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We deploy the Joint Advanced Propulsion Institute’s (JANUS’s) Hall thruster Predictive
Engineering Model (PEM) model on the SPT-140 system qualified and flown for NASA’s Psyche
spacecraft. The purpose of the PEM is to enable rapid predictions and uncertainty quantification
of system performance while accounting for facility effects associated with ground-based testing.
The most recent instantiation of the PEM framework consists of an analytical model predicting
cathode coupling voltage, a 1-D axial fluid Hall thruster code predicting the main discharge,
and an analytical plume expansion model predicting ion current density traces. The primary
facility effect they capture is background pressure. To deploy the PEM for the SPT-140, we
extended the models to enable scaling the Hall thruster’s magnetic field at different operating
conditions. We then calibrated the PEM using data from ground qualification tests performed
by NASA’s Jet Propulsion Laboratory (JPL). These datasets include thrust, discharge current,
and ion acceleration measurements. A Bayesian calibration of the model parameters yields
a posterior consistent with previous calibrations on the SPT-100 and H9 thrusters. Unlike
standard practice, where anomalous collisions are calibrated to individual operating conditions,
we use a single anomalous transport model parameterized by pressure. Thus we provide initial
evidence for predictive capabilities of target quantities of interest. Following calibration, we
extrapolate the model predictions to vachum. Thrust predictions at higher powers are shown to
be comparable to modeling by JPL using Hall2De done during qualification, while discharge
current data are not reliably predicted. The mismatch of discharge current is attributed to the
fact that the PEM assumes a fixed anomalous collision frequency profile whose position shifts
with pressure.

I. Introduction

Hall thrusters are space-based plasma devices that must be tested in ground vacuum facilities that incompletely
simulate the space environment. One critical difference between ground and space that we focus on here is the the effect
of background gas in the facility. More specifically, ground testing necessitates extrapolating performance measured with
finite background pressure to the vacuum of space. Extrapolating the performance and internal states of Hall thrusters
at varying background pressures is challenging due the lack of ab initio models of the thruster plasma—many of the
physical mechanisms leading to changes in operation with pressure are not completely understood. In principle, many of
these effects could be captured in a kinetic model of the discharge plasma, but facility-scale kinetic simulations do not
yet exist at a feasible computational cost. To make up for this gap in understanding, engineering models of Hall thrusters
incorporate parameters that stand in for the missing physics. These coarse-scale models, however, must be calibrated to
match data. Traditionally, the model’s parameters are optimized for each unique set of operating conditions (discharge
voltage and current, background pressure, etc.), and the models obtained thus lack the power to extrapolate [[1H3]. A
more extensible approach is to calibrate a single model across a wide range of conditions, and we follow this approach
here. To this end, we require a model that is flexible enough to reproduce and extrapolate the observed variation of
thruster performance with facility conditions (in this work, primarily pressure), while simultaneously constrained by
critical physical principles. At the same time, to enable automatic calibration and uncertainty quantification, both of
which require potentially thousands of sequential model evaluations, we require an inexpensive model.

To respond to these needs, we developed the Hall thruster Predictive Engineering Model (PEM) [4] as part of
NASA’s Joint Advanced Propulsion Institute (JANUS) [5]]. This model is built from three components—a model for the
cathode coupling voltage, a 1-D fluid Hall thruster discharge model, and an analytical model for the expansion of the
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plasma plume. This model is designed to predict several quantities of interest (including thrust, discharge current, and
ion velocity) as they vary with background pressure. Crucially, each component model builds in an explicit pressure
dependence as well as several tunable parameters. This infrastructure allows the full system to be calibrated on data that
range across multiple background pressures and operating conditions and then extrapolate to unseen environments.

In our initial work [4]], we demonstrated the PEM on the SPT-100 Hall thruster and obtained good agreement with
the calibration dataset and satisfactory extrapolation to a validation dataset. In a subsequent paper [6]], we improved the
flexibility of the model and both re-tested it on the SPT-100 and extended it the H9 magnetically-shielded Hall thruster.
For both thrusters, the model exhibited predictive errors of less than 10% on the validation set. In this work, we apply
the Hall thruster PEM to a new thruster—the SPT-140 recently flown on NASA’s Psyche spacecraft [7].

The SPT-140 thruster and the available datasets necessitate certain changes compared with our previous efforts.
In particular, in this paper we consider the the following changes and differences: we 1) incorporate multiple power
conditions that have different magnetic field settings; 2) train without access to cathode coupling voltage and ion current
density data; and 3) study a more consistent and well-defined, which we track from ground-based qualification testing to
flight.

After the incorporation of these new capabilities and dataset modifications, our model produces thrust and discharge
currents within 7% and 15% of the experimental data used for calibration, respectively. Additionally, we demonstrate
8% and 17% errors in the same quantities of interest when extrapolating ground test data to orbit. We compare our
calibrated simulation results to those obtained using Hall2De in prior works [2]], a higher-fidelity code. We find that the
error in our discharge current predictions is the result of using the same anomalous electron collision frequency profile
across multiple power levels. This contrasts with the Hall2De results, which were calibrated for each operating condition
individually. Finally, we analyze the amount of data required to calibrate the PEM on this dataset. We find that the model
predictions for thrust on-orbit change by less than 3% when calibrating the model on only data taken above 20 nTorr.
However, we find that uncertainty in the position of the ion acceleration region increases by a factor 2.5. These findings
suggest that ground testing at ultra-low pressures (< 5 pTorr) may not be needed to extrapolate system-level parameters
like thrust to space, but may still be required to accurately capture the internal discharge dynamics.

This paper is organized as follows. In Sec. [l we describe the PEM and its components (Sec. [[L.A)), the data sources
we employ (Sec. [[L.B), and the Bayesian inference procedure we apply for model calibration (Sec. [I.C). Then, in
Sec. [III} we present the results of this calibration, including the values of the calibrated model parameters (Sec. a
comparison of the model to its training dataset (Sec.[[ILB]), and an extrapolation to a space validation dataset (Sec. [[ll.C).
Finally, we discuss these results in Sec. highlighting the role changes in anomalous mobility play in our predictions
(Sec.[IV.A)), examining what limiting calibration to only the highest pressure data modifies in our model (Sec. [[V.B)),
and investigating how the dependence of mass flow rate and discharge current might be inverted in the model to more
accurately reflect how data are acquired experimentally (Sec. [[V.C).

I1. Methodology
In this section, we describe our methodologies. We first provide an overview of the engineering model used to
predict thruster behavior (Sec. @ Then, we describe the sources of training and validation data for that model
(Sec. [[LB). Finally, we detail the inference problem by which we calibrate the model to the training data (Sec. [[T.C).

