Project

Rotating Magnetic Field Thrusters


PEPL RMFv2 thruster installed in the Large Vacuum Test Facility

project personnel
Joshua Woods, Christopher Sercel, Tate Gill

principal investigator
Benjamin Jorns

previous personnel
David Kirtley

associated thrusters
XOCOT, PEPL RMFv2

Rotating magnetic field (RMF) thrusters originate from the nuclear energy community where similar devices (field-reversed configuration, or FRC) are used to magnetically isolate and confine plasma for fusion purposes. In an FRC device, an azimuthal current is induced in a plasma (by rotating magnetic fields, for instance) in the presence of a steady axial magnetic field. The current reverses the axial field (hence the name “field-reversed”) which creates a well confined magnetically-isolated, high-density plasma body called a “plasmoid”. It is only in the last decade that this technology has been investigated for thruster applications. Thrust can be achieved via the repeated, rapid formation and ejection of plasmoids. In addition to achieving the high specific impulses characteristic of electric propulsion devices, RMF thrusters benefit from the plasma being magnetically isolated from the thruster hardware, thus limiting erosion. They can therefore also be used with a variety of propellants such as xenon, water, and carbon dioxide. Propellant flexibility is an attractive quality for missions employing in situ resource utilization (ISRU) technologies. There are several questions pertaining to the fundamental physics of rotating magnetic field thrusters. Currently at PEPL, there is an ongoing investigation of the scaling laws that govern thruster operation as well as an experimental campaign to characterize the primary channels for energy loss. Scaling laws provide valuable insight into how the thruster operates including how impulse and efficiency scale with input power and once the efficiency losses are understood these insights can be leveraged for improved thruster designs.

Selected Publications


  • Circuit Modeling of Rotating Magnetic Field Field-reversed Configuration Thrusters

    Woods, J. M., Jorns, B. A., and Gallimore, A.D.

    54th AIAA/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, AIAA-2018-4911, July 9-11, 2018

  • Design of a 30-kW RMF-FRC Thruster

    Sercel, C.L., Woods, J.M., Gill, T.M., Viges, E., Van Zanten, R.G., and Jorns, B.A.

    36th International Electric Propulsion Conference, Vienna, Austria, poster, 2019

  • Data-Driven Approach to Modeling and Development of a 30 kW Field-reversed Configuration Thruster

    Woods, J.M., Sercel, C.L., Gill, T.M., Viges, E., and Jorns, B.A.

    36th International Electric Propulsion Conference, Vienna, Austria, IEPC-2019-717, 2019

  • State-of-the-Art and Advancement Paths for Inductive Pulsed Plasma Thrusters

    Polzin, Kurt; Martin, Adam; Little, Justin; Promislow, Curtis; Jorns, Benjamin; Woods, Joshua

    , https://www.mdpi.com/2226-4310/7/8/105, July 30, 2020

  • Performance Measurements of a 60 kW Field-reversed Configuration Thruster

    Joshua M. Woods , Christopher L. Sercel , Tate Gill and Benjamin Jorns

    VIRTUAL, https://arc.aiaa.org/doi/abs/10.2514/6.2020-3633, August 17, 2020

  • Scaling Laws for Rotating Magnetic Field-Driven Thrusters

    Christopher L. Sercel , Joshua M. Woods , Tate Gill and Benjamin Jorns

    VIRTUAL, https://arc.aiaa.org/doi/abs/10.2514/6.2020-3632, August 17, 2020

  • Performance measurements of a 5 kW-class rotating magnetic field thruster

    Christopher L. Sercel, Joshua M. Woods, Tate M. Gill, and Benjamin A. Jorns

    AIAA Propulsion and Energy 2021 Forum, https://pepl.engin.umich.edu/pdf/2021_AIAA_PE_Sercel.pdf, August 2021

  • Equivalent Circuit Model for a Rotating Magnetic Field Thruster

    Joshua M. Woods, Christopher L. Sercel, Tate Gill and Benjamin Jorns

    AIAA Propulsion and Energy 2021 Forum, https://pepl.engin.umich.edu/pdf/2021_AIAA_PE_Woods.pdf, August 2021