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Magneto-Gas Kinetic
Method for Nonideal
Magnetohydrodynamics
Flows: Verification Protocol
and Plasma Jet Simulations
In this work, the gas-kinetic method (GKM) is enhanced with resistive and Hall magnetohy-
drodynamics (MHD) effects. Known as MGKM (for MHD–GKM), this approach
incorporates additional source terms to the momentum and energy conservation equations
and solves the magnetic field induction equation. We establish a verification protocol
involving numerical solutions to the one-dimensional (1D) shock tube problem and two-
dimensional (2D) channel flows. The contributions of ideal, resistive, and Hall effects are
examined in isolation and in combination against available analytical and computational
results. We also simulate the evolution of a laminar MHD jet subject to an externally
applied magnetic field. This configuration is of much importance in the field of plasma pro-
pulsion. Results support previous theoretical predictions of jet stretching due to magnetic
field influence and azimuthal rotation due to the Hall effect. In summary, MGKM is estab-
lished as a promising tool for investigating complex plasma flow phenomena.
[DOI: 10.1115/1.4030067]

1 Introduction

Plasma flows abound in nature and engineering applications.
The inherent complexity of such flows, involving transport of
mass, momentum, and energy coupled with magnetic and electric
fields, renders analytical approaches intractable when applied to
practical engineering problems. Even, computational approaches
become feasible only when restricting simplifications are invoked.
The objective of the current work is to build toward a robust
computational capability to simulate plasma flows for a variety of
applications including MHD turbulence [1,2], MHD flow control
[3], astrophysical flows [4], and particularly space propulsion
[5–8]. Many current MHD numerical schemes do not simultane-
ously account for rarefaction effects and nonideal MHD behavior,
which are dominant in the expansion of plasma jets into a vac-
uum. To address this need, a computational scheme is proposed
that is capable of capturing the effects of noncontinuum flow as
well as finite plasma conductivity and finite ion Larmor radii. It is
important that these components are developed, verified, and vali-
dated individually before being combined into a single computa-
tional capability. In this paper, we incorporate nonideal MHD
effects to a GKM computational fluid platform leading to the
MGKM approach. In a separate paper, a unified rarefied-
continuum GKM scheme is developed and validated over a wide
range of Knudsen numbers.

Coupling plasma equations with a kinetic scheme offer impor-
tant advantages over a conventional MHD flow solver based on
the Navier–Stokes equations. Especially in highly compressible
flows, a high degree of flow fidelity can be achieved near shocks
as GKM is known to capture Burnett and higher-order effects [9].

Further, GKM obtains fluxes directly from the particle distribution
function precluding the need for a constitutive relationship. Some
thermochemical nonequilibrium effects can also be accommo-
dated in the GKM formulation. While MGKM is motivated by
space propulsion application, it can be of much value in other
areas of study such as astrophysical flows, magnetic plasma
confinement, and magnetic reconnection.

The objective of this work is twofold: (1) formulate MGKM to
include nonideal MHD effects with a clear protocol to verify each
of the individual effects; and (2) perform exploratory simulations
of propulsive jets. For the verification step, we use various
available analytical, computational, and experimental results in
1D and 2D benchmark flows. For the second step, experimental
jet data are not readily available. Therefore, the results are exam-
ined for qualitative trends of the influence of magnetic field and
Hall effects.

2 Method Development

In this section, we provide a brief overview of the basic GKM
and discuss the enhancements to include nonideal MHD effects.

2.1 Overview of GKM. At its core, GKM [10,11] is a finite-
volume numerical scheme for solving the Navier–Stokes equa-
tions. It is a hybridization of fluid and kinetic methods originally
developed for shock capturing in high Mach number flows, but
has since been shown to be effective even at weakly compressible
limits [12]. The “fluid” aspect of the method involves the macro-
scopic properties as cell volume-averaged quantities that are
evolved in time by computing fluxes at cell interfaces. The
“kinetic” feature of the method is related to how these fluxes are
calculated, which is by explicitly taking moments of a particle dis-
tribution function. The full derivation of the numerical scheme for
solving the Navier–Stokes equations by the GKM is given by Xu
[11]. In general, there are three stages to the method, which
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include reconstruction, gas evolution, and projection. The govern-
ing equation for GKM can be written as the following:
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Equation (1) is simply the finite-volume formulation of the gen-
eral conservation laws, where a macroscopic property (i.e., den-
sity q, momentum qU, and energy E) in a control volume (X)
changes in time due to a given flux (F) through the control volume
surface (A). During the reconstruction stage, the values of the cell-
center macroscopic variables are used to create piecewise-
continuous functions of these variables for all of the cells in a
given computational domain. In other words, the cell-centered
values are extrapolated and connected to other cell centers in a
piecewise-continuous manner using limiters. For this step, the
MGKM code utilizes the weighted essentially nonoscillatory lim-
iter, which is commonly used in shock capturing schemes [13].