A. Model

We leverage the Hall thruster Predictive Engineering Model (PEM) [4] of the Joint Advanced Propulsion Institute
(JANUS) [3] to model thruster behavior. This model’s purpose is to capture facility effects endemic to testing Hall
thrusters in ground based vacuum chambers, which incompletely simulate the space environment where the thrusters
operate—in particular the effect of finite background pressure in the test facility. The PEM is constituted by three
components: 1) an analytical model which predicts the pressure-dependent coupling between the cathode and the main
discharge [8]]; 2) a 1-D axial fluid code that simulates the main discharge, including the ionization and acceleration
of the plasma [9]; and 3) a semi-empirical formulae which analytically propagate the plume of the discharge through
the background gas of the facility [[10]. These components and their connection to each other are more expansively
detailed in our prior work [6] and summarized in Fig.[I] We briefly review and highlight key features in the following
subsections.
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Fig.1 Schematic overview of the JANUS Hall thruster PEM; figured adapted from [6].
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1. Cathode Coupling
The cathode model (originally from [8]) is given compactly as:

P T,
Vee = Voae + Toc ln(1+P—:)—(ﬁ)P3. (1)

Here, V.. denotes the cathode coupling voltage—that is, the potential drop from the cathode to the main discharge
necessary to extract electrons—which is expressed as a function of background pressure in the facility Pp and the
effective temperature of the cathode plasma 7,.. Correspondingly, V, 4. is the coupling voltage of the system in an ideal
vacuum, because V.. = V,, when Pg = 0. The quantities Py and P* are reference pressures which serve as scaling
coefficients. Equation (I)) arises from balancing the effects of pressure gradients (logarithmic term) and enhanced
conductivity (linear term) in the cathode plasma as a result of excess neutrals from the facility, and is derived in detail in

2. Thruster

To model the main discharge, we use Hal1Thruster. j1, a I-D axial fluid Hall thruster code [9]. HallThruster. jl
models the quasineutral plasma as composed of separate neutral, ion, and electron fluids. Continuity is solved for the
neutrals assuming they are subject to ionization but otherwise traveling at a fixed drift speed u,,, and both continuity and
momentum are solved for the ions. For electrons, Hal1Thruster. j1 solves an energy equation but otherwise treats
them as inertialess, invoking the generalized Ohm’s law in combination with current conservation to solve for electron
current density and the electrostatic potential. The upstream boundary of the simulation is set to the anode potential,
while the downstream boundary of the simulation is set to the cathode coupling voltage from Eq. (T).

Part of the domain (the channel region) is bounded by walls, and the plasma is partially magnetized by a fixed
transverse magnetic field profile; these are configured to match the design of the thruster. The radial magnetic field B,
is a function of position B, = B,-(z), with z the axial coordinate. For magnetic circuits composed of electromagnets,
the magnetic field can be adjusted by modifying the currents passing through the coils. Hall1Thruster. j1 exposes a
magnetic field scale parameter B, to account for these changes, calculating

Br = Br,refér, (2)



where B, ;. is some reference field profile. While this simple linear scaling cannot model distortions in the field profile
caused by saturation of the magnetic circuit or a change in balance between multiple coils, magnetic circuits are often
designed with a fixed topology restricted to operate within a linear range and scaled therein to meet stability margin
(111, so this scaling often suffices. In particular, if /,. s is a reference electromagnetic coil current and /. an actual coil
current, then we have (see further discussion in Sec.

ér =Ic/1ref- 3

HallThruster. jl—Iike other fluid Hall thruster codes [[12H15]]—includes an “anomalous’ electron mobility term
to capture the effect of instability-induced electron transport across the radial magnetic field. These kinetic effects are
not yet self-consistently captured in the model—doing so more generally is an active area of research [[16H18] . In
HallThruster. jl, the heightened mobility is implemented as a position-dependent anomalous collision frequency, in
particular following the phenomenological form,

) ; “)

which we illustrate in Fig. @ Here, v4n0m 1s the anomalous electron collision frequency and w.. o< B, is the electron
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Fig.2 Diagram of the anomalous collision frequency model of Eq. @), adapted from [6].

cyclotron frequency. Noting the right hand side of Eq. [{]scales as w.. times some quantity ¢ < 1 and that the anomalous
collision frequency tends to dominate the classical collision frequency, this induces a Bohm-like scaling for the electron
mobility across magnetic field lines:

1 1

Yanom o CWce c

C
o o —. (5)
Ha 1+( Wee )2 1+ é Wee B,
Yanom

Additionally, there exists a localized transport barrier which serves to concentrate potential drops in the plasma to a
narrow “acceleration region” [3, [19]—here modeled by the terms in the largest parentheses of Eq. {@) as a Gaussian
dip in the collision frequency. The quantity 1 — 8,0, is the multiplicative decrease in frequency at the nadir of the
barrier, Lanom is a characteristic width of the barrier, 2 is the axial coordinate, and 24,0 is the center of the barrier.
The circumflexes denote that these terms have been normalized by the channel length of the thruster—i.e., Z = z/Lcp.

The final term AZ = AZ(Pp) is a pressure-dependent shift in the location of the transport barrier which captures
observations that the acceleration region migrates with changes in facility pressure [20]. In particular, we adopt a



logistic form,

1 1
_ Pp T 1+ex [2]
1 +exp [2 (1 Pﬁ)] p

Az(PB) = AZanom (6)

The term AZg,0m is the magnitude of the shift, and Py is its center. Consistent with our previous work [6]], we fix the
center of the logistic shift to Py = 25 nTorr.

Two final scale parameters are exposed by the model. By default Hal1Thruster. j1 estimates the flux of neutrals
ingested by the thruster from the background gas in the facility assuming the population is Maxwellian [9]. f, is a
multiplicative factor which scales the magnitude of this flux. Further, since the code is only 1-D, it does not directly
compute radial gradients in the plasma density and so assumes that the density at the walls of the channel is a fixed
fraction of the cell density (which is implicitly averaged over the cross section). We take this ratio to have a nominal
value 0.5, modified by a scale factor c,,,.

Independent of these scale factors and model parameters, Hal1Thruster. j1 has four key inputs: the discharge
voltage V, the total voltage applied between the anode and cathode; the cathode coupling voltage V.., which we take
as predicted by Eq. (I); the background pressure in the facility Pg; and the mass flow rate of propellant to the anode
4. These inputs specified, the model produces four key outputs: the discharge current /; from the anode to cathode;
the beam current /g, the amount of the discharge current carried by ions and leaving the thruster; the “uncorrected”
thrust 7', an integrated momentum flux out these ions out of the domain assuming a perfectly collimated beam; and the
velocity of the ion fluid as a function of position, ;o = Ujpn(2).

3. Plume

HallThruster. jl is a 1-D code and ipso facto does not internally model the divergence and expansion of the ion
beam into the test facility. We leverage the plume model of [10] to capture these behaviors. In particular, this analytical
model represents the thruster as a point source of ion current; the corresponding ion current density j;,, is a function of
radial distance away from the thruster » and polar angle off the thruster axis 8 and is considered composed of three
distinct populations, a “main” beam j,,, a “scattered” beam j, and a charge exchange beam j,:

Jion = Jm t Js + Jexs (7a)
_ 1-co)l 0\
Jm = (r# exp (—=rn,o¢x) A1 exp l_ (0_1) l7 (7b)
2
1 %)
Js = 0023 exp (—rn,ocx) Az exp | — (—) l, (7¢c)
r 92
. Ip
Jex = W [1 —exp (=rn,ocx)]. (7d)

Equations (7a)-(7d) indicate the current density of each beam attenuates by default as »~2. The main scattered beams
expand in Gaussian profiles with characteristic widths 61 and 6,, respectively, while the charge exchange beam is a
uniform hemisphere. A; and A, are corresponding normalizing constants computed in [[L0]. The quantity cy is the
proportion of the beam that is scattered into jy, and the exp (—rn, 0, ) terms represent that as the beam expands radially
and propagates through the background gas, it undergoes charge exchange collisions which attenuate the main and
scattered beam and transfer this charge flux into the charge exchange beam. n,, is the effective neutral density from the
background pressure and o, is the cross section of the charge exchange process.

In recognition that the beam tends to diverge differently for varying background pressures as a result of interactions
with the background gas and shifts in the acceleration region within the thruster [20], the beam widths and effective
neutral density are functionalized by the background pressure as

01 = c162, (8a)
0>, = crPp + c3, (Sb)
n, = c4Pp +cs, (8¢c)

where c1, ¢, ¢3, c4, and c5 are calibration coefficients.



