
energy. It is assumed that the wave loses energy primarily due to convection as the ions move
downstream. The effect of secondary damping mechanisms, including classical collisions and
Landau damping, are investigated. The models are incorporated into an axisymmetric fluid
model of a Hall thruster and a 9 kW-class magnetically shielded Hall thruster is simulated. It
is found that the best agreement with experiment is obtained when the secondary damping
mechanisms are insignificant compared to convection. The predicted efficiencies agree with
experimental values to within 10%, but the simulated ion velocity profiles are more relaxed
than the measured values. These both stem from the fact that the anomalous collision frequency
predicted by these models attains a minimum near the ion stagnation point, yielding electric
fields which peak further upstream than the experimentally-observed values. The results of
these simulations are discussed in the context of further anomalous transport closure modeling
efforts.

I. Nomenclature

𝑞 = Fundamental charge (1.6 × 10−19 C)
𝑚𝑒 = Electron mass (9.1 × 10−31 kg)
𝜖0 = Permittivity of free space (8.854 × 10−12 F/m)
𝑧 = Axial coordinate
𝑟 = Radial coordinate
\̂ = Azimuthal coordinate
∥̂ = Field-parallel coordinate
⊥̂ = Field-perpendicular coordinate
a𝐴𝑁 = Anomalous collision frequency (s−1)
a𝑠 𝑗 = Momentum transfer collision frequency of species 𝑠 by species 𝑗
𝑛𝑠 = Density of species 𝑠
u𝑠 = Velocity vector of species 𝑠 (m/s)
j𝑠 = Current density of species 𝑠 (A/m2)
𝑇𝑠 = Temperature of species 𝑠 (J)
E = Electric field vector (V/m)
B = Magnetic field vector (T)
𝜔𝑐𝑒 = Electron cyclotron frequency (rad/s)
𝜔𝑝𝑒 = Plasma frequency (rad/s)
𝑍 = Density-averaged ion charge number
𝑣𝑑𝑒 = Electron 𝐸 × 𝐵 drift speed (m/s)
𝑐𝑠 = Ion sound speed (m/s)
𝑐𝑒 = Electron sound speed (m/s)
𝑀𝑒 = Electron Mach number
𝑊 = Wave energy density (J/m3)
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𝛾 = Instability growth rate (s−1)

II. Introduction

Predictive models of Hall effect thrusters are a longstanding goal of the spacecraft electric propulsion (EP) community.
These spacecraft propulsion devices have long been employed for satellite station-keeping but have increasingly

been baselined for deep space applications, both crewed[1–3] and uncrewed[4, 5]. These missions require higher power
levels and longer lifetimes than have been typical for Hall thrusters in the past, and these requirements push the limits of
what ground testing in a vacuum chamber can achieve. Hall thrusters are known to perform differently when tested in a
vacuum chamber than when flown in space, and these facility effects become more prominent at higher powers[6, 7].
This complicates our efforts to extrapolate observed behavior on the ground to in-space performance. Additionally,
verifying the expected lifetime of these thrusters means running them in a vacuum chamber for thousands of hours in
order to demonstrate that the rate at which the thruster surfaces erode is within expected limits.

Modelling and simulation have the potential to alleviate this issues. Predictive Hall thruster models would speed
up the early design of new thrusters by allowing a number of design iterations to be tested before any ground testing
is needed. Additionally, once a model has been validated against ground test performance, it can be used to predict
the on-orbit behavior of the thruster. They can even help accelerate thruster wear testing by predicting erosion rates,
reducing the need for the lengthy and expensive lifetime tests. However, Hall thruster models are not currently predictive.
This means that, given a device geometry and an operating condition, i.e. discharge voltage, mass flow rate and magnetic
field configuration, we are currently unable to predict how that thruster will perform with any certainty. This stems from
a lack of understanding of some of the underlying Hall thruster physics. Most notably, electrons in Hall thruster are
known to transit across the applied magnetic field lines at least an order of magnitude faster than what classical plasma
physical theory predicts. The rate and amount of this cross-field electron transport has a direct impact on the strength of
the electric field which accelerates the plasma and produces thrust. The electric field in turn governs the amount of
plasma heating, and thus controls the amount of ionization that occurs within the thruster. As a result, without the
ability to account self-consistently for this so-called “anomalous" electron transport, it is impossible to predict thruster
performance and plasma properties from geometry and operating conditions alone.

Many researchers[8–14] have developed models for this phenomenon. However, none have yet proven predictive. In
this work, we attempt to do the same, deriving several novel first-principles models of the anomalous electron transport.
We calibrate these models to match the discharge current of a 9-kW class Hall thruster and then evaluate how well they
are able to match experimental measurements of thrust, anode efficiency, and ion velocity profiles.

To this end, this paper is organized as follows. In Sec. III, we review the problem of anomalous transport in a fluid
framework. In Sec. IV, we introduce the physical model underlying our suite of models and introduce the five models
we employ in this work. Next, in Sec. V, we describe our methods, including the thruster being simulated and the code
used to simulate it, and the model calibration procedure. In Sec. VI, we present our results and in Sec. ??, we discuss
these results in the context of model extensibility.