The gas evolution stage, wherein the intercell fluxes are calcu-
lated, represents the true kinetic aspect of GKM. For simplicity,
only the 1D formulation is presented here, i.e., in the U1-direction;
however in three dimensions, the fluxes are calculated in a similar
manner (see, e.g., Ref. [13]). The flux in density Fq, momentum
FqU1

, and energy FE across the iþ 1=2 cell interface is given by
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where dN ¼ du1dn is the volume element in phase space, U1 is
the macroscopic fluid velocity, and u1 is the microscopic particle
velocity. The variable n represents the molecular internal degrees
of freedom and is specific to a particular gas depending on the
ratio of specific heats. The nonequilibrium particle distribution
function, f, is explicitly evaluated at the cell interface by approxi-
mating the integral solution to the Boltzmann Bhatnagar–
Gross–Krook equation, which at the iþ 1/2 cell interface is given
as the following:

f ðxiþ 1=2ð Þ; t; u1; nÞ ¼
1

s
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þ e�t=sf0ðxiþ 1=2ð Þ � u1tÞ (3)

In Eq. (3), s is the collisional relaxation time, and the only
unknowns are g, which is the equilibrium distribution function,
and f0, which is the initial gas distribution function at the begin-
ning of each time step. It can be shown that both g and f0 can be
uniquely approximated from the macroscopic variables on both
the left and right sides of the cell interface. Once f has been
updated, Eq. (2) is used to calculate the fluxes, and Eq. (1) is used
in the projection stage to update the cell-center macroscopic
values. For the 1D case, the macroscopic variables at time step
nþ 1 are updated as follows:
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2.2 Extension to MHD. The MHD conservation equations
for mass, momentum, and energy are

@q
@t
þr � ðqUÞ ¼ 0 (5)

@ðqUÞ
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¼ J� B (6)
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h i
¼ J � E (7)

In Eqs. (6) and (7), U is the viscous stress tensor, E ¼ qU2=2
þ p=ðc� 1Þ is the hydrodynamic energy, J is the current density,
E is the electric field, and B is the magnetic field. Note that in the
absence of an electromagnetic field, Eqs. (5)–(7) reduce to the
general conservative form of the hydrodynamic equations. To
close these equations, the generalized Ohm’s law, derived from
the electron equation of motion, is used and is given as

E ¼ �U� Bþ 1

nee
J� B� 1

nee
rðnekTeÞ þ gJ (8)

In Eq. (8), U� B is the convective term appearing in the ideal
MHD equations, gJ is the resistive term with g as the plasma
electrical resistivity, 1=ðneeÞJ� B is the Hall term, and
1=ðneeÞrðnekTeÞ is the electron pressure term. Note that here e
represents the elementary unit of charge, n is the number density,
k is the Boltzmann constant, and Te is the electron temperature.
Implicit in the above generalized Ohm’s law is the assumption
that the electron time scales are fast compared to all other proc-
esses and that electron mass is negligible. Equations (5)–(8) can
be rewritten to eliminate the electric field by taking the curl of
Eq. (8) and making use of Faraday and Ampère’s laws. If we also
neglect the contribution due to the electron pressure term, the
result is the following set of nonideal MHD equations that are
solved by the MGKM scheme:
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Equation (12) is known as the magnetic field induction equation
and governs the evolution of the magnetic field. Note that
r ¼ 1=ðl0gÞ is the electrical conductivity and that the addition of
the nonideal MHD terms affects both the magnetic field evolution
equation (12) and the energy conservation equation (11).