Aside from the calibration coefficients, the only inputs to the plume model are the background pressure Pp and the
ion beam current /p (the latter returned from the thruster model). The primary output is the position-dependent ion
current density j;,,; however, at a higher level this predicted profile can be used to correct the thrust estimate produced
by the thruster model, namely:

fon/z(jm + jg) cos @ sin 6 dé

2,. . .
S (i + js) sin6.do
T. =T cosf8y,. (10)
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Equation (9) is the classical computation of the divergence angle 6,4 of the beam assuming the momentum flux is
proportional to the current density [21]]. We perform the computation excluding the current content of the charge
exchange beam, since these collisions transfer momentum away from charged species, violating this assumption.
Consequently, 8, is solely a function of ¢y, ¢y, ¢z, ¢3, and Pg—i.e., is a calibrated function of background pressure. The
thrust corrected by this pressure-dependent divergence angle, Eq. (T0), is the principle output of the plume component
and the overall model’s best estimate for thrust to compare to data.

4. Composition
We summarize the inputs, outputs, and parameters of each component model in Tab.[I} The asterisks in the table

Table 1 Summary of component model inputs and outputs; asterisks indicate variables that couple between
component models, daggers denote notation revised from [6], and new variables are in bold.

Model Inputs Parameters Outputs
Cathode  background pressure Pp  vacuum coupling voltage Vvac cathode coupling voltage* V..
cathode electron temperature Tp.
“base” pressure Pr
turning pressure P*
Thruster  background pressure Pp anomalous mobility scale  @gnom  uncorrected thrust* T
discharge voltage V4  transport barrier scale Banom  1on beam current® Ip
cathode coupling voltage* V.. transport barrier location™  Z4n0m discharge current 14
anode mass flow rate r,  transport barrier width? Lanom  ion velocity profile Uion
magnetic field scale B,  transport barrier shift’ Aanom
neutral drift speed U
wall density scale Cw
neutral ingestion scale I
Plume  background pressure Pp  scattered beam ratio co ion current density Jion
ion beam current* Ip  divergence angle ratio cq corrected thrust T.
uncorrected thrust* T  divergence angle slope c2
divergence angle offset c3
neutral density slope ca
neutral density offset cs

indicate the quantities which couple between the various components—that is, where the output of one model is required
as an input to another. Fortunately, the components do not feed back into each other, so these linkages are trivial. For
our purposes, the aggregated model has four key inputs—Pp, Vy, rir,, and B,—and three key outputs—Iy, u;op, and
T.. However, the presence of the calibration parameters in between necessitates using experimental data to train the
mapping between inputs and outputs.



B. Data Sources

We briefly outline the experimental data we use to train and test the model in this section, which we also summarize
this in Tab. 2} In contrast with our prior work [6], we do not have direct measurements of the cathode coupling voltage
Ve or ion current density profiles j;,, on which to calibrate the model. “Training” in the table indicates the data on
which we calibrate the model, the ground testing qualification data of [22] and [2]. “Validation” indicates data that we
do not train the model on and instead reserve to test its ability to extrapolate, the on-orbit measurements of [11].

Table 2 Summary of data sources used to train and validate the model.

Source Reference  Category  Data Types Power Magnet Current I,  Pressures Pp
Snyder et al. 2020 22] Training 1, T, 4.5 kW 6.00 A 3.3-34 uTorr
3.5kW 5.50 A 2.8 nTorr
3.0kW 450 A 2.5 pTorr
2.5 kW 4.00 A 2.2 nTorr
2.0 kW 325A 1.8 pnTorr
1.5 kW 325A 1.6-31 pTorr
0.9 kW 275 A 1.2 pTorr
Lopez Ortega et al. 2020 (2] Training 1, Uion 4.5 kW 6.00 A 9-30 pTorr
4.5 kW 525A 9-30 pTorr
2.5 kW 4.00 A 6-30 nTorr
1.0 kW 275 A 3-30 nTorr
Snyder et al. 2024 (L] Validation 1, T, 4.5 kW 6.00 A 0 pTorr
3.0 kW 450 A 0 pTorr
2.0 kW 325A 0 pTorr
1.0 kW 275 A 0 pTorr
1. Thruster

This work is focused on extending our existing modeling activities to include the SPT-140 Hall thruster. The
SPT-140 is a latter part of the Experimental Design Bureau (EDB) Fakel’s SPT portfolio, development of the series
beginning in 1964 and continuing in the decades since then [23]. The SPT-140 began to undergo qualification activities
in the west around the turn of the millennium [24H26]]. As a result of this long heritage, the SPT-140 is not a singular
thruster, but rather a series of similar but distinct configurations that have emerged over the years. We focus our modeling
activities to the version of the SPT-140 manufactured for, qualified for, and eventually flown on the Psyche spacecraft.
This configuration underwent extensive qualification testing on the ground [22] and since being launched on Psyche
has been able to return telemetry and performance data from space [[L1]. JANUS’s overriding goal is the capability to
confidently extrapolate results from testing thrusters in ground-based vacuum facilities to space. Consequently, the
activities for Psyche constitute a key test case for the institute.

2. Training Dataset

As a training dataset, we leverage experiments conducted by NASA’s Jet Propulsion Laboratory to qualify the
SPT-140 for Psyche [2,22]. These activities were an extension of previous qualification activities for the SPT-140 [27];
they extended the operational envelope from the nominal 3 to 4.5 kW to a broader 1 to 4.5 kW. All tests used xenon as a
propellant and had a discharge voltage of 300 V. The magnetic field profile of the SPT-140 is varied for each power level
by adjusting the current energizing its electromagnetic circuit. The coil current ranges from 2.75 A coil current at 1 kW
discharge power to 6 A at 4.5 kW. We represent this variation with Eq. (3). The full magnetic field profile and detailed
geometry of the SPT-140 used are proprietary to NASA’s Jet Propulsion Laboratory and its commercial partners, so are
excluded from this report. Snyder et al. conducted a pressure study of the system, operating the thruster at several
different power levels and varying the background pressure by flowing additional gas into the facility independent of that
supplied to the thruster to achieve the targeted discharge currents [22]]. At these operating points, thrust and discharge



current (including oscillations) were measured; unfortunately, mass flow rate data were not published for some operating
conditions, preventing us from using them as training data. Further data published by Lopez Ortega et al. provide ion
velocity profiles for some of these operating conditions [2]].

3. Validation Dataset

Psyche launched with four SPT-140’s [[11]]. The flight model of the thrusters was slightly modified relative to the
qualification model unit, but these changes were extrinsic to the performance of the thruster [22]]. Consequently, we
leverage the performance data measured in flight as a validation data set for our model. Radiometric velocimetry
conducted during thruster burns provided extremely precise measurements of the thrust produced by the thrusters, and
telemetry from the power processing unit provided information about the discharge current. Unfortunately, the mass
flow rate supplied to the thruster is not reliably metered on orbit over short timescales, so when we make predictions to
the space environment we assume a mass flow rate consistent with the minimum-pressure testing conditions achieved in
ground testing [22]. This is consistent with the choice made by Lopez Ortega et al. in modeling the SPT-140 in the
2-D axial-radial code Hall2De [2]]. The flow system controls to a target discharge current, not a fixed mass flow rate,
however, a point we return to in the discussion (Sec.[IV.C). Finally, we model the background pressure of space as an
arbitrarily small value (P — 0).