III. The problem of anomalous transport in Hall thrusters
To begin, we review the need to anomalous transport simulations of Hall thrusters that employ a fluid approximation

for electrons. In Fig. 1 we show the basic principle of operation of a Hall thruster. A voltage is applied from a conducting
anode to a hollow cathode. Electrons emitted by the cathode stream toward the anode, but are arrested in their motion
by an applied radial magnetic field. This sets up a strong axial electric field, which when crossed with the magnetic field
induces the electrons to rapidly orbit the thruster channel in the so-called Hall drift. These orbiting electrons collide
with neutral atoms injected at the anode, ionizing them. The resulting ions are accelerated out of the device, producing
thrust. Collisions with neutrals and ions allow some electrons to make it to the anode, but the amount of electron current
observed to reach the anode is much higher than these collisions alone can account for. This enhanced transport is
what we seek to find a model for. While this effect is likely kinetic in origin, we can account for it in a fluid model via
an effective “anomalous" collision frequency. To see how this arises, we first consider the fluid electron momentum
equation.

𝜕

𝜕𝑡
(𝑚𝑒𝑛𝑒ue) + ∇ · (𝑚𝑒𝑛𝑒u𝑒 ⊗ u𝑒) = −𝑞𝑛𝑒 (E + ue × B) − ∇ ·𝚷𝑒 − a𝑒,𝑐𝑚𝑒𝑛𝑒u𝑒 (1)

In the above, 𝑚𝑒 is the electron mass, 𝑛𝑒 is the electron number density, u𝑒 is the electron velocity, 𝑞 is the fundamental
charge, E is the electric field, B is the magnetic field, 𝚷 is the electron pressure tensor, and a𝑒,𝑐 is the classical electron
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Fig. 1 Diagram of a Hall thruster, showing both Cartesian and field-aligned coordinate systems

collision frequency. If we neglect the electron inertial terms (the left-hand side of Eq. 9), as is commonly done in Hall
thruster models, we arrive at the generalized Ohm’s law

j𝑒 =
𝑞2𝑛𝑒

𝑚𝑒a𝑒,𝑐

[
E + ue × B + ∇ ·𝚷𝑒

𝑞𝑒𝑛𝑒

]
(2)

Here, j𝑒 = −𝑞𝑛𝑒u𝑒 is the electron current density vector. We now further assume that the electron pressure term is
isotropic, such that ∇ ·𝚷𝑒 = ∇(𝑛𝑒𝑇𝑒), and that the plasma is axisymmetric, so that for any quantity 𝑄, ∇\𝑄 =. We then
decompose Eq. 2 into field-parallel

(
∥̂
)
, field-perpendicular

(
⊥̂
)
, and azimuthal components

(
\̂
)
:

j𝑒 = 𝑗𝑒,∥ ∥̂ + 𝑗𝑒,⊥⊥̂ + 𝑗𝑒, \ \̂ (3)

𝑗𝑒, ∥ =
𝑞2𝑛𝑒

𝑚𝑒a𝑒,𝑐

[
𝐸 ∥ +

∇∥𝑛𝑒𝑇𝑒

𝑞𝑛𝑒

]
(4)

𝑗𝑒,⊥ =
a𝑒,𝑐

a2
𝑒,𝑐 + 𝜔2

𝑐𝑒

𝑞2𝑛𝑒

𝑚𝑒

[
𝐸⊥ + ∇⊥𝑛𝑒𝑇𝑒

𝑞𝑛𝑒

]
(5)

𝑗𝑒, \ = Ω𝑒 𝑗𝑒,⊥ (6)

In the above, 𝜔𝑐𝑒 = 𝑞 |B|/𝑚𝑒 is the electron cyclotron frequency. Furthermore, if the electrons are magnetized,
a2
𝑒,𝑐 ≪ 𝜔2

𝑐𝑒, so the perpendicular component of the Ohm’s law reduces to

𝑗𝑒,⊥ =
a𝑒,𝑐

𝜔2
𝑐𝑒

𝑞2𝑛𝑒

𝑚𝑒

[
𝐸⊥ + ∇⊥𝑛𝑒𝑇𝑒

𝑞𝑛𝑒

]
(7)

Thus, we can see that a higher electron collision frequency a𝑒,𝑐 leads directly to a higher cross-field electron current
density 𝑗𝑒,⊥. So, if we want to increase the amount of cross-field current in order to improve the agreement between
simulations and experiment, we can introduce an additional anomalous collision frequency term a𝐴𝑁 such that
a𝑒 = a𝐴𝑁 + a𝑒,𝑐. To estimate this parameter, we require a "closure model", i.e. a model which relates a𝐴𝑁 to other fluid
plasma parameters, such as the electric field, electron temperature, ion velocity, and plasma density. We now turn to
explaining how we derived several closure models for the anomalous collision frequency.

IV. Anomalous transport modeling framework
In this work, we investigate several closure models derived from a common framework. We assume that the

anomalous electron transport seen in Hall thrusters emerges as a consequence of microturbulence. The instability
derives its energy from the Hall drift and thus acts as an effective drag force on the electrons in the azimuthal direction.
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This in turn induces cross-field drift toward the anode. To begin, we return to the electron fluid momentum equation
(Eq. 9), this time separating the electric field into number density into mean and fluctuating components

E = E + 𝛿E 𝑛𝑒 = 𝑛𝑒 + 𝛿𝑛𝑒, (8)

where 𝛿E and 𝛿𝑛𝑒 are the fluctuating components of the electric field and plasma density, respectively. Substituting
these into Eq. 9 and averaging over the fluctuation period, we find

𝜕

𝜕𝑡
(𝑚𝑒𝑛𝑒ue) + ∇ · (𝑚𝑒𝑛𝑒u𝑒 ⊗ u𝑒) = 𝑞𝑛𝑒 (E + ue × B) − ∇ ·𝚷𝑒 − a𝑒,𝑐𝑚𝑒𝑛𝑒u𝑒 + 𝑞⟨𝛿𝑛𝑒𝛿E⟩ (9)