It has been demonstrated that the GKM scheme may be
extended for ideal MHD flows, using the same gas-kinetic flux
splitting method as in non-MHD flows [14–16]. However, there is
no straight-forward way to extend this gas-kinetic flux splitting
method to include nonideal MHD effects due to the lack of corre-
sponding microscopic equations [15]. One alternative is to treat
the magnetic terms as source terms in the governing fluid equa-
tions. Fuchs et al. [17] approached solving the ideal MHD equa-
tions in such a way by the use of the “physical” splitting of
the ideal MHD equations into a “hydrodynamic and a magnetic”
part. In their work, this splitting allowed the freedom to compare
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different combinations of finite-volume schemes for the mass,
momentum, and energy equations and the induction equation
independently.

In the present work, we follow the approach of Fuchs et al. [17]
and solve the nonideal MHD equations by separating them into
hydrodynamic and magnetic parts. The hydrodynamic part to be
solved includes the left-hand side of Eqs. (9)–(11). Added to this
are the terms on the right-hand side of Eqs. (9)–(11) as well as Eq.
(12). The terms involving the magnetic field are treated as source
terms and are evaluated at each time step by a central finite-
difference scheme. The source term contributions are then added
to the macroscopic variables during the projection stage of the
previously outlined GKM scheme to update the cell-center values
of q, qU, and E. Additionally, the magnetic field B is evolved in
time in the projection stage by the same Euler time integration
scheme as the other macroscopic variables. Thus in the MGKM
scheme, the governing equation is a slightly modified version of
Eq. (1) to include the addition of source terms and can be written
as follows:
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where SqU, SE, and SB are the magnetic source terms computed by
a central finite-difference scheme. It should be noted that the
finite-difference scheme must be compatible with the finite-
volume grid. The reconstruction and gas evolution stages of the
MGKM scheme are unaltered by the method outlined above.
Once the density, momentum, and energy are updated, the piece-
wise reconstruction and fluxes are calculated in the same manner
as previously outlined for the original GKM scheme.

2.2.1 Discretization and Subcycling. The discretization of the
magnetic source terms on the right-hand side of Eqs. (10) and (11)
is accomplished with a central differencing scheme, e.g.,

@Bxðxi; yj; zkÞ
@x

¼ Bxðxiþ1; yj; zkÞ � Bxðxi�1; yj; zkÞ
2Dx

(14)

The temporal discretization of the induction equation is first-order
explicit Euler, e.g.,

Bnþ1 ¼ Bn þ @B

@t

� �n

Dt (15)

where @B=@t is given by Eq. (12).
It is important to note that the inclusion of the Hall term in the

generalized Ohm’s law introduces the fast-moving Whistler wave
characteristic, which increases the required computational effort
to resolve the fast timescale. The current approach is to isolate
Hall term contributions to a separate subroutine, which is

solved on its own time scale, a process known as subcycling [18].
Figure 1 gives a graphical representation of this subcycling
scheme. Note that the contributions external to the Hall subroutine
are assumed to be time-invariant on the Whistler wave timescale.
Such time-splitting is valid due to the large difference between
the timescales of the Hall effect and flow physics.

The number of Hall subiterations per fluid iteration is deter-
mined by comparing the Whistler wave characteristic with the
other characteristics of the flow. Negligible differences in results
and significant decrease in overall computational effort are
obtained when compared to results of very small time step simula-
tions without subcycling. The increased computational efficiency
is demonstrated in Figs. 2 and 3. The time per iteration is the time
taken for the global time step, while the “equivalent time” is the
time taken per subcycling iteration. This “equivalent time step” is
introduced for subcycling calculations and is found by dividing
the global time step by the number of subiterations. While it is
still computationally more expensive to include the Hall term than
not, subcycling offers significant gains for cases where Hall
effects are of interest. Figure 3 shows the speedup achieved when
comparing computations without subcycling to computations with
subcycling in which the time step and equivalent time step for the
respective computations are equal. Speedup is defined here as the
total simulation time without subcycling divided by the total
simulation time with subcycling.

2.2.2 Possible Errors in r � B. Currently, MGKM does not
employ an explicit scheme to impose the constraint r � B ¼ 0. It
can be shown that the electromagnetic forces in the momentum

Fig. 1 Diagram of Hall term subcycling implementation

Fig. 2 Time per iteration and equivalent time per iteration with
subcycling
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evolution equation (the right-hand side of Eq. (10)) have a non-
zero component parallel to B [19]

Fmag � B ¼ ðB � BÞr � B (16)

Thus, nonzero r � B will result in the introduction of spurious
forces, which may produce unphysical results.