C. Calibration

The Hall thruster PEM architecture [4}, 6] includes utilities for training the model, which we leverage here. We
express the model training as a Bayesian parameter estimation problem, wherein we infer the values of the model
parameters given some set of experimental data. Denoting generically the parameters as ® and the data as D, we
compute the posterior distribution

P(D | ©)P(®)

PO D)= =

o« P(D | O)P(0). (11)
The right hand side of Eq. (TT)) results from Bayes’ rule, with P(D | ©) the likelihood and P(®) the prior. The P(D)
factor is the evidence and is merely a normalizing constant for our purposes, absorbed into the proportionality. By
modeling the parameters ® probabilistically, we account for uncertainty in their value arising from the fact that the data
D are acquired by methods with finite error or representing that our model may incompletely capture the physics. In our
case, O is the set of model parameters indicated in Tab. [T] namely

* A 4 A
0= {Vvac’ Tec, Pr, P", @anom» Banom» Zanom> Lanom> AZanoms Un» Cy, fn7 €p,C1,C2,C3,C4, CS} . (12)

The likelihood P(D | ®) is a model for how the data were generated (i.e., the underlying stochastic process representing
error in the measurement). In our case, we have three streams of data, thrust measurements and discharge current
measurements from [22] and ion velocity profile measurements from [2]]. However, not all data are available at all such
operating conditions. We define a distinct operating condition at which the thruster was operated by the set of model
inputs corresponding to that operating condition, d = {Vd, Py, mg, 1§r}. Let ny,, nr,, and n,,,, represent the number of
operating conditions where each kind of data was collected, and let j index those operating conditions, such that d;,,_; is
the j operating condition at which discharge current data were collected and so on. While discharge current and thrust
are represented as singular measurements taken at an operating condition, ion velocity measurements are a collection of
multiple data taken at different z locations. We denote an individual measurement location for operating condition j as
Z;,1, and the number of such measurement locations m ;. Consequently, we define yj, ; and y7, ; to be the measured
values of discharge current and at operating condition j and y,,,,, ;. to be the measurement of ion velocity at operating
condition j and axial location [. The corresponding model predictions for these quantities we label as f7,(dz,, ;; ®),
fr.(dz. ;;0), and f,,,, (dy, . ;215 ©), where we have explicitly indicated the functional dependence on the inputs and
parameters of the model.



Subject to these definitions, the PEM models the likelihood as
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We note that this closely follows the notation of [6], except where we have explicitly denoted the different data streams
symbolically rather than enumerating them. Rather than model error in individual measurements, the PEM models error
over entire streams of data, which are assumed independent—hence the three exponential terms in Eq. (I3). In particular,
the L, norm of the error between the model prediction and measurements (numerator) is modeled as a half-Gaussian
distribution. The widths of these distributions is expressed as some fraction y of the L, norm over the measurements,
such that the width represents a relative error. Modeling the likelihood this way more equally weights different types of
data (discharge current vs. thrust vs. ion velocity) in estimating the model parameters, rather than equally weighting
individual measurements—which tends to be dominated by the multiplicity of ion velocity measurements [6]. For this
study, we model y;, = y7. = 4, = 0.05, that is, a 5% relative error.

The prior distribution P(®) represents any cogent information about the parameters that may result from previous
studies, enforce physical constraints, or embody intuition. Within the PEM framework, individual thrusters are treated
as unique systems that are not necessarily informative of each other, and we have not previously trained to model the
SPT-140. We therefore elect the “uninformative” distributions of Tab. 3] which are the same as used in [6] for the
SPT-100 thruster. The symbol U is used to denote the uniform distribution, and parameters preceded by a log,, indicate
that the distribution has been prescribed over the logarithm of that parameter (because they may vary over several orders
of magnitude). Units are indicated for dimensioned quantities.

Table 3 Prior distribution over the model parameters P(®)

Parameter  Distribution Parameter Distribution Parameter Distribution
Viac U(0,60) v Qanom U,1) co Uuo,1)
Tec U(1,6) eV Banom Uu©,1) c1 U(0.1,0.9)
Pr U (10, 100) pTorr 2 anom U(0.75,1.5) 1) U(-15,15) mrad mPa~!
P* U(10,200) nTorr Lanom U(0,0.5) c3 U0.2,7/2) rad
AZanom — U(0,0.5) log,gcs  U(18,22) log;p m>Pa~!

U, U(100,500) ms~'  log,ycs  U(14,18) log;y m~>
cw  U05,15)
In U(1,10)

Having given the likelihood in Eq. (I3)) and the prior in Tab. [3] our inference problem is fully specified. The
irregular and multidimensional nature of the resulting posterior, however, renders it analytically intractable (i.e., to
derive statistics). Rather, then, we sample from the posterior using Markov Chain Monte Carlo techniques, generating
15000 samples from the chain. The Markov chains are initialized at a nominal set of parameters and take some time
to converge to the posterior distribution, so we discard the first half of the generated samples. We can then generate
model predictions accounting for uncertainty in the parameters by evaluating the model at these samples. Note that
in previous work we also treated the effect of uncertainty in the operating conditions themselves [6]]—i.e., that the
discharge voltages, background pressures, and other variables we treat as independent are not known precisely either.
We found this to be a small contribution to overall uncertainty in our predictions and so neglect it here.

II1. Results
In this section, we present the results of our model calibration, including the posterior parameter values inferred
from the data (Sec. [[II.A), the corresponding model predictions when compared to the training data set (Sec. [[IL.B), and
an extrapolation to the space environment using the calibrated model (Sec. [[II.C).



A. Posterior Distribution

We first examine statistics over the samples we drew in training the model of Sec. [[I.A]on the data indicated in
Sec. [.B] We summarize these in Tab. 4] where we provide the maximum a posteriori (MAP) parameter values over the
whole distribution as well as the marginal mean, standard deviation, 5%-ile, median (50%-ile), and 95%-ile parameter
values over the samples. We also reiterate the prior distributions of Tab.[3]and the median parameters calibrated for the
SPT-100 and H9 thrusters in [6] as comparisons. This is a necessary contrast because it indicates which parameters

Table 4 Marginal statistics for different model parameters computed from posterior samples, contrasted with
their prior distribution and previous results from [6].

Parameter Units Prior MAP Mean Std. Dev. 5% Median 95% |SPT-100 H9
Vivae v U 0,60) 1594 1687 1.28 15.21 16.66 19.32 | 31.75 21.94
Tec eV U(1,6) 439 470 051 3.88 4.66 5.58 292 540

Pr pTorr U(10,100) 95.8 945 3.7 87.1 95.1 993 48.7 3.2
pP* pTorr U(10,200) 88.7 879 3.7 80.6 885 93.0 649 453
Tanom Uuo,1) 0.089 0.083 0.035 0.040 0.075 0.151 0.06 0.13
Banom Uu,1) 0.987 0.973 0.023 0.923 0.979 0.996 0.99 0.98
Zanom U(0.75,1.5) 0922 0.928 0.043 0.859 0.926 1.001 1.14 1.07
Lanom U0,0.5) 0.387 0.341 0.094 0.193 0.343 0.483 043 043
AZanom U0,0.5) 0.057 0.152 0.109 0.011 0.134 0.360 033 0.18
Up ms~! U(100,500) 249.6 2509 3.3 246.8 250.2 2579 | 278.1 268.9
Cy U(0.5,1.5) 068 0.74 020 052 068 1.16 0.67 1.19
fn U(1,10) 481 484 1.67 2.01 492 745 523 3.85
co Uuo,1) 0.136 047 028 005 046 094 0.76  0.32

cl U(0.1,0.9) 035 062 020 021 0.66 0.88 032 0.39

[0} mradmPa™' U(-15,15) -12.75 -12.2 14 -146 -122 -9.6 -12.36  2.71
c3 rad U0.2,7/2) 0248 0.308 0.068 0.207 0.304 0.422 0.21 0.332
log; ca logg m3Pa~! U(18,22) 18.14 1841 0.32 18.03 1835 19.09 | 20.33 20.15
logiocs  logq m>  U(14,18) 14.07 1428 0.23 14.02 14.22 1471 | 14.33 14.26

are informed by the training data—have a posterior distribution dissimilar from their prior. In our case, all the model
parameters have posterior distributions narrower than their priors, indicating the data is at least somewhat informative
for all parameters.