We see that an additional term, 𝑞⟨𝛿𝑛𝑒𝛿E⟩, has appeared. This term, which we define as R𝑒𝑖 , acts as an additional force
on the electrons. We can cast this in terms of an effective collision frequency by defining R𝐴𝑁 = −𝑚𝑒a𝐴𝑁𝑛𝑒u𝑒 to
obtain an expression for the anomalous electron collision frequency a𝐴𝑁 :

a𝐴𝑁 =
|R𝐴𝑁 |
𝑚𝑒𝑛𝑒 |u𝑒 |

s−1. (10)

To go further, we must find a way to relate the fluctuation-averaged quantities to other fluid quantities. Experiments have
shown that Hall thruster plasma fluctuations seem to follow a modified ion-acoustic dispersion relation with discrete
frequency peaks near electron cyclotron resonances[15]. The wave propagates primarily in the azimuthal (\) direction.
Under these assumptions, it can be shown that [10, 16]

a𝐴𝑁 = 𝑐1
𝛾𝑊

𝑚𝑒𝑛𝑒𝑐𝑠𝑣𝑑𝑒
s−1, (11)

where 𝑐1 is a unitless constant, 𝛾 is the growth rate of the wave,𝑊 is the energy density of the wave, 𝑐𝑠 =
√︁
𝑇𝑒/𝑚𝑖 is the

ion sound speed, 𝑣𝑑𝑒 = |E × B|/|B|2 is the azimuthal electron 𝐸 × 𝐵 drift speed, 𝑚𝑖 is the ion mass, 𝑇𝑒 is the electron
temperature in J, and 𝑍 is the ion charge number.

To relate 𝛾 and𝑊 to the local plasma properties, we need to make some further assumptions. For this, we employ
the conservation equation for wave energy[8]

𝐷𝑊

𝐷𝑡
=
𝜕𝑊

𝜕𝑡
+ (v𝑔 · ∇)𝑊 = 2𝑊 (𝛾 − 𝜔𝑙𝑜𝑠𝑠). (12)

In the above, v𝑔 is the group velocity of the wave and 𝜔𝑙𝑜𝑠𝑠 is the rate at which the wave loses energy to the plasma via
damping. We assume the wave propagates with the ions as they convect downstream, so v𝑔 ≈ u𝑖 , where u𝑖 is velocity of
singly-charged ions. Rearranging terms and making the further assumption that 𝜕𝑊/𝜕𝑡 ≈ 0, we find that

2𝛾𝑊 = u𝑖 · ∇𝑊 + 2𝜔𝑙𝑜𝑠𝑠𝑊. (13)

We can now substitute the above expression into Eq. 11 and fold the factor of two into 𝑐1 to get our closure model master
equation

a𝐴𝑁 = 𝑐1
u𝑖 · ∇𝑊 + 2𝜔𝑙𝑜𝑠𝑠𝑊

𝑚𝑒𝑛𝑒𝑐𝑠𝑣𝑑𝑒
s−1. (14)

Armed with this expression, all that we need to obtain closure models for the anomalous collision frequency is to derive
suitable expressions for the damping frequency 𝜔𝑙𝑜𝑠𝑠 and wave energy density𝑊 .

A. Closure models
We consider five models in this paper, each of which has been derived from the Eq. 14. In contrast to some previous

work, here we assume the wave energy saturates at the electron drift energy density, i.e. 𝑊 ∝ 𝑚𝑒𝑛𝑒𝑣𝑑𝑒
2 instead of the

electron thermal energy. We then make several different assumptions for the scaling of 𝜔𝑙𝑜𝑠𝑠 . In model A we assume
that 𝜔𝑙𝑜𝑠𝑠 = 0, i.e. that there is no collisional or landau damping and that convection is the sole loss mechanism. In
models B and C, we assume that the wave can lose energy to ion Landau damping. The ion Landau damping rate for an
ion acoustic-like wave with wavenumber 𝑘 can be approximated as[17]

𝜔𝑖 = −𝑘𝑐𝑠
√︂
𝜋

8

[√︂
𝑍𝑚𝑒

𝑚𝑖

+
(
𝑍𝑇𝑒

𝑇𝑖

) 3
2

exp
(
−𝑍𝑇𝑒

2𝑇𝑖
− 3

2
− 3

𝑇𝑖

𝑍𝑇𝑒

)]
. (15)
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In the above, we define 𝑇𝑖 to be the temperature of singly-charged ions. For our analysis, we assume the majority of
the growth occurs at a single wavenumber. In model B, we assume that frequency of maximum growth is the plasma
frequency, so that 𝑘 ≈ 1/

√
2_𝑑𝑒[16]. This gives a damping rate of:

𝜔𝑖 = −
√
𝜋𝜔𝑝𝑒

4

[
𝑍𝑚𝑒

𝑚𝑖

+
√︂
𝑍𝑚𝑒

𝑚𝑖

(
𝑍𝑇𝑒

𝑇𝑖

) 3
2

exp
(
−𝑍𝑇𝑒

2𝑇𝑖
− 3

2
− 3

𝑇𝑖

𝑍𝑇𝑒

)]
(16)

For Xenon and Krypton, 𝑚𝑒/𝑚𝑖 = 4.178 × 10−6 and 6.546 × 10−6, respectively so we neglect the first term in the
brackets and arrive at our final expression for the ion landau damping rate:

𝜔𝑙𝑜𝑠𝑠 ∝ 𝜔𝑝𝑒

√︂
𝑍𝑚𝑒

𝑚𝑖

(
𝑍𝑇𝑒

𝑇𝑖

) 3
2

exp
(
−𝑍𝑇𝑒

2𝑇𝑖
− 3

2
− 3

𝑇𝑖

𝑍𝑇𝑒

)
(17)