However, T�oth [20] has shown that the divergence-free condi-
tion can be accomplished indirectly by a suitable choice of numer-
ical discretization. Specifically, given a divergence-free magnetic
field, the central difference scheme implemented in MGKM con-
serves r � B ¼ 0 up to truncation error. Any additional error in
enforcing this constraint is due to an imperfect initial or boundary
value discretization. It is shown in Sec. 3.4 that this error can be
controlled to the desired level by suitable grid and time step
refinement. Thus, with sufficiently small grid sizes and time steps
in MGKM, the error inr � B should not lead to unphysical results.
A detailed assessment of r � B errors in the present work is given
in Sec. 3.4, and further development of error mitigation schemes
in future implementations of the MGKM are discussed in Sec. 4.1.

3 Results and Validation

The MGKM solver is now examined for incompressible and
compressible flows in ideal, resistive, and Hall MHD regimes.
First, we propose a verification and validation sequence of stud-
ies, shown in Table 1. Then, following this sequence, compari-
son with analytical solutions, theoretical predictions, and
available experimental data are made to assess the MGKM
scheme.

3.1 Incompressible MHD Flows–Channel Flows. MHD
channel flow problems are useful benchmarks due to the existence
of analytical solutions for ideal and resistive MHD flows [21].
Channel flows remain a topic of interest because of their relevance
to topics such as power generation, flow acceleration, pumps, and
aerodynamic heating [22–27]. Within the more complex Hall
MHD regime, only semi-analytical and computational solutions
exist [21,28]. In this section, MGKM results are compared with
these available solutions. The nondimensional parameters used for
comparison are Mach number (M), Reynolds number (Re), Hart-
mann number (Ha), and magnetic Reynolds number ðRe;mÞ

M ¼ Ucffiffiffiffiffiffiffiffiffiffiffiffi
ðcRTÞ

p Re ¼
qUcL

l

Ha ¼ B0L

ffiffiffi
r
l

r
Re;m ¼ l0rUcL

Here, Uc is the characteristic flow velocity, L is the characteristic
length, B0 is the characteristic magnetic field strength, and r is the
electrical conductivity. In particular, Ha is a ratio of the magnetic
to viscous forces acting on the fluid, and Re;m is a ratio comparing
the effect of magnetic advection to that of magnetic diffusion.

In Couette flow (case 1.1), a fluid medium between two parallel
walls is driven by one of the walls moving at a constant velocity.
In the case of MHD Couette flow, the fluid is electrically conduct-
ing and a uniform magnetic field is applied perpendicular ðẑÞ to
the walls. Once the flow reaches a steady state, there exists an ana-
lytical solution for both the velocity and induced magnetic field as
given by Sutton and Sherman [21]. Here, the characteristic length
is the channel height (L¼ h), and the characteristic velocity is the
speed of the driving wall (Uc¼Uw). Figure 4 shows the final
steady state result for a flow with M¼ 0.1, Re¼ 40, Ha¼ 20, and
Re;m ¼ 10. The channel is assumed to be infinite in the spanwise
ðŷÞ and streamwise ðx̂Þ directions, and periodic boundary

Fig. 3 Speedup with subcycling

Table 1 Validation sequence and protocol

Type of flow Case Motivation

Incompressible channel flows 1.1—MHD Couette flow � Existence of analytical solutions
1.2—Hartmann flow � Demonstrate appropriate solution of 1D/2D resistive/Hall MHD problems
1.3—Hall Hartmann flow � Demonstrate capability for incompressible MHD flows

Compressible shock tube 2.1—Ideal MHD shock tube � Demonstrate capability to solve compressible ideal/Hall MHD flows
2.2—Hall MHD shock tube

Incompressible MHD jets 3.1—MHD jet stretching � Demonstrate capability with complex 3D MHD flows of interest
3.2—Hall MHD jet rotation

Fig. 4 Computations of MHD Couette flow. Profiles shown are
the normalized velocity, U=Uwall (left), and induced magnetic
field, Bx=Bz (right), versus normalized channel height, Z/h.
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conditions are used. The primary effect on the flow is induced by
the magnetic field through the J� B term, which tends to force
out the lower portion of the profile, filling the entire channel. In
these figures, MGKM is shown to agree reasonably well with ana-
lytical solutions for both the steady state velocity and induced
magnetic field profiles. Computations performed with other
parameter values show similar agreement.