For the cathode coupling model, we find that V,,,. has converged to a value of approximately 16.5 V, and Pr and P*
have settled at values approximately 100 nTorr. These large pressures all but eliminate any dependence of the cathode
coupling voltage on background pressure per Eq. (I}), meaning the model has effectively learned that there exists a
fixed cathode coupling voltage of 16.5 V which is insensitive to pressure. While we lacked direct measurements of
cathode coupling voltage to train the model against, Snyder et al. did report limited cathode to ground measurements,
approximately 20 V for most power conditions [22]]. The cathode to ground voltage tends to track the cathode coupling
voltage because the beam plasma more readily couples to the facility, such that whatever potential drop exists from
the beam to the cathode drives it farther below ground. This would suggest that while the magnitude of the cathode
coupling voltage we obtained is modestly off, we have correctly captured an insensitivity to pressure. However, the
simulations performed by Lopez Ortega et al. as part of the qualification activities predict that the beam potential
near the thruster rises with respect to the cathode potential as background pressure decreases [2l], which would instead
suggest that the cathode coupling voltage should have a background pressure dependence. However, these potentials
were evaluated less than one channel length downstream of the thruster exit, and so may not be fully representative of
the far-field beam potential.

We find that the parameter values inferred for the thruster model (second column of Tab. [3) are broadly consistent
with our previous results on the SPT-100 and H9 Hall thrusters [[6]]. In particular, we observe that the anomalous mobility
scale @gn0m has a magnitude about 0.1, the transport barrier scale 8, reduces the mobility by approximately 98-99%,
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the transport barrier is manifest approximately coincident with the exit plane of the thruster (Z4n0m = 1), and the width
of the barrier is just under half a channel length (L anom = 0.34). While the shift in the transport barrier found here
(AZanom = 0.13) is comparable to prior study as well, the breadth of the distribution—a 90% credible interval between
0.011 and 0.360—indicate that there remains substantial uncertainty in how sensitive shifts in the acceleration region
are to pressure.

The similarity of the thruster model parameters between different thrusters indicates that some fundamental features
are common enough that one can obtain a decent first approximation of the discharge from a set of common parameter
values. This similarity partially derives from underlying Hall thruster design principles, however. That is, they may not
reflect fundamental physics as much as they reflect that different systems tend to converge in design. For example, the
peak magnetic field strength tends to be approximately coincident with the exit plane of the thruster. This choice is
driven by the ion optics, a balance of divergence in the beam and erosion of the channel [13}28H30]]. Consequently,
resolving high-order phenomena is likely to remain an individualized process.

For the plume model parameters, we find that the model only learns anything conclusive about c,. This scaling
coefficient controls how much the beam is expected to collimate as a result of increases in background pressure, with
the median value of—12.2 mrad mPa~! equivalent to —1.62 mrad pTorr~!. This is a noticeable trend—from vacuum to
30 nTorr the total predicted change in divergence is 2.8 deg. This shift is close in magnitude to that of the SPT-100
(=12.36 mrad mPa~!, but differs from that of the H9 (2.71). The SPT-100 is directly in family to the SPT-140, and both
have unshielded magnetic typologies, as opposed to the magnetically-shielded H9 [30].

The values for cg, c1, and cj, by contrast, vary more widely (standard deviations 60%, 32%, and 22% of their
respective means). At face value, this suggests that the model is quite unsure about the divergence in the beam. However,
we note that these parameters are highly correlated; that is, because we lack current density data to inform the detailed
shape of the beam, there is great uncertainty about whether there is a large main beam and little scattered beam at a
higher base beam width or a small main beam and a large scattered beam at a lower base beam width. The divergence
angle itself, computed via Eq. (9), is more precisely determined than the marginal uncertainties in Tab. 4] imply.

Finally, the parameters c4 and c5 appear to have been inferred precisely but have been limited by the prescription of
the prior (taking values close to the minimum allowed). Since per Eq. (9) the charge exchange current content is not
used to compute thrust, the exp (—rn,o.) factor in Egs. and cancels out, removing any dependence of the
thrust calculation on ¢4 and c¢s (which are used to compute n,,). Similarly, because the plume computation does not
feed back into the cathode coupling or thruster models (see Fig. [I|and Tab. [I)), parameters c4 and c¢s5 have no effect
whatsoever on predicting a quantity of interest we can compare to experimental data as the model was not trained on any
ion current density data. Thus, the values of ¢4 and cs are meaningless and we believe they have been limited to their
minimum value in the prior as a numerical artifact.

B. Comparison to Training Data

In this section, we compare the training data used to calibrate the model to the model’s predictions at the same
operating conditions. Doing so is an assessment of goodness of fit—determining whether the model is sufficiently
complex to reproduce the experimental results. We summarize the error of the posterior predictions relative to the
training data in Tab. [5] Here, we compute the error E as relative L, norms over all the data for the different quantities of
interest, i.e.,

n 2
X (fra(dry:©) = yi,.)
j=1 o ds] d>]
EL,(©) = T , (14a)
\ Zj:l Vig.j
] 2
S (fr. (dr,.5©) = yr..5)
=1 - o) csJ
E7.(0) = nTe 2 ’ o
\ ijl 1.
Ny m; 2
> o (futzon (A, 213©) = Yy i)
Ey,,(0) = ’ Muion M (2 , e
\ Zj:l Zl=1 yuinnajvl

which follows the forms we used in defining the likelihood of Eq. (I3). We compute each of these error metrics for
every sample of the posterior. For each quantity of interest—each of the subequations of Eq. (T4)—we then compute
the mean (ug) and standard deviation (og) over these samples. We tabulate these calculations in Tab. E], where the
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Table 5 Relative L, errors E computed over the posterior predictions for the different quantities of interest in
the data.

Quantity  Thruster v [%] Mean ug [%] Std. Dev. og [%]
T. SPT-140 (this work) 5.0 7.4 1.6
SPT-100 ([i6]) 1.0 3.5 0.5

H9 ([6]) - - -

1 SPT-140 (this work) 5.0 15.0 2.4
SPT-100 ([6]) 10.0 3.9 1.4

HO ([6]) 10.0 4.3 1.1

Uion SPT-140 (this work) 5.0 13.2 2.3
SPT-100 ([6]) 5.0 13.8 1.3

HO ([6]) 5.0 5.3 1.0

horizontal lines separate calculations for the different predicted quantities. For comparison, we also tabulate the same
calculation for the posterior predictions on the SPT-100 and H9 thruster in our previous work with the PEM [6], and we
provide the uncertainty assumed in the data y as a reference.

The mean error varies between the three variables, from 7% for thrust to 15% for discharge current. We find the
error in the ion velocity predictions comparable to our previous results on the SPT-100, but the thrust and discharge
current predictions show increased error against the training dataset. The thrust and discharge current errors are larger
because here we have trained and predicted against multiple different power levels, where previously we had trained at
only a single power. Thrust and discharge current vary more strongly as a function of power than do the ion velocity
profiles. We highlight these trends in more detail in the following sections.