In model C, we instead assume that the frequency of maximum growth is an electron cyclotron resonance. This gives a
loss rate of

𝜔𝑙𝑜𝑠𝑠 ∝
𝜔𝑝𝑒

𝑀𝑒

√︂
𝑍𝑚𝑒

𝑚𝑖

(
𝑍𝑇𝑒

𝑇𝑖

) 3
2

exp
(
−𝑍𝑇𝑒

2𝑇𝑖
− 3

2
− 3

𝑇𝑖

𝑍𝑇𝑒

)
, (18)

where 𝑀𝑒 = 𝑣𝑑𝑒/𝑐𝑒 is the electron Mach number and 𝑐𝑒 =
√︁
𝑇𝑒/𝑚𝑒 is the electron sound speed. In models D and E, we

investigate the effects of classical collisions on the wave energy. In model D we assume that electron-ion collisions
damp the wave, with a damping term of

a𝑒𝑖 =
𝑍2𝑒4𝑛𝑖 lnΛ

(4𝜋𝜖0)2𝑚
1/2
𝑒 𝑇

3/2
𝑒

(19)

𝜔𝑙𝑜𝑠𝑠 ∝ a𝑒𝑖 , (20)

where lnΛ is the Coulomb logarithm. For model E, we consider ion-neutral charge exchange (CEX) collisions instead of
electron-ion collisions. For the purposes of computing the charge exchange collision frequency, both ions and neutrals
are assumed to be cold, with the resulting damping rate having the form

a𝑖𝑛,𝐶𝐸𝑋 = 𝑛𝑛𝑢𝑖𝑛𝜎𝐶𝐸𝑋 (21)

𝑢𝑖𝑛 =
𝑣𝑡ℎ,𝑖√
𝜋

[
exp

(
−�̃�2

𝑖

)
+
√
𝜋

2

(
2�̃�𝑖 +

1
�̃�𝑖

)
erf (�̃�𝑖)

]
(22)

�̃�𝑖 =
|u𝑖 |
𝑣𝑡ℎ,𝑖

(23)

𝜎𝐶𝐸𝑋 = 10−20 1
𝑍

[
𝐴 − 𝐵 log

(
𝑚𝑖

𝑞𝑒
𝑢2
𝑖𝑛2

)]
(24)

𝜔𝑙𝑜𝑠𝑠 ∝ a𝑖𝑛,𝐶𝐸𝑋 . (25)

In the above, 𝑛𝑛 is the neutral density, 𝑢𝑖𝑛 is the effective ion-neutral collision velocity, 𝑣𝑡ℎ,𝑖 is the ion thermal speed,
equal to

√︁
2𝑇𝑖/𝑚𝑖 , �̃�𝑖 is the magnitude of the ion velocity normalized by the thermal speed, 𝜎𝐶𝐸𝑋 is charge exchange

collision cross section as a function of kinetic energy, and 𝐴 and 𝐵 are numerical fit coefficients. For xenon, Miller et
al.[18] found 𝐴 = 87.3 and 𝐵 = 13.6, while for krypton, Hause et al.[19] found 𝐴 = 80.7 and 𝐵 = 14.7.

With our closure models defined, we now describe the methods employed in our work, including the thruster being
simulated, the experimental operating conditions, and details of the fluid code used for our simulations.

V. Methods

A. Thruster and experimental data
In this work, we compare our simulations to experimental measurements of the H9 Hall thruster. This is a

magnetically-shielded 9-kW Hall thruster developed by the University of Michigan, the Jet Propulsion Laboratory, and
the Air Force Research Laboratory.[20, 21]. In Fig. 2 we depict the thruster operating on Krypton in the University of
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Model Loss mechanisms Expression for a𝐴𝑁

A Convection a𝐴𝑁 = 𝑐1
|u𝑖 · ∇(𝑛𝑒𝑣𝑑𝑒2) |

𝑛𝑒𝑐𝑠𝑣𝑑𝑒

B Convection, Landau damping at 𝜔𝑝𝑒 a𝐴𝑁 = 𝑐1

[
|u𝑖 · ∇(𝑛𝑒𝑣𝑑𝑒2) |

𝑛𝑒𝑐𝑠𝑣𝑑𝑒
+ 𝑐2𝜔𝑝𝑒𝑀𝑒

(
𝑍𝑇𝑒

𝑇𝑖

)3/2
exp

(
−1

2
𝑍𝑇𝑒

𝑇𝑖
− 3

2
− 3

𝑇𝑖

𝑍𝑇𝑒

)]
C Convection, Landau damping at 𝜔𝑐𝑒

𝑀𝑒
a𝐴𝑁 = 𝑐1

[
|u𝑖 · ∇(𝑛𝑒𝑣𝑑𝑒2) |

𝑛𝑒𝑐𝑠𝑣𝑑𝑒
+ 𝑐2𝜔𝑐𝑒

(
𝑍𝑇𝑒

𝑇𝑖

)3/2
exp

(
−1

2
𝑍𝑇𝑒

𝑇𝑖
− 3

2
− 3

𝑇𝑖

𝑍𝑇𝑒

)]
D Convection, 𝑒 − 𝑖 collisions a𝐴𝑁 = 𝑐1

[
|u𝑖 · ∇(𝑛𝑒𝑣𝑑𝑒2) |

𝑛𝑒𝑐𝑠𝑣𝑑𝑒
+ 𝑐2

√︂
𝑚𝑖

𝑚𝑒

𝑀𝑒a𝑒𝑖

]
E Convection, CEX collisions a𝐴𝑁 = 𝑐1

[
|u𝑖 · ∇(𝑛𝑒𝑣𝑑𝑒2) |

𝑛𝑒𝑐𝑠𝑣𝑑𝑒
+ 𝑐2

√︂
𝑚𝑖

𝑚𝑒

𝑀𝑒a𝑖𝑛,𝐶𝐸𝑋

]
Table 1 Summary of investigated models

Fig. 2 H9 Hall thruster with overlaid simulation domain (solid line) and channel centerline (dashed line)
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Parameter Value
Maximum CFL number 0.9
# MFAM cells 2176
# Cartesian cells 1909
Anode mass flow rate 14.8 mg/s
Cathode flow fraction 7%
Cathode ionization fraction 5%
Anomalous collision frequency floor 10−4𝜔𝑐𝑒 s−1