Hartmann flow (case 1.2) is the MHD analog to Poiseuille flow,
in which a fluid is driven between stationary parallel walls by a
constant streamwise pressure gradient. In Hartmann flow, the fluid
is electrically conducting and a uniform magnetic field is applied
perpendicular ðẑÞ to the walls. Hartmann flows within the resistive
MHD regime have an analytical solution [21], while Hall
MHD Hartmann flows have only a semi-analytical solution [28].
Here, the characteristic length is half the channel height
ðL ¼ h=2Þ and the characteristic velocity is the average flow
velocity ðUc ¼ UmassÞ, where Umass ¼ 1=hð Þ

Ð h
0

UðzÞdz. The chan-
nel is assumed to be infinite in the spanwise (ŷ) direction and
periodic boundary conditions are employed. An inflow velocity
profile is applied at one end of the channel. The computational do-
main is finite in the streamwise direction (parallel to the pressure
gradient, ðx̂Þ), but is long enough such that the flow becomes fully
developed. Figure 5 shows the final steady state solution for a
case with M¼ 0.004, Re ¼ 416:67, Ha¼ 25, and Re;m ¼ 0:5. The
presence of the magnetic field results in a force which reduces the
velocity in the center of the channel while increasing the velocity

gradient near the walls. As shown, the numerical results from
MGKM show acceptable agreement with the analytical solutions
for both the velocity and induced magnetic field profiles. Case 1.3
studies the effect of the Hall term on the physics of Hartmann
flow. The Hall parameter is given by a ¼ xc;e=�ei, where xc;e and
�ei are the electron cyclotron frequency and electron–ion collision
frequency, respectively. Figure 6 shows that the MGKM solver
results show reasonable agreement with the semi-analytical results
of Sato [28]. There are two notable features which appear due to
the Hall term. First, the main flow profile is forced back toward
the nonmagnetized parabolic profile. Second, the Hall term intro-
duces a cross-flow which is transverse to the main flow.

3.2 Compressible MHD Flows–MHD Shock Tube. A
shock tube is a device used to generate nearly 1D compressible
flow through a pipe. If the fluid is conducting and a magnetic
field is applied across the pipe, the resulting flow can be
approximated using the compressible MHD equations. This is
known as the MHD shock tube problem. This section presents
results validating MGKM in the compressible MHD regime by
applying the numerical scheme to solve the MHD shock tube
problem. The MHD shock tube is setup by initially separating a
high density, high pressure region from a low pressure, low den-
sity region. A current layer is applied at the diaphragm via a re-
versal of the initial magnetic field perpendicular to the tube
axis. Figure 7 shows a schematic of the initial setup for the
MHD shock tube problem.

3.2.1 Ideal MHD Shock Tube. First, numerical results for the
solution of the ideal MHD shock tube problem (case 2.1) are pre-
sented. Figure 8 shows MGKM results for the density along the
length of the shock tube a short time after the diaphragm has
burst, along with a comparison of the results of Brio and Wu [29].
The reasonable agreement indicates that MGKM is able to capture
the main features of the flow, which are the fast rarefaction and
slow compound waves, the contact discontinuity, and the slow
shock. Figure 9 shows the variation along the length of the tube of
the velocities parallel ðx̂Þ and transverse ðŷÞ to the tube length (U
and V), the transverse magnetic field (By), and the pressure (P) at

Fig. 5 Computations of Hartmann flow. Profiles shown are the
normalized velocity, U=Uwall (left), and induced magnetic field,
Bx=Bz (right), versus the normalized channel height, 2Z=h.

Fig. 6 Computations of Hall Hartmann flow. Comparison is made with the semi-analytical
results of Sato [28]. Profiles shown are the normalized streamwise velocity, U=Umass (left), and
spanwise velocity, V=Vmass (right), versus the normalized channel height, 2Z=h, for a 5 5.

Fig. 7 Setup of the 1D MHD shock tube
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the same time instant as in Fig. 8. The results exhibit acceptable
agreement. It is speculated that small disparities are possibly due
to fundamental differences between the ideal (Brio and Wu) and
nonideal (MGKM) schemes. The use of a first-order Euler scheme
(Eq. (15)) for the discretization of Eq. (12) may also contribute to
the discrepancies, which motivates the further development of a
higher-order scheme as discussed in Sec. 4.1.