1. Thrust and Discharge Current

We plot the training data for thrust from [22] as black circles in Fig.[3] The bars indicate the experimentally-reported
measurement error (very small on the scale of the figure). The training data represent multiple data series, including two
pressure studies conducted at 1.5 and 4.5 kW discharge (two horizontal lines of circles) and a list of points at different
powers but all at the minimum achievable operating pressure (slanted series of circles toward the left). See also Tab. 2}
These data demonstrate that increased background pressure in the facility causes an increase in thrust, attributed to
ingestion of facility gas as propellant and increased collimation of the ion beam [22} 31} 32].

We contrast the training data with the predictions at the same operating conditions rendered by the trained model,
which we plot as red circles. We evaluated the model for each sample of the parameters drawn during model training (see
Sec.[IL.C). The circle is the median prediction, while the error bars represent the 5% and 95% quantiles—a 90% credible
interval. While the model is able to reproduce approximately one third of the thrust training data within uncertainty, we
observe two key discrepancies. First, the model tends to under-predict thrust at higher power and over-predict thrust at
lower power, and second, the model tends to under-predict the change in thrust observed as a function of background
pressure. The latter trend is a likely consequence of the first—the inference prioritizes trying to match how thrust scales
with power (a strong effect) over capturing how it scales with pressure (a weaker effect).

We find that this trend scaling with power is also evident in the model predictions for discharge current, which
we render against the training data in Fig. f] Note in the figure that the discharge current training data are flat with
background pressure: during experiments the mass flow rate supplied to the thruster was adjusted as a function of
background pressure to hold discharge current constant [22]]. While we find that for the 4.5 kW data (15 A discharge
current in the figure) the model predicts the discharge current within uncertainty, the 1.5 kW data (5 A discharge current)
tend to be over-predicted by a factor 1.5. This discrepancy is driven by an overly large electron current predicted by the
thruster model, which we revisit in Sec.

2. Ion Velocity
We find that the model is generally able to reconstruct the training ion velocity profiles within uncertainty. As a
representative illustration, we compare ion velocity data taken from [2]] to model predictions in Fig.[5} These data are
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Fig. 3 Thrust training data (black circles) reported in [22] and model predictions (red circles) as a function of
facility pressure.
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for discharges at 4.5 kW and with a magnet current of 6 A. We render the training data as individual points and plot
the medians and 90% credible intervals over our predictions as solid lines and shaded regions, respectively. Figure 5a]
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Fig.5 Comparison of measured (points, [2]) and predicted (lines and shaded regions) ion velocity profiles at 4.5
kW and 6 A coil current: (a) single profile at 15 pTorr background pressure; (b) highlighted region of (a) at all
measured background pressures

renders a comparison for 15 pTorr background pressure over the entire domain of the simulations, while Fig. [5b| focuses
in on the acceleration region and renders multiple operating pressures.

In Fig.[5a we observe that the training data are reconstructed within uncertainty, accurately capturing the acceleration
of the ion beam over a narrow region and the more gradual saturation of ion velocity thereafter. The only exception is
the low-velocity data taken between 0.5 and 0.75 channel lengths downstream of the anode (Z = 0), which is commonly
the case for the thruster model [6] and is likely related to the simplified form of the anomalous collision frequency in
Eq. @) (cf. the more complex, individually tuned profiles of [2]). Further, in Fig.[5b] we observe that the data exhibits a
trend where this acceleration region moves farther upstream as the background pressure rises. Consistent with Eq. (6)),
the model retrieves this trend, including that the shift between 9 nTorr and 15 pTorr is smaller in magnitude than the
shift between 15 nTorr and 30 pTorr.

The recession of the acceleration region tends to better collimate the ion beam, decreasing divergence losses
according to Eq. (9) and increasing thrust, which we see reflected in the predictions of Fig.[3] The location of the
transport barrier’s nadir Z,,,, controls where the acceleration is manifest, because the increased resistance to electron
transport is associated with a strong gradient in potential which localizes the acceleration of the ions [3]]. That the model
correctly localizes the transport barrier (as judged by the ion velocity profiles) but incompletely captures the magnitude
of electron current (as judged by the discharge current) suggests that it is the magnitude of the transport barrier which
varies as a function of power.

3. Cathode Coupling and Plume

For completeness’ sake, we render in Fig.[6]a plot of the predicted cathode coupling voltage for each operating
condition modeled as a function of pressure. We observe that indeed the model predicts only minute changes in cathode
coupling voltage with pressure, as we had observed in Sec. We also find that all predictions (even differing powers
and magnetic field configurations) track along a single line. This is because the cathode coupling model, Eq. (IJ), only
includes a pressure dependency, and does not model a dependence on the different flow rates the result from different

powers.

14



20

—_
oo

—
D

—
.

Cathode coupling voltage V.. [V]

—
[\]

10 - - -
0 10 20 30 40

Background pressure Pp [pTorr]

Fig. 6 Predicted cathode coupling voltage for the training data as a function of pressure; consistent with
previous plots, we render the predictions as red circles, and we have no experimental data to compare against.

Similarly, we include a plot illustrating the predicted pressure dependence on the ion current density profiles in
Fig.[7} Here we render three different pressure conditions all at 4.5 kW discharge and 6 A magnet current. Comparable
to our ion velocity profiles, the solid lines denote the medians while the shaded regions are 90% credible intervals.
All of these profiles are resolved at a distance 1 m from the thruster exit. The characteristic broadening of the beam
with decreasing background pressure is evident here by the shift to larger 6 of the main lobe of the distributions. We
also observe that the asymptotic floor of the distribution—which is formed by the hemispherical expansion of charge
exchange ions per Eq. (7d)—Ilessens as the background gas thins and the corresponding neutral density n,, decreases.
Consistent with our observations in Sec. [[IIZA] we see that the credible interval places great uncertainty on the precise
shape of the beam. Considering the 3 pTorr data, we see that the centerline ion current density varies between 20 to
100 Am~2, and the final attenuation of the main and scattered beams to the charge exchange background could vary
anywhere from about 40 to 80 degrees off centerline. However, the curves tend to coalesce approximately 20 degrees off
centerline, reflecting a key constraint on the beam: the integrated current must sum to the beam current per Egs. (7).
Consequently, the additional current content of a fatter tail must be offset by lower current content in the main beam,
and these countervailing forces tend to constrain the intermediate region at the “shoulder” of the beam.

C. Extrapolation to Space

The availability of thruster measurements in space from Psyche is a key potential validator of the model. Consequently,
we predicted performance using the trained model for the space operating conditions of [[11] consistent with the methods
of Sec.[IILB.1} We predicted the model at the four operating conditions listed in Tab. [2] for 750 posterior samples of the
model parameters ©, generating predictions with uncertainty. Crucially, the model was not trained on these data. We
render a response plot of our predictions against the space data in Fig.[8] The error bars along the predicted thrust axis
represent a 90% credible interval, and the dashed line tracks a perfect response (predicted thrust matches measured
thrust).

For the measured thrust, the dominant source of uncertainty was in the reproducibility of the system itself. Psyche
has four different SPT-140 thrusters. During calibration activities on-orbit, accurate measurements of thrust (error
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of order 0.2 mN) were obtained for each thruster individually. However, these measurements revealed variations in
performance between the four thrusters of order 1-2 mN, likely the result of small differences in manufacturing and
fabrication [11]]. Consequently we represent this error in Fig. [§|by plotting the individual measurements for each thruster
as black dots. Overall, we observe fair agreement with the space data, with two of the four conditions matching within
90% uncertainty. This is consistent with our predictions against the training data in Fig. 3] where the model was able to
more accurately reproduce data at lower background pressure.