Table 2 Simulation parameters employed in this work for the 300 V, 15 A case

Michigan’s Large Vacuum Test Facility (LVTF), with the domain of our simulations overlaid. We compare the results
of our simulations to experimental measurements of the thrust, anode efficiency and ion velocity profile of the H9
operating at 300 V discharge voltage and 15 A discharge current on Xenon propellant. The ion velocity profile was
obtained via non-invasive laser-induced fluorescence measurements.

B. Fluid code
All simulations in this work were performed using Hall2De, a two-dimensional axisymmetric (𝑧 − 𝑟) multi-

fluid/hybrid-PIC Hall thruster code developed by the Jet Propulsion Laboratory and leveraged extensively for Hall
thruster design and qualification[22–24]. In the version used in the present work, Hall2De solves both the ions and
electrons as fluids. Ion and electron momentum in the azimuthal direction are also considered. Electron inertia is
neglected, leading to a generalized Ohm’s law formulation for electron momentum. Energy equations for both ions and
electrons are included. Neutrals are solved kinetically using a line-of-sight view factor algorithm.

As electron dynamics in Hall thrusters are highly anisotropic and intrinsically tied to the orientation of the guiding
applied magnetic field lines, Hall2De solves the electron fluid equations on a magnetic field-aligned mesh (MFAM)
in order to reduce the impact of numerical diffusion. While advantageous, this meshing strategy introduces other
numerical challenges. Most critically, the field-aligned meshing strategy can lead to poor mesh quality near thruster
boundaries and in regions of high magnetic field strength. This issue is most pronounced near the magnetic poles
of the Hall thruster, where the magnetic field lines converge and cell sizes become necessarily very small. By the
Courant-Friedrichs-Levy (CFL) condition, this in turn can severely restrict the ion timestep, increasing the time required
to run the simulation. However, since the ions in Hall thrusters are approximately unmagnetized, they can instead be
solved on a structured Cartesian mesh instead of on the MFAM. This enables more uniform cell sizes throughout the
domain and significantly increases the maximum timestep of the simulation.

In the present work, we use a MFAM with 2176 cells and a Cartesian grid with 1909 cells. This resolution was
selected after a grid convergence study. The timestep is set globally by the CFL condition,

Δ𝑡 = min
i∈cells

CFLmax
_𝑚𝑎𝑥,𝑖

Δ𝑥𝑖
, (26)

where Δ𝑡 is the timestep, 𝐶𝐹𝐿𝑚𝑎𝑥 is a user-configurable maximum allowed CFL number, _𝑚𝑎𝑥,𝑖 is the maximum ion
wave speed in cell 𝑖, and Δ𝑥𝑖 is a measure of size of cell 𝑖. In our case, we set Δ𝑥𝑖 to the the ratio of cell volume to cell
surface area. With the chosen mesh resolution and a maximum CFL number of 0.9, simulation time steps were on the
order of 50 nanoseconds.

In addition to simulating multiple ion charge states, Hall2De can also simulate multiple ion fluids. In our case, we
simulate two fluids–one corresponding to the ion beam and one to the ions emanating from the cathode. Ions created at
different potential levels may also be assigned to different fluids, but we do not utilize this capability in this paper.

The remaining simulation parameters are summarized in Tab. 2.

C. Model calibration
All of the models described in Tab. 1 feature one or more numerical fit coefficients that must be calibrated in order

to match data. For models with a single fit coefficient like model A, a fairly coarse parameter sweep of 𝑐1 would suffice
for this purpose, but for those with two fit coefficients, we would need to evaluate the models at a grid of test points
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instead. This quadratically increases the number of simulations that need to be run. It would be preferable to only need
to calibrate at most one (or ideally zero) coefficients per model.

To this end, we introduce in this paper a simple on-line calibration procedure for one of the anomalous transport
coefficients (in this case, 𝑐1). We employ a proportional-integral (PI) controller built into Hall2De to automatically
adjust 𝑐1 as the simulation progresses until the time-averaged discharge current matches experiment. To mitigate the
effects of initial transients, we evaluate time-averaged quantities such as the discharge current using an exponential
moving average as opposed to a simple average over all times. For the discharge current, this has the form:

𝐼𝐷,𝑎𝑣𝑔 (𝑡𝑛) = 𝛼𝑛𝐼𝐷 (𝑡𝑛) + (1 − 𝛼𝑛)𝐼𝐷,𝑎𝑣𝑔 (𝑡𝑛−1) (27)

𝛼𝑛 = 1 − exp
(
−Δ𝑡𝑛

𝜏

)
. (28)

In the above, 𝐼𝑑,𝑎𝑣𝑔 (𝑡𝑛), 𝛼𝑛, and Δ𝑡𝑛 are the average discharge current, exponential smoothing coefficient, and timestep,
respectively at iteration 𝑛 and time 𝑡𝑛 and 𝜏 is a user-adjustable time constant. The discrete form of the PI controller is
given by

log 𝑐1 (𝑡𝑛) = log 𝑐1 (𝑡𝑛−1) + 𝐾𝑝

[(
1 + Δ𝑡𝑛

𝑇𝑖

)
𝑒(𝑡𝑛) − 𝑒(𝑡𝑛−1)

