Thruster

9-kW Magnetically-Shielded Hall Thruster (H9)


The H9 in operation.

Developed
2015-2017
Approx. Specs.
Ø30 cm x 15 cm, 20 kg
Tested at PEPL
2016 – ongoing
Developer
PEPL, AFRL, NASA JPL

The H9 is a single channel magnetically shielded Hall thruster jointly developed by NASA’s Jet Propulsion Laboratory, the University of Michigan and the Air Force Research Laboratory. The thruster has a nominal power level of 9 kW and a similar design to other state-of-the art Hall thrusters. The thruster is designed to operate between 300 and 800 V with a center mounted lanthanum hexaboride (LaB6) hollow cathode. It is notable for its high efficiency (63% at 800 V) and specific impulse (up to 2900 seconds).

This thruster takes heavy design heritage from the H6, a 6-kW laboratory thruster. Additionally, the thruster incorporates magnetic shielding technology which is a magnetic field design that shields the thruster walls from the plasma to increase the lifetime up to three orders of magnitude. This technology has enabled the application of Hall thruster on deep space missions. However, it is a relatively nascent technology, meaning that continued studies are needed to fully understand the implications of the technology on thruster operation (such as increased pole erosion). In addition to providing a platform to study magnetic shielding, the H9 Hall thruster provides a platform to continue research on the open questions around Hall thrusters on state of the art technology. Namely, these include electron transport and facility effects.

Work by Cusson has throttled the thruster through its full operating table and established baseline performance measurements, including thrust, oscillation characteristics, and plume symmetry.

Since its first firing in 2016, the H9 has been used in various experimental campaigns, including those by Brown and Durot, to better understand electron transport in the channel of a Hall thruster. On-going work with the thruster include experimental campaigns to characterize the acceleration region (using laser induced fluorescence) and facility effects as well as two-dimensional modeling of the plasma properties.

Selected Publications


  • Performance of the H9 Magnetically Shielded Hall Thrusters

    Cusson, S. E., Hofer, R. R., Lobbia, R. B., Jorns, B. A., and Gallimore, A. D.

    35th International Electric Propulsion Conference, Atlanta,GA, IEPC-2017-239, 2017

  • The H9 Magnetically Shielded Hall Thruster

    Hofer, R.R., Cusson, S.E., Lobbia, R.B., and Gallimore, A.D.

    35th International Electric Propulsion Conference, Atlanta,GA, IEPC-2017-232, 2017

  • Dispersion relation measurements of plasma modes in the near-field plume of a 9-kW magnetically shielded thruster

    Brown, Z. A., and Jorns, B. A.

    35th International Electric Propulsion Conference, Atlanta, GA, IEPC-2017-387, 2017

  • Experimental Evidence for Ion Acoustic Solitons in the Plume of a Hollow Cathode

    Georgin, M.P., Jorns, B.A., and Gallimore, A.D.

    2nd Space Propulsion Conference, Sevilla, Spain, SPC18-403, May 14-18, 2018

  • Ion Acoustic Turbulence in the Hollow Cathode Plume of a Hall Effect Thruster

    Cusson, S.E., Brown., Z, Dale, E.T., Jorns, B.A., and Gallimore, A.D.

    54th AIAA/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, AIAA-2018-4509, July 9-11, 2018

  • Non-Invasive Characterization of the Ionization Region of a Hall Effect Thruster

    Dale, E.T. and Jorns, B.A.

    54th AIAA/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, AIAA-2018-4508, July 9-11, 2018

  • Spatial Evolution of Plasma Waves in the Near-field of a Magnetically Shielded Hall Thruster

    Brown, Z. and Jorns, B.A.

    54th AIAA/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, AIAA-2018-4423, July 9-11, 2018

  • Impact of Neutral Density on the Magnetic Shielding of Hall Thrusters

    Cusson, S.E., Jorns, B.A., and Gallimore, A.D.

    36th International Electric Propulsion Conference, Vienna, Austria, IEPC-2019-276, 2019

  • Two-zone Hall thruster breathing mode mechanism, Part II: Experiment

    Dale, E.T., and Jorns, B.A.