IV. Discussion
We reexamine our results in this section, discussing their implications for the underlying physics, broader development
efforts, and future work. In Sec.[I[V.A] we consider how additional scaling in our anomalous mobility model might
improve predictive power and reconcile our predictions better with data. In Sec.[ITV.B] we recalibrate the model on
only higher pressure data to simulate challenges that might be encountered for testing high power systems. Finally, in
Sec.|IV.Cl we compute model predictions that invert the dependency between discharge current and mass flow rate to
more closely correspond to how experimental data are collected.

A. Anomalous Mobility Power Scaling

In Sec. we had observed that the model tended to under-predict thrust and discharge current at higher
power and over-predict thrust and discharge current at lower power (see also Figs. [3] and ). On this basis, we
hypothesized that this discrepancy was rooted in how the thruster model treats electron mobility via an anomalous
collision frequency—Eq. (@). The discharge current is the sum of the ion current exiting the thruster and the parasitic
electron current drawn from the cathode to the anode. The maximum possible ion current is limited by the propellant
mass flow rate, thus setting a lower bound on the electron current. For the 1.5 kW tests of Fig. d] (lower horizontal data
series), for example, the anode mass flow rate was approximately 6.5 mg/s, which for the xenon used would correspond
to an ion current of 4.8 A assuming singly charged ions and full ionization of the propellant. Thus, the predicted value
of 7.8 A must be composed of at least 3 A of electron current.

The electron current is chiefly driven by the anomalous electron collisions of Eq. {@)), with the magnitude at the nadir
of the profile (i.e., Banom@anom as indicated in Fig.[2) most primarily serving to throttle this current and determine its
magnitude. We observe that the discrepancy between the data and model predictions for discharge current in Fig. []is
nearly a constant factor across data taken at the same power. Combined with our conclusion that the shift in location
of the acceleration region is well captured by the model (see Sec. [[TL.B.2)), this suggests there exists some functional
dependence of the scale factors for the anomalous mobility model on power that is not presently included in Eq. {@).

Some dependence is captured implicitly through the magnetic field scaling of Eq. (B). The coil current set point of
the SPT-140 for Psyche increases along with power, from 2.75 A of coil current at 1 kW power to 6 A at 4.5 kW [22].
The concomitant increase in magnetic field discourages cross-field electron transport, decreasing discharge current for a
fixed mass flow rate. Fig. [d]indicates, then, that this scaling alone is incomplete, with mobility too low at higher powers
(too little discharge current) and mobility too high at lower powers (too much discharge current).

That this degree of tailoring the anomalous collision frequency is necessary is unsurprising. Such anomalous
collision frequency profiles are often tuned to ion velocity data for individual operating conditions [[1} [33]], rather than
trying to infer some trend. Indeed, that is exactly what [2] did in making their predictions with the high fidelity Hall2De
code, which we highlight against ours and the data in Fig.[9] Here, we have adopted the convention that the data the
model was trained on are rendered in circles, while validation data not used to train the model are rendered as squares.
The tack of tuning the anomalous collision profile to each simulation individually has in part provided the Hall2De
predictions close correspondence to the data.

These individually calibrated profiles demonstrate the trend encoded by Eq. (6) that the acceleration region moves
upstream with increased background pressure. More critically, these tuned profiles also show that the magnitude of the
anomalous collision frequency scales with power as well. We focus our attention on the minimum anomalous collision
frequency in these curves—the equivalent of the nadir of the Gaussian dip in Eq. () and Fig. 2] We plot in Fig.[I0]the
minimum value of anomalous collision frequency in the tuned profiles of [2] for different operating conditions as a
function of coil current at that operating condition. We find there to be only minor differences in magnitude between
different background pressures at the same discharge power and coil current settings, so we consider only the 30 pTorr
results (which is the only background pressure tested at all powers).

Fig. [I0]demonstrates that the magnitude of the anomalous collision frequency is in fact linear with coil current (and
hence magnetic field). We include the corresponding line of best fit—in a least squares sense—in the figure alongside
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the data. This is puzzling, because it suggests that the scaling of our anomalous collision frequency model Eq. (@)
should be able to capture this trend, with the values of @gn0m and Banom calibrating to match the magnitude and then
the wc. scaling capturing the increase with magnetic field. We find resolution in that the best-fit line of Fig.[I(]has a
substantial offset. This offset is equivalent to a constant negative term added to the collision frequency which does not
scale with magnetic field strength, explaining why Eq. (@)—which lacks such a term—was not able to capture it.

We hypothesize that adding a constant term to Eq. (@) that could be calibrated from data would be able to reconcile
the discrepancy in discharge current over the data set seen in Fig.[d] Subtracting a constant from the anomalous collision
frequency would tend to shift all the discharge current predictions down—because electron mobility would be reduced
according to Eq. (B). Subsequently, the value of @4nom OF Bunom could be calibrated to rescale the discharge current to
match. We aim to incorporate this expanded scaling into Hal1Thruster. j1.

B. Calibration Restricted to High Pressures

One of the central reasons why JANUS seeks to quantify and predict facility effects is the development of higher
power, next generation propulsion systems. High power systems (order 100 kW) produce additional strain on vacuum
test facilities. In particular, the higher flow rates of propellant cannot as adequately be evacuated, leading to higher
background pressures (compare with Fig.[3] where the leftmost data illustrate the increase in minimum operating pressure
as power increases). Consequently, a key concern is that the pressure may not be low enough to resolve the pressure
dependence of performance, preventing a confident extrapolation to space. Consider, for example, the nonlinearity in
the thrust measurements of Fig.|3| where data at higher pressure are nearly constant within experimental uncertainty;
if only these data were available, the model might have greater uncertainty in extrapolating to the sharper change in
thrust at lower pressures. To simulate this potential inadequacy of data, we performed two additional calibrations of the
model. We followed the same procedure as in Sec. except that one was calibrated only on experimental data taken
at background pressures above 5 pTorr and the other only on experimental data taken at background pressures above
20 pTorr.

We plot the thrust data and predictions for this exercise in Fig.[T1} As before, black are measurements, red are
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Fig. 11 Model predictions (red) and data from [22] and [11] (black) for thrust made using restricted training
datasets. Circles are the operating conditions the model was trained on, and squares those it was not. (a) Model
calibrated only on data above 5 pTorr background pressure, (b) model calibrated only on data above 20 nTorr
background pressure.

predictions, circles denote the data the model was trained on, and squares denote data the model was not trained on; we
emphasize the pressure cutoffs for training with vertical dashed lines. We also present in Fig. [I2]ion velocity predictions
for the 4.5 kW, 6 A magnet current power operating condition as a function of pressure, as in Fig. [5b] We have limited
the plots to the same domain, but instead of rendering the 8 pTorr condition we present black curves of our predictions
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to space (0O nTorr). The dashed lines here denote operating conditions not in the training dataset.

Contrasting the recalibrated thrust with Fig.[3] we observe that the predictions have not changed much, despite
having trained on substantially fewer data. The primary difference is that the median thrust prediction is modestly
greater (less than 3%) for every operating condition. Importantly, the uncertainty in the predictions is approximately the
same magnitude as for the full training dataset, even when extrapolating down to zero pressure. That the restricted sets
of data are still informative enough to constrain the model and retrieve comparable thrust predictions suggests sufficient
physics (even empirical physics) is incorporated within the PEM to extrapolate key trends in thrust. That is, the model
“knows” that there should be a change in thrust consistent with the background pressure scalings of Eqgs. (T)), (6), and (8)),
so it is only necessary to provide a few data to constrain the scale of the system for these scaling laws. In the context of
testing high power systems, this is a positive result: it suggests that even given only high pressure data—which may be
the only attainable data—a useful prediction is possible. In particular, even the comparatively insensitive change in
thrust with pressure at high pressures is sufficient.