]
. (29)

Here, 𝐾𝑝 is the proportionality constant and 𝑇𝑖 is the integral timescale. Following numerical experiments in a
one-dimensional Hall thruster code, we set 𝐾𝑝 to 0.06 and 𝑇𝑖 = 𝜏 = 0.4 ms. This choice of 𝜏 has the advantage of
averaging the discharge current over multiple breathing mode cycles, so the controller does not try to damp out these
oscillations. In Fig. 3, we show the results of one of our numerical experiments on a one-dimensional simulation of the
H9 Hall thruster at 300 V and 15 A using a simple two-zone anomalous collision frequency model of the form:

a𝐴𝑁 =

{
𝑐1𝜔𝑐𝑒/16 𝑧 < 𝐿𝑐ℎ

𝑐1𝜔𝑐𝑒/160 𝑧 ≥ 𝐿𝑐ℎ .
(30)

In Fig. 3a, we show the results of an initial simulation with 𝑐1 = 3. The simulation reaches to a non-oscillatory
steady state with an average discharge current of 30 A. In Fig. 3b, we show the results of applying our PI controller
to 𝑐1. We let the simulation settle for 0.2 ms before turning on the controller. After 2 ms, the controller drives the
simulation into a stable breathing mode oscillation with a mean current of 15 A and a peak to peak amplitude of 32 A.
In Fig. 3c, we show how the value of 𝑐1 changes over time in the controlled simulation. We see that 𝑐1 declines rapidly
until 𝑡 = 1 ms, after which is stabilizes into an oscillation about its final mean value. In order to demonstrate that this
small oscillation does not artificially drive the observed breathing mode oscillations, we perform a final simulation in
which we fix the value of 𝑐1 at 0.813, which was mean value that the controller found (red dashed line in Fig. 3c). We
find that the uncontrolled simulation exhibited the same oscillations as the controlled simulation, albeit with a slightly
larger peak to peak amplitude of 37 A.

This proof of concept has shown that the PI controller can successfully tune the magnitude of the anomalous collision
frequency to match a target value, even in the case of quite strong breathing mode oscillations of > 200 % peak to peak
amplitude. The final value of 𝑐1 may oscillate, but these oscillations have a negligible effect on the breathing mode
oscillations exhibited by the plasma. Additionally, once 𝑐1 converges to a stationary value, the PID controller can be
turned off and the simulation continued with a static value of 𝑐1.

To calibrate 𝑐2, the damping rate scale coefficient, we perform a parameter sweep in the range of 0.1 − 100 with 11
simulations distributed logarithmically. For models which do not have a second coefficient, this step is not required.

This combination of online and offline calibration methods allows us to optimize our closure model fit coefficients
efficiently and effectively using the smallest number of simulations possible. With this final step complete, we now turn
to presenting our results for each of the ten closure models

D. Metrics for evaluating simulations
To compare our simulations to experiment, we consider four metrics. The first is the thrust, which is the net force on

the thruster. We compute this by integrating the axially-directed momentum flux flowing out of the boundaries of the
thruster.
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Fig. 3 Results of test of PI controller in 1D fluid Hall thruster code. (a) Discharge current (blue) and exponential
moving average of discharge current (yellow) with 𝑐1 = 3 and no control. (b) Discharge current with active PI
control. Setpoint of 15 A shown as red dashed line. (c) Time history of 𝑐1 for controlled simulation shown in (b).
Final mean value of 𝑐1 shown as red dashed line. (d) Discharge current with no control using mean 𝑐1 found by
controller in (c).
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Model Optimal 𝑐1 Optimal 𝑐2 Optimal [𝑎 Optimal IVE
A 0.490 N/A 59.4% 0.444
B 0.420 0.1 57.6% 0.443
C 0.470 0.1 59.3% 0.446
D 0.476 0.1 56.6% 0.446
E 0.451 0.25 59.3% 0.445

Table 3 Optimal coefficient values and performances for the models investigated in this work.

𝑇 =

∬
outflow

2∑︁
𝑓 =1

3∑︁
𝑗=0
𝑚𝑖 𝑛 𝑓 , 𝑗𝑢𝑧, 𝑓 , 𝑗 (u 𝑓 , 𝑗 · 𝑑A). (31)

Here, u 𝑓 , 𝑗 is the velocity of the species belonging with to fluid 𝑓 and having charge 𝑗 , 𝑢𝑧, 𝑗, 𝑓 and 𝑛𝑖, 𝑓 , 𝑗 are the axial
component of the elocity and the number density, respectively, of that species, and dA is the differential surface area
vector. The second metric is the discharge current. As discussed in the previous section, this is actively controlled in
order to match experiment. We compute the discharge current by integrating the net current density over the anode
boundary surface, giving us

𝐼𝐷 =

∬
anode

©«
2∑︁
𝑓 =1

3∑︁
𝑗=1

𝑗 𝑞𝑒 𝑛 𝑓 , 𝑗u 𝑓 , 𝑗
ª®¬ − j𝑒

 · dA, (32)

where, j𝑒 = 𝑞𝑒𝑛𝑒u𝑒 is the electron current density vector (not including the azimuthal current). The third metric we
consider is the anode efficiency, [𝑎, which measures how much the the discharge power is able to be converted into
usable thrust power. It is computed as