3.2.2 MHD Shock Tube–Hall Effects. Next, results for the
Hall MHD shock tube (case 2.2) are presented. The initial condi-
tions are the same as the previous ideal MHD case, but in this
case the molar mass of the gas has been artificially raised to
increase the ratio xf=xci. Here, xf and xci are the characteristic
fluid frequency ðxf � U=LÞ and the ion cyclotron frequency,
respectively. This ratio characterizes the ratio between the Hall
term and convective term in the generalized Ohm’s law (8) [30].

Figure 10 compares MGKM to numerical results of Srinivasan
[31]. The same general flow features appear, but disparities are
present which may be due to differences between the numerical
schemes. Results are further compared with those of Shumlak and
Loverich [32] in Fig. 11. The simulations of Shumlak are per-
formed with an ideal two-fluid plasma model instead of a single
fluid MHD plasma model. However, MGKM shows the same gen-
eral structure of the shock and exhibits qualitative agreement.
Note that while the results of Srinivasan [31] and Shumlak and
Loverich [32] are being compared to MGKM, there are no stand-
ard Hall MHD shock results like those of Brio and Wu for the
ideal MHD shock tube.

As seen in Figs. 10 and 11, the addition of Hall physics compli-
cates the structure of MHD shocks substantially. As the Larmor
radius, rL, increases above zero (the ideal MHD limit), the shock
structure begins to develop many sharp peaks and oscillatory

Fig. 9 MGKM computations for an MHD shock tube. Viscous/resistive results shown are the
velocities parallel ðx̂Þ and transverse ðŷÞ to the tube length (U and V), as well as the transverse
magnetic field (By), and the pressure (P) at the same time instant as in Fig. 8. Comparison is
made with the ideal MHD results of Brio and Wu [29].

Fig. 10 Plasma density for the Hall MHD shock tube as com-
puted by MGKM. Comparison is shown with the ideal Hall MHD
results of Srinivasan [31] for nondimensional rL=L ¼ 6:7310�4.

Fig. 8 Plasma density for an MHD shock tube as computed by
MGKM. Comparison is made with the ideal MHD results of Brio
and Wu [29].
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regions. Furthermore, for large rL, such as rL=L ¼ 3� 10�3, the
shock structure deteriorates significantly. Further study is needed
to fully understand this behavior. In addition, as the Larmor radius
is increased, the Hall physics introduces the Whistler wave char-
acteristic, which significantly constrains the choice of grid size
and time step [30].

3.3 Incompressible MHD Flows–MHD Jets. In this section,
novel results are presented for the simulation of laminar round
MHD jets under the influence of an externally applied magnetic
field. The jets presented are flowing into a domain of the same
density, temperature, and static pressure. The computational

domain for the jet cases is shown in Fig. 12. All of the boundaries
except the left face (Y–Z plane) have Neumann boundary condi-
tions with zero gradients specified for all of the macroscopic flow
quantities. The left face is specified as a thermally insulated wall
except for the circular inlet which has a specified “plug” velocity
profile. Two externally applied magnetic field configurations were
studied: (1) a uniform applied magnetic field perpendicular to the
flow and (2) a magnetic field generated by a current loop [30,33]
as shown by the schematic in Fig. 13.

Before applying an external magnetic field to the flow, an axi-
symmetric laminar round jet of a conducting fluid was computed
using MGKM. It was shown that without an externally applied
magnetic field, the jet reaches a steady state that agrees well with
the Schlichting self-similar solution for a laminar axisymmetric
jet far downstream of the jet inlet [33]. Using this fully
developed axisymmetric jet as the initial condition, numerical
results with an externally applied magnetic field are obtained
using MGKM. Qualitative comparisons are made between the
resulting flow and the theoretical predictions of Davidson [34]
and Gerwin et al. [35].

3.3.1 Laminar Jet Stretching. The relevant nondimensional
flow parameters for the case of a uniform applied magnetic field
to the fully developed axisymmetric laminar jet (case 3.1) are
shown in row 1 of Table 2; they are similar to that of a liquid
metal jet under the influence of a uniform magnetic field [33]. For
this case, the induced magnetic field boundary condition is set to
zero on the inlet plane, which is reasonable due to the small Re;m.
The computational domain is a 400� 128� 128 Cartesian grid
with grid spacing in all directions equal to D=L ¼ 0:0025, where
D is the cell size and L is the characteristic domain length.

Davidson notes several features of the flow for a liquid metal
jet evolving under the influence of a uniform applied magnetic
field. First, the jet cross section stretches along the applied mag-
netic field lines due to momentum conservation and minimization
of Joule dissipation that occurs by resistive heating [34]. Second,
an area of reversed flow occurs next to the jet in the plane perpen-
dicular to the applied magnetic field. This reversed flow is induced
by Lorentz forces in the direction opposite of the incoming flow,
which additionally leads to outflow near the plane of the jet inlet.
Figure 14 shows a schematic of jet stretching along the direction

Fig. 12 Schematic of the computational domain for jet
simulations

Fig. 13 Schematic of the applied magnetic field produced by a
current loop

Fig. 14 Schematic of jet stretching from Ref. [34] along Bz,
with flow reversal in the X–Y plane and outflow near the inlet

Fig. 11 Plasma density for the Hall MHD shock tube as com-
puted by MGKM. Comparison is shown with the ideal Hall MHD
results of Shumlak [32] for nondimensional rL=L ¼ 3310�3.

Table 2 Nondimensional flow parameters for MHD jet cases

B Rem Ha M Re a

Uniform 0.103 5.13 0.129 600 —
Diverging 0.103 110 0.217 600 2.72
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of the applied magnetic field along with flow reversal in the X–Y
midplane and outflow near the inlet. Figure 15 shows a schematic
of the theoretical induced current field lines, i.e., streamlines of J,
near the inlet of the jet. Figures 16–19 show MGKM simulation
results for the MHD jet with a uniform magnetic field applied.
Figure 16 demonstrates the jet stretching behavior at two different
streamwise locations, where the position of the slices is normal-
ized by the jet inlet diameter, D. Figure 17 shows where flow re-
versal is observed along the exterior of the jet in the plane
perpendicular to the applied magnetic field. Finally, Fig. 18 shows
the resulting outflow near the jet inlet to the domain, and Fig. 19
shows the induced currents in the jet. Qualitatively, these numeri-
cal results produced by MGKM seem to agree very well with
Davidson’s theoretical observations of resistive MHD jet behavior
in the presence of a uniform applied magnetic field.

3.3.2 Plasma Jet Rotation Due to Hall Effect. The final
numerical test case explores the effect of the Hall term on the
behavior of MHD jets (case 3.2) [30]. In this case, the Hall term is
activated in the MGKM scheme, and a strong diverging axisym-
metric magnetic field is applied to the fully developed axisymmet-
ric jet that was used in the previous test case. This case is of
interest due to the important role that Hall term effects may play
in magnetic nozzle physics [30]. The fluid in this simulation is
similar to a Xenon plasma used in electric propulsion devices.
The relevant nondimensional flow parameters for this test case are
given in row 2 of Table 2. The computational domain is a

Fig. 15 Schematic of current streamlines near jet inlet from
Ref. [34]

Fig. 16 Contours of the normalized streamwise velocity, U=Uin, in the Y–Z plane at X=D 5 3:09
(left column) and X=D 5 9:34 (right column) as computed by MGKM. The top row shows the
jet without an external magnetic field applied, and the bottom row shows jet stretching in the
direction parallel to the applied magnetic field, i.e., Bz.

Fig. 17 Contours of the normalized streamwise velocity,
U=Uin, at several slices in the total computational domain as
computed by MGKM. Flow reversal is observed in X–Y plane.
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200� 64� 64 Cartesian grid with grid spacing in all directions
equal to D=L ¼ 0:005. Gerwin predicts that the primary effect of
the Hall term on a magnetic nozzle plasma jet would be to induce
an azimuthal velocity [35]. The physics of the Hall term involves
the demagnetization of ions, which then may travel across field
lines. This can result in axial currents, producing azimuthal forces,
inducing rotation in the jet. Figure 20 shows a schematic of this
phenomenon. Figure 21 shows simulation results indicating axial
currents and azimuthal jet velocities which develop due to Hall
effects. Note that the azimuthal velocity primarily appears in
the region of axial current. These axial currents result in the J� B
force which rotates the jet. Radial currents may also develop and
contribute to the rotation of the jet through interaction with the
axial magnetic field.

3.4 Observed Error in $ � B. This section presents a discus-
sion of the observed errors in r � B by the MGKM solver. In our
analysis of the effect of existing r � B errors, we have followed
the general approach of T�oth [20], which is to compare the
evolution of the primitive variables with established solutions.
Sufficient agreement demonstrates that errors introduced by
nonzero r � B are small enough to preclude unphysical results.
Table 3 presents the volume-averaged values of jr � Bj L=B0ð Þ,
which is the absolute value of r � B normalized by the character-
istic magnetic field strength (B0) and characteristic length (L) for
a given problem.

For both the MHD Couette flow (case 1.1) and MHD shock
tube (cases 2.1 and 2.2), the value of r � B was zero to machine
precision. For all other cases, the value of volume-averaged
jr � BjðL=B0Þ was small, but nonzero. Notably, we observe that
the error in r � B is comparable ð�10�2Þ among Hartmann flow
and plasma jet cases. The close agreement of the MGKM results
for Hartmann flow with its analytical solution suggests that the
effect of nonzero r � B in cases 3.1 and 3.2 is minimal and should
not produce unphysical results.

Additionally, we have investigated the behavior of
jr � BjðL=B0Þ with respect to refinement of temporal and
spatial discretization. In Fig. 22, the grid size is held constant
ðDx=L ¼ 5� 10�3Þ and the time step is varied while the simula-
tions are run out to the same total time. Similarly, in Fig. 23, the
time step is held constant as the grid size is reduced and each sim-
ulation is run out to the same total time. It is important to note
that the total time used in the set of grid size variation test cases is
not the same as the total time used in the set of time step variation
test cases. This was due to the increasing computational cost asso-
ciated with refining the grid. The results indicate that refinement
in either temporal resolution or spatial resolution of the simulation
reduces the volume average of jr � BjðL=B0Þ with respect to an
equivalent total simulation time. This suggests that the implemen-
tation of the MHD equations in MGKM is consistent and that any
errors in r � B that accumulate are associated with either trunca-
tion error or an imperfect initial/boundary value discretization.
Thus, with sufficiently small grid sizes and time steps in MGKM,
the error inr � B should not lead to unphysical results.

4 Conclusions

In this paper, a novel MGKM solver is developed for nonideal
MHD flows. Resistive and Hall MHD effects are incorporated
into GKM, and the MGKM solver is validated systematically
against 1D and 2D ideal and nonideal MHD flows. Results agree
with analytical and semi-analytical solutions for MHD Couette
and Hartmann channel flows, as well as previous computational
simulations of ideal and nonideal MHD shock tubes. This serves
to verify the accuracy and robustness of the numerical scheme for
solving complex plasma flows. Finally, novel numerical simula-
tions of laminar round jets subject to an externally applied

Fig. 18 Contours of normalized streamwise velocity, U=Uin, as
computed by MGKM. Also shown are streamlines and vectors
(not to scale) of the U–V components of velocity.

Fig. 19 Contours of normalized streamwise velocity, U=Uin, as
computed by MGKM. Also shown are streamlines and vectors
(not to scale) of the Jy–Jz components of current density.

Fig. 20 Schematic of the axial currents, Jaxial, due to Hall
physics that produce azimuthal forces, FJ3B , on the plasma jet
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magnetic field are presented that incorporate both resistive and
Hall MHD physics. These numerical results agree qualitatively
with theoretical predictions of the resulting features of the MHD
jet. Overall, MGKM exhibits encouraging potential for further de-
velopment and application to practical plasma flows of interest.

4.1 Future Work. While MGKM has demonstrated capabil-
ity with continuum ideal and nonideal MHD flows, it currently
has some limitations. As discussed in Secs. 2.2.2 and 3.4, MGKM
is susceptible to initial and boundary errors in r � B. Although
this can be somewhat mitigated by a careful choice of initial and
boundary conditions, a more robust solver will require some addi-
tional method to eliminate inaccuracy arising from these errors.
Future development of MGKM will incorporate a scheme for
active mitigation of nonzero r � B, such as those described by
T�oth [20].

Additionally, the current implementation of MGKM requires
further augmentation for solving high Knudsen number flows.
Future implementations of MGKM aim to incorporate a unified
rarefied-continuum GKM scheme being developed concurrently.
Further, the finite-difference implementation and first-order
temporal discretization of the magnetic field effects render simu-
lations susceptible to oscillations when the Larmor radius is large.
Thus, the finite-difference scheme must be improved to accommo-
date the physics of large Larmor radius cases. In particular, a
higher-order scheme for discretization of Eq. (12) is currently
being developed. Finally, the addition of complex transport prop-
erties, such as tensorial resistivity, would be especially valuable
given the complex anisotropic behavior of magnetized plasmas.
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