For the ion velocity predictions, we find that both the 5 pTorr and 20 pTorr cutoffs are able to predict the 30 pTorr
ion velocity profile comparably to the full dataset, with similar median predictions and an uncertainty in the position of
the acceleration region of approximately 0.1 channel lengths. However, we see a qualitative difference between the two
different restricted calibrations when extrapolating to lower pressures. For the 5 pTorr cutoff, the extrapolation to space
has comparable uncertainty in the position and shape of the ion velocity profile to the predictions at higher pressures,
consistent with the trends of Fig. [5bj However, the extrapolation to space for the 20 pTorr cutoff has substantially
greater uncertainty in the position of the acceleration region, about 0.25 channel lengths. Greater uncertainty when
extrapolating to lower pressures suggests that resolving the changes in the internal dynamics of the thruster still requires
a comparatively rich data set of several different background pressures. Consequently, predicting the internal discharge
dynamics—which are key to estimating thruster lifetime due to erosion of the channel [2]—likely remains challenging
for high power systems if only high-pressure data are available.

C. Inverting for Mass Flow Rate
At a few points in the text we noted that while experimentally the discharge current is treated as an independent
variable and mass flow rate as a dependent variable, in the model it is the opposite. Truly in experiments mass flow rate
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Fig. 13 Mass flow rate predictions of the inverted model (red) against the original data (black) [2,11,22]; circles
and squares differentiate training and validation data sets, and the errorbars show the change in mass flow rate.

is indeed the variable controlled directly. Power supplies are typically operated in a voltage-controlled mode and a fixed
mass flow fed into the system via a mass flow controller—the discharge current is a natural consequence determined by
the plasma that forms. However, practically operators iteratively adjust the input mass flow rate until they achieve the
discharge current they desire, inverting this dependency.

Inverting the model to reflect this actuality would tend to change our predictions. In particular, the model would
be constrained to match the discharge current, with the corresponding shifts in mass flow rate propagating into other
variables (e.g., thrust). As an illustration of how our predictions would differ with an inverted model, we wrapped
the model in a nonlinear solver, such that mass flow rate was adjusted iteratively until the discharge current matched
the experimental measurements. This is an expensive operation—it requires about ten regular model evaluations to
converge, an order of magnitude increase in cost. Consequently, rather than recalibrating the inverted model, we simple
use the MAP parameters of Tab.[d]to predict at each operating condition in both the training [2| 22]] and validation [11]
data sets. These parameters are not exactly what an inverted and fully recalibrated model would yield, but are a decent
first estimate.

In Fig. [T3] we render the re-tuned mass flow rates. Consistent with previous plots, the black points reflect data—the
mass flow rates measured or assumed when originally calibrating the model—and the red reflect model predictions—the
predicted mass flow rate from the inverted model. The vertical bars indicate the change in mass flow rate of each datum,
and as before the circles denote the training operating conditions while the squares represent the validation operating
conditions. We see that the changes in mass flow rate closely track the difference between the measured and modeled
discharge current in Fig.[d] Essentially, the discrepancies in discharge current have been reconciled entirely by a change
in ion current; less mass flowed in produces fewer ions at an approximately fixed ratio—the mass utilization efficiency.
We find that changes in the mass utilization itself and in the electron current driven by anomalous mobility are more
second-order effects.

The changes in ion current from this inversion have a corresponding effect on thrust, which we show in Fig.[T4] This
plot follows the symbology of Fig.[I3] where the error bars indicate the change in thrust from the predictions of Fig. [3]
resulting from inverting the model to match discharge current. Much as a changes in mass flow rate have produced
proportional changes in ion current, changes in ion current have produced proportional changes in thrust. On the whole,
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Fig. 14 Thrust predictions of the inverted model (red) against the original data (black) [11, 22]; circles and
squares differentiate training and validation data sets, and the error bars show the change in thrust.

this has neither bettered nor worsened the predictions for thrust—some predictions more closely correspond to data,
some are farther off. Essentially, in inverting the model we have traded matching mass flow rate exactly and discharge
current only approximately to matching discharge current exactly and mass flow rate only approximately. That both
parameters are not fully reconciled is a continuing consequence of the anomalous mobility physics we discussed in
Sec.

Nevertheless, inverting the model remains a useful exercise, because it permits us the flexibility to treat data more
closely to how they are generated experimentally. Iteratively resolving the model from the beginning within a nonlinear
solver to enforce the constraint on discharge current, however, has high computational expense—the 1-D thruster model
must be initialized and allowed to converge fully each iteration. A more economical solution is to enforce the constraint
on discharge current within the 1-D solver itself (i.e., by allowing the mass flow rate boundary condition to be adjusted
as the solver iterates in order to match the specified discharge current). This approach has been pursued before in other
codes and is an active area of development for the PEM.

V. Conclusion

A fundamental limitation in electric propulsion is that systems must be qualified in ground based vacuum test
facilities that incompletely simulate the space environment, in particular effects caused by the finite partial pressure
of residual gas. It is necessary to extrapolate these results to on-orbit conditions, and doing so is the central goal of
NASA’s JANUS, which has been working to develop a predictive engineering model for Hall thrusters. In this work, we
successfully deployed the PEM on the SPT-140 system used as part of NASA’s Psyche mission, generating a posterior
distribution over the model parameters, comparing the model predictions to the training dataset, and extrapolating the
model to the space environment.

We implemented a key modification to the PEM compared to previous work by exposing a linear scale factor to the
radial magnetic field profile of the thruster, allowing the model to capture adjustments to the magnetic field that are
made to tailor performance at different operating conditions. The calibrated Hall thruster component model parameters
we showed to be largely the same as previous work (overlapping median parameter values for our prior calibrations on
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the SPT-100 and H9 systems), indicating some of the high-level physics are fundamentally transportable between system.
Comparing the model predictions to the training dataset, we find that error in the thrust and ion velocity predictions—7%
and 13% respectively—are comparable to our prior studies.

We saw a substantial increase in discharge current error compared to prior work, however (15% vs. 4%). The
cause of this discrepancy was that the PEM has an anomalous electron collision frequency model which is not adjusted
at different power levels. We contrasted these results with predictions of NASA JPL’s 2-D Hall2De code, for which
the anomalous collision frequency profile was tuned to individual operating conditions. These hand-tuned profiles
suggested that a comparatively simple addition to the PEM’s anomalous collision frequency model—a constant offset
added to its standard cyclotron scaling—could allow it to represent a broad range of power conditions without needing
to calibrate to individual operating conditions.

Finally, we examined recalibrating the model only on data above 20 pTorr (removing the region most sensitive to
changes in background pressure). We found that in extrapolating to space, the thrust predictions differed from the
fuller training dataset within 3% and had comparable uncertainty. This result suggests that there is sufficient prior
intuition and physics built into the PEM that even comparatively few data collected at high power could be used to make
predictions to the space environment. However, ion velocity profiles were less reliable. The position of the acceleration
region extrapolated to space was uncertain to 0.25 channel lengths, compared to the uncertainty of 0.1 predicted with
the fuller training dataset. The ion velocity profiles are representative of the states internal to the Hall thruster discharge
and are crucial to assessing erosion by the plasma and thus device lifetime. These data may still require more detailed
characterization at lower pressures to be identified.
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