[𝑎 =
𝑇2

2 ¤𝑚𝑎 𝐼𝐷𝑉𝐷
, (33)

where ¤𝑚𝑎 is the mass flow rate of propellant through the anode and 𝑉𝐷 is the discharge voltage. Since the discharge
current of all simulations in this work is fixed at 15 A by our calibration procedure, we can use the anode efficiency as a
direct proxy for thrust. Finally, to quantify how well our simulations match LIF measurements of the ion velocity, we
employ the integrated velocity error, or IVE

IVE =

√√√√∫ 𝑧𝑁

𝑧0
(𝑢1,1 (𝑧) − 𝑢𝑖,𝐿𝐼𝐹 (𝑧))2𝑑𝑧∫ 𝑧𝑁

𝑧0
𝑢2
𝑖,𝐿𝐼𝐹

(𝑧)𝑑𝑧
. (34)

In this expression, 𝑧0 and 𝑧𝑁 are the first and last axial locations where LIF data is available, 𝑢1,1 is the simulated
axial velocity of singly-charged ions from the first fluid, i.e. the main beam, and 𝑢𝑖,𝐿𝐼𝐹 is the LIF measurement of the
same. This metric is defined such that a higher integrated velocity error means that the simulation agrees less well with
data. For example, an IVE of 0.3 suggests that the simulated ion velocity profile is, on average, 30% different from the
measured profile. With these metrics defined, we now turn to presenting the results of our study.

VI. Results and Discussion
In Fig. 4, we present the results of our study. We were unable to obtain converged solutions for model C with

𝑐2 > 50 and model D with 𝑐2 > 10. All simulations had a discharge current within 0.5 A of the target value of 15 A.
We compare the simulated anode efficiencies (Fig. 4a) and integrated velocity errors as a function of the second fit
coefficient 𝑐2 to experimental values, as well as to a calibrated reference simulation of the H9 at 300 V and 15A.

First examining the anode efficiencies, all models were able to match the experimental anode efficiency of 64% to
within 10% at low values of 𝑐2. The best-performing model was model A (convection with no damping term) with an
anode efficiency of 59.4%. In the limit of low 𝑐1, the other models approached result of model A, but none were able to
improve upon it. As 𝑐2 increased and thus the damping term became dominant over the convection term in models B -
E, the efficiency monotonically decreased. The worst obtained efficiency was 24$, seen in model C (convection with ion
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(a) (b)

Fig. 4 (a) Anode efficiency and (b) integrated velocity error as a function of fit coefficient 𝑐2 for all models.
Experimental anode efficiency is indicated as a grey shaded region in (a).

(a) (b)

Fig. 5 (a) Ion velocity and (b) anomalous collision frequency along channel centerline for best-performing cases
of each model. LIF data is represented as discrete black circular markers in (a).
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landau damping at cyclotron resonances) at high values of 𝑐2. Interestingly, all models were able to improve upon the
anode efficiency of the reference simulation at low values of 𝑐2. Calibrated stationary anomalous collision frequency
profiles such as the one employed for the reference simulation often have difficulty matching experimental thrust
values[23, 25], so this is an encouraging result. However, these empirically-inferred profiles are typically calibrated to
match the discharge current and ion velocity profile, not the thrust, so it is possible that further calibration could rectify
this discrepancy.

Next, we examine the integrated velocity errors. For all models except for model G, this was constant at roughly
0.45 for 0 < 𝑐2 < 1.0. For 𝑐2 > 1.0, the IVE increased for all models in ways that mirrored the trends in efficiency.
To better understand why the integrated velocity errors are so similar across all of the models, we plot in Fig. 5 the
axial component of the ion velocity (Fig. 5a) and the anomalous collision frequency (Fig. 5b) extracted along the
discharge channel centerline for the cases with the highest anode efficiency for each model. These best-fit coefficients
are summarized in Tab. 3. As expected from the IVEs, the ion velocity profiles for all models are very similar. Models
A, D, and E are indistinguishable from each other, while models B and C are somewhat different, with acceleration
happening a tenth of a thruster length later than the other simulations. In all cases, the ion acceleration is more relaxed
than that of the experimental data and reference simulation.

To understand the structure of the ion acceleration profiles, we now turn to examining the time-averaged anomalous
collision frequency along the channel centerline. In all cases, the anomalous collision frequency starts high, then
declines to a minimum before recovering somewhat. This qualitatively matches the shape of the empirically-inferred
anomalous collision frequency profile used to generate the reference simulation. However, the collision frequency
is generally at least an order of magnitude lower than the empirical profile, with the exception of near the anode,
where it is two to three orders of magnitude higher. Downstream of the thruster exit plane (𝑧/𝐿 = 1), all five models
attain a nearly constant collision frequency of 108 s−1. However, the models differ from each other by several orders
of magnitude upstream of this location. Models A and E are indistinguishable from one another, with a minimum
occuring at 𝑧/𝐿 ≈ 0.5. For model 𝐷, the trough in collision frequency is shallower than in models 𝐴 and 𝐸 by an order
of magnitude. For model 𝐵, the collision frequency is much higher upstream than the other models, with a shallow
minimum around 𝑧/𝐿 = 0.9. As the location of the minimum in collision frequency coincides with the location of the
peak electric field strength in Hall thrusters, this feature explains the delayed acceleration profile seen in model 𝐵. For
model 𝐶, the minimum collision frequency is an order of magnitude deeper than models 𝐴 and 𝐸 . The location of the
minimum in most models is near 𝑧/𝐿 = 0.5, which is nearly coincident with the ion stagnation point, where 𝑢𝑖 = 0,
where the convection term should be minimized. Taken with the efficiency and integrated velocity error data, these
results reinforces the idea that the convection term dominates the damping terms, especially downstream of the exit
plane.