    36th International Electric Propulsion Conference, Vienna, Austria, IEPC-2019-352, 2019

  • Experimental Correlation between Anomalous Electron Collision Frequency and Plasma Turbulence in a Hall Effect Thruster

    Brown, Z.A, Dale, E., and Jorns, B.A.

    36th International Electric Propulsion Conference, Vienna, Austria, IEPC-2019-843, 2019

  • Non-invasive in situ measurement of the near-wall ion kinetic energy in a magnetically shielded Hall thruster

    Cusson, Sarah E.

    Plasma Sources Science and Technology, Vol. 28 No. 10, 21 October 2019

  • Performance of a 9-kW Magnetically-Shielded Hall Thruster with Krypton

    Leanne L. Su , Alexander R. Vazsonyi and Benjamin Jorns

    VIRTUAL, https://arc.aiaa.org/doi/abs/10.2514/6.2020-3617, August 17, 2020

  • Performance Comparison of a 9-kW Magnetically-Shielded Hall Thruster Operating on Xenon and Krypton

    Leanne L. Su and Benjamin A. Jorns

    Journal of Applied Physics, https://pepl.engin.umich.edu/pdf/2021_JoAP_Su.pdf, October 7, 2021

  • Operation and Performance of a Magnetically Shielded Hall thruster at Ultrahigh Current Densities on Xenon and Krypton

    Leanne L. Su, Tate M. Gill, Parker J. Roberts, William J. Hurley, Thomas A. Marks, Christopher L. Sercel, Madison G. Allen, Collin B. Whittacker, Mathew P. Byrne, Zachariah B. Brown, Eric Viges, and Benjamin A. Jorns

    SciTech 2023, https://pepl.engin.umich.edu/pdf/SciTech_2023_UM.pdf, January 2023

  • Design of an Air-Core Magnet Circuit for a Hall Thruster

    William J. Hurley, Thomas A. Marks, and Benjamin A. Jorns

    SciTech 2023, https://pepl.engin.umich.edu/pdf/SciTech_2023_Hurley.pdf, January 2023

  • Growth and Saturation of the Electron Drift Instability in a Crossed Field Plasma

    Zachariah A. Brown and Benjamin A. Jorns

    Physical Review Letters, https://pepl.engin.umich.edu/pdf/PRL_2023_Brown.pdf, March 2023

  • Challenges with the self-consistent implementation of closure models for anomalous electron transport in fluid simulations of Hall thrusters

    Marks, Thomas A. Jorns, Benjamin A

    Plasma Sources Science and Technology, https://pepl.engin.umich.edu/pdf/Marks_PSST_2023.pdf, April 2023

  • HallThruster.jl: a Julia package for 1D Hall thruster discharge simulation

    Marks, Thomas A. Schedler, P. Jorns, Benjamin A

    Journal of Open Source Software, https://pepl.engin.umich.edu/pdf/Marks_JOSS_2023.pdf, July 2023

  • High-Current Density Performance of a Magnetically Shielded Hall Thruster

    Su, L.L., Roberts, P.J., Gill, T.M., Hurley, W.J., Marks, T.A., Sercel, C.L., Allen, M.G., Whittaker, C.B., Viges, E., and Jorns, B.A.

    Journal of Propulsion and Power, https://pepl.engin.umich.edu/pdf/Su_JPP_2024.pdf, May 2024

  • Trends in Mass Utilization of a Magnetically Shielded Hall Thruster Operating on Xenon and Krypton

    Su, L.L., Marks, T.A., and Jorns, B.A.

    Plasma Sources Sciences and Technology, https://pepl.engin.umich.edu/pdf/2024_Su_PSST.pdf, June 2024

  • Performance of a Magnetically Shielded Hall Thruster Operating on Krypton at High Powers

    Su, Leanne

    University of Michigan, Ph.D. Dissertation, 2023

  • Small-scale Instability Driven Electron Transport in Hall Thrusters

    Brown, Zachariah

    University of Michigan, Ph.D. Dissertation, 2024