The high value of the collision frequency near the anode was also observed by Lafleur et al[10] in their analytical
model, which shares a similar derivation to ours. It likely stems from the fact that the ion sound speed 𝑐𝑠 and electron
drift velocity 𝑣𝑑𝑒 are both low near the anode, causing the value of the collision frequency to grow rapidly in this region.
To fix this, they cut off the anomalous collision frequency near the anode, with the justification that the wave may not be
saturated before the ion stagnation point. With this modification, the magnitude of the collision frequency downstream
of the anode minimum would likely need to increase by an order of magnitude in order to match the target discharge
current. However, it is not assured that our simulations need to match the empirical reference profile in order to give
good results, as these profiles are known in general to be non-unique[26] and may not correspond well with the actual
value of the anomalous collision frequency in Hall thrusters. Nevertheless, a different model may be necessary in the
near anode region in order to account for differences in the level of wave saturation.

The other major difference between our model predictions and the empirical reference profile is the location of
the minimum collision frequency. To better match experiment, it would need to be shifted half a thruster length
downstream from its present location. One possible way to achieve this would be if the group velocity of the wave in
the axial direction was not 𝑢𝑖,𝑧 but 𝑢𝑖,𝑧 − 𝑐𝑠. This might shift the minimum to the ion sonic point instead of the ion
stagnation point. In the experimental data, the ion sonic point sits just inside of the channel, near 𝑧/𝐿 = 0.9, while
in our simulations, it sits between 𝑧/𝐿 = 0.75 and 𝑧/𝐿 = 1.1. This is still likely too far upstream, but would be an
improvement over the present results. More technically, the group velocity of a wave is given by:

v𝑔 =
𝜕𝜔

𝜕k
, (35)

where 𝜔 is the real frequency of the wave and k is the wave-vector of propagation. For an ion acoustic instability with
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drifting ions with a velocity vector u𝑖 , the real frequency is given by[8, 10]

𝜔 = k · ui ±
𝑘𝑐𝑠√︃

1 + 𝑘2_2
𝑑𝑒

. (36)

In our previous analysis and in experiments, 𝑘 is primarily in the azimuthal direction, so the sound speed contribution
should be very small in the axial direction. However, here we make the assumption that the wave propagates in the same
direction as the ions and thus the group velocity for a wave with wavenumber 𝑘 is[10]

v𝑔 = u𝑖 ±
𝑐𝑠(

1 + 𝑘2_2
𝑑𝑒

)3/2 �̂�𝑖 , (37)

where �̂�𝑖 ≡ u𝑖/|u𝑖 | is the unit vector of ion propagation. If the majority of the growth occurs at a single wavenumber
and the wavenumber of maximum growth that given by the ion acoustic dispersion relation (i.e. 𝑘2_2

𝑑𝑒
= 1

2 ), then we
arrive at

v𝑔 = u𝑖 ±
√︂

8
27
𝑐𝑠�̂�𝑖 ≈ u𝑖 ± 0.544𝑐𝑠�̂�𝑖 . (38)

We can thus see that there may be some theoretical justification for shifting the profile forward by a factor of 𝑐𝑠. We
also note that when implementing the model of Lafleur, Baalrud and Chabert[10], we found that the minimum of the
collision frequency occured significantly further downstream than in the empirical reference simulation. That model was
similar to ours in all respects except for the assumption that the wave saturated at some fraction of the plasma thermal
energy density rather than the electron drift kinetic energy density. Combined with a more complete expression for the
group velocity and improved modeling near the anode, it may be that allowing the wave to saturate at a fraction of the
electron total energy density (𝑊 ∝ 3 𝑛𝑒𝑇𝑒 + 𝑚𝑒𝑛𝑒𝑣

2
𝑑𝑒

) might cause the minimum in the anomalous collision frequency
to move to a location intermediate between that predicted by the drift and thermal energy assumptions alone. However,
the thermal energy typically dominates the drift kinetic energy, so it is possible that the result would be similar to that
predicted by Lafleur et al.

Overall, while were unable to quantitatively match ion velocity measurements, we were able to obtain good
agreement with the experimental anode efficiency values and qualitative agreement with some key features of the
empirically-inferred anomalous collision frequency profile. The models investigated in this work have performed the
best out of those that we have yet evaluated[12, 13, 27]. While still not completely predictive, these models suggest that
it may not be impossible to self-consistently account for anomalous transport in Hall thrusters in a fluid framework.

VII. Conclusion
In this work, we evaluated five algebraic closure models of the Hall thruster anomalous transport. We assumed

that the instability responsible for this transport saturated at the electron drift kinetic energy, and that the primary loss
mechanism was convection of the wave energy out of the thruster. We investigated the effect of several additional
damping mechanisms, including classical electron-ion and ion-neutral charge exchange collisions, in addition to ion
Landau damping at both the plasma frequency and at cyclotron resonances. We found that these secondary damping
mechanisms were insignificant compared to convection, and that as a result all of these models produced similar
estimates of the thruster anode efficiency and the error in the ion velocity compare to experiment.

Despite significant differences in the ion velocity profiles between our simulations and experimental measurements
obtained via laser-induced fluorescence measurements of the H9 Hall thruster, the anode efficiencies predicted by our
simulations were very close to the experimental values, something which previous closure models have not yet been
able to attain. In addition, the predicted anomalous collision frequency profiles shared many features in common with
empirically-inferred collision frequency profiles for this thruster. While these results have not yet been extended to other
thrusters or operating conditions, they suggest that algebraic closure models of the anomalous collision frequency may
be able to capture major features of the Hall thruster discharge plasma in a predictive manner